用户名: 密码: 验证码:
外加直流电场熔渣脱氧过程中氧传递机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
科学技术的进步和市场需求的发展,对钢铁产品质量的要求越来越高。大量事实证明,钢液中溶解氧会严重影响钢材的质量,传统的脱氧方法已经无法满足对钢材质量的需求,亟待寻求一种洁净方法脱除钢中的氧。基于此,周国治等提出渣金间外加直流电场熔渣脱氧法:在钢液与熔渣之间施加稳定的外电场,控制氧离子在熔渣体系中的传导方向,实现钢液的有序脱氧。理论分析和前期研究证明了该方法的可行性。
     为了进一步对渣金间外加直流电场熔渣脱氧工艺进行系统研究,围绕此主题,通过对CaO-Al_2O_3基预熔渣物性研究,确立组分对熔渣物性的影响,从而获得良好脱氧能力的熔渣;通过对Mo-ZrO_2金属陶瓷的组分和烧结工艺的研究,以获得基本满足脱氧实验要求的电极材料;分别采用碳钢、IF钢和X70管线钢,进行熔渣平衡脱氧和外加电场脱氧对比实验,研究钢液初始氧含量、熔渣成分和外电势等因素对钢液脱氧过程的影响;通过对渣金间氧的传输过程进行分析,建立脱氧过程的动力学模型;探索渣金间外加电场方法应用于熔渣电化学脱氧脱硫的可行性。论文主要内容归纳如下:
     1、熔渣密度和粘度随温度的升高而降低,电导率随温度的升高而增加;在CaO-Al_2O_3-MgO体系低熔点区中,随着MgO含量的增加,熔点、密度、表面张力和粘度总体趋势为先降低后升高,电导率变化则是先升高后降低;熔渣物性随CaO/Al_2O_3质量比的变化,与熔渣物性随MgO含量的变化基本一致。在CaO-7%MgO-Al_2O_3-SiO_2体系低硅区范围内,熔渣熔点随着熔渣聚合度NBO/T值的升高而降低,电导率随NBO/T值的增大而增加;随着NBO/T值的增加,表面张力先显著下降随后缓慢升高,粘度先略升高然后降低。
     _2、采用的粉末冶金工艺成功制备出了Mo-ZrO_2金属陶瓷电极。金属陶瓷的电导率随金属含量的增加而增大,随温度升高电导率呈现线性降低;Mo-ZrO_2金属陶瓷电导率与ZrO_2陶瓷相体积分数的关系,可用GEM方程进行描述,其临界体积分数为0.84,临界指数t为2.51。提高烧结温度或延长保温时间,可提高金属陶瓷的电导率。侵蚀结果表明:随着Mo金属相含量的减少,试样耐钢液侵蚀性能增强,耐CaO-Al_2O_3-MgO预熔碱性渣侵蚀性能减弱。钢液主要侵蚀金属陶瓷中的Mo金属相,熔渣主要侵蚀金属陶瓷中的ZrO_2陶瓷相。50%molMo-ZrO_2试样具有较好的综合性能,能够基本满足外加电场脱氧试验的要求。
     3、CaO-Al_2O_3基预熔渣脱氧实验结果表明:MgO含量在0.0-5.0%;CaO/Al_2O_3为0.9-1.0的熔渣具有良好的脱氧能力;对比碳钢、X70管线钢和IF钢的熔渣平衡脱氧和外加电场熔渣脱氧实验结果表明:外加电场脱氧速率明显高于平衡脱氧速率,且未对渣样及钢样组分造成明显变化;提高外加电势,可提高脱氧速率,并降低了钢液的氧含量;还原性气氛下外加电场能够将X70管线钢的氧含量降低到29ppm的水平,将IF钢的氧含量降低到_25ppm的水平。
     4、金属熔渣界面反应过程研究结果表明:循环伏安曲线中,随着扫描次数和扫描速率的增加,渣金反应电流增加;交流阻抗谱中,随着过电位的增加,脱氧反应的电荷传递电阻Rct明显降低,扩散阻抗随着过电位的增加而降低,钢液中氧的扩散增强;计时电流曲线中,脱氧过程中电极上发生的反应为[O]+2e=(O2-);电流大小I对t-1/2呈线性衰减,不同电势下通过Cottrell方程计算的氧在熔渣中的扩散系数,随着外加电势的增加而急剧增加。
     5、通过对渣金间氧的传输过程进行分析,利用等效电路描述带电粒子迁移过程,建立了外加电场熔渣脱氧过程的动力学模型,并通过实验数据与模型计算的对比,验证了所建立模型的正确性。
     6、外加电场熔渣电化学脱硫实验结果表明:所选渣系具有很好的脱硫能力,外加电场的加入明显提高了钢液的脱硫速率和脱硫能力,降低了终渣FeO含量;证明了该方法脱硫的可行性。
With the progress of science and technology and the development of market, highquality steel product is on demand. It is known that the oxygen level dissolved in steelhas tremendous influence on the quality and performance. Since the traditionaldeoxidization methods could not satisfy some special requirements on the oxygenlevel in steel, it is necessary to look for alternative methods to reduce the oxygencontent in steel. In such a background,Chou put forward the deoxidization technologyof applied external voltage between molten steel and slag. This deoxidization methodcan control conduction direction of oxygen ions in the melt slag system so thatdeoxidization from liquid steel orderly can be carried out. It is observed from thetheoretical analysis and previous results that it is reliable to accelerate the reaction bythis method.
     The aim of the present work is to further investigate the technology ofdeoxidization. The physicochemical properties of the selected CaO-Al_2O_3based slagsystem were investigated to explore a reasonable slag system for the requirement ofthis method, and the effects of component content on the physicochemical propertieswas investigated. In order to explore a reasonable electrode material for therequirement, The Mo-ZrO_2system cermet was chosen as the electrode material,mainly research on the influence of cermet compositions and sintering processes. Thedeoxidization experiments with Carbon steel, X70steel and IF steel were performedwith and without applied external voltage. And the factors such as the initial oxygencontent in steel, slag composition and the applied electric field potential wereinvestigated. To analyze the experimental results and understand the mechanism ofdeoxidization with applied external voltage, a kinetic model was proposed.Exploration on the possibility to enhance the rate of sulfur removal from metal to slagwith application of external voltage was studied. The major contents of this dissertation are epitomized as follows:
     It is found experimentally that the density decreases approximately linearlywith an increasing temperature. The viscosity and conductivity decreases withincreasing temperature as expected. It is shown that the properties of selectedCaO-Al_2O_3-MgO slag system with low-melting-point zone, such as melting point,viscosity, surface tension and density the melting temperature, density, surfacetension and viscosity, decreased with increasing the MgO content, and following byan increase with further increasing of the MgO content. The conductivity increaseswith increasing the ratios of the MgO content, and following by a decrease withfurther increasing of the MgO content. The effect of the mass ratio of CaO/Al_2O_3ratio on the properties was similar to those changes with MgO content. Theproperties of the selected CaO-7mass%MgO-Al_2O_3-SiO_2with low silica weremeasured. The results indicated that while increasing the NBO/T ratio, not onlylower the melting temperature of slag, but also increase the conductivity of slag. Thesurface tension decrease first, then increase slowly again. The viscosity increaseswith increasing the ratios of the NBO/T ratio, and following by a decrease withfurther increasing of the NBO/T ratio.
     The obtained results indicated that Mo-ZrO_2cermet can be successfullyprepared by the present powder metallurgy processes. The electrical conductivity ofcermets increased with decreasing the Mo content, and the high-temperatureelectrical conductivity increased linearly with increasing temperature. The GEMequation agrees well with the measured data. The model was proved to be promisingfor Mo-ZrO_2cermet dependence of ZrO_2volume ratio on conductivity of the cermet.The volume fraction of the ZrO_2phase is0.84, and the exponent for the percolationparameter is2.51. The results indicated that increasing sintering time and enhancingthe sintering temperature can lead to samples more compact in structure, and thusenhance the electrical conductivity of Mo-ZrO_2cermet. The corroded resultsindicated that the corrosion resistance of cermet to molten steel declines with the increase of Mo content. By contrast, the corrosion resistance of cermet toCaO-Al_2O_3-MgO slag declines with the reduction of Mo content. The property of50mol%Mo-ZrO_2is most superior, and can well be applied to the deoxidizationexperiment as electrode material.
     The deoxidization experiments with CaO-Al_2O_3based slag showed that whenCaO/Al_2O_3ratio in the range from0.9to1.0and the MgO content was less than5%,the selected slag is a good oxygen ion carrier, and the slag could remove oxygenfrom molten steel effectively. The experimental results obtained from Carbon steel,X70steel and IF steel were indicated that application of external electrical voltage tothe slag steel system, not only was there an acceleration in the deoxidization rate, butalso that there was lower oxygen content in the steel melt and FeO content in thefinal slag than that dictated by chemical equilibrium of slag. And the finalcomposition of the slag did not change remarkablely with applied stable electricvoltage. The results show that under reducing atmosphere, the total oxygen contentof X70steel and IF steel with applied external voltage between molten steel and slag,were around_29ppm and_25ppm, respectively.
     The interfacial deoxidization reaction kinetics between molten steel and moltenslag was studied. The CV results indicated that the current of interfacial reactionincrease with increasing scan rate and cycle times. The AC impedance resultsindicated that with rising applied potential, the charge transfer resistance of reaction(Rct) decreased obviously. And the diffusion resistance (Warburg impedance) whichdecreased with increasing applied potential indicated that the diffusivities of oxygenin molten steel increased with applied potential. The Chronoamperometry resultsindicated The interfacial reaction on deoxidization process is [O]+2e=(O~(2-)). Thecurrent of interfacial reaction decreases approximately linearly with t-1/_2, and thediffusivities of oxygen in molten slag calculated by Cottrell equation increaseddramatically with applied potential.
     Using the equivalent circuit model, the experimental results are analyzed to understand the reaction process and mechanism of deoxidization, and a kineticmodel was proposed for the method. A reasonable agreement has been reachedbetween experimental data and model calculation.
     It is observed from the present work that the slag could remove sulfur frommolten steel effectively. On application of electric voltage to the slag steel system,not only was there an acceleration in the desulphurization rate, but also that therewas lower sulfur content in the steel melt and FeO content in the final slag than thatdictated by chemical equilibrium of slag.
引文
【1】黄希祜.钢铁冶金原理[M].北京:冶金工业出版社,2008
    【2】周国治,李福燊,鲁雄刚,等.冶金过程新方向的探索-可控氧流冶金学[C].魏寿昆院士百岁寿辰纪念文集[C].北京:科学出版社,2006:p.171-176
    【3】 Chou K C, Gao Y M, Guo X M, et al. Metallurgy with controlled oxygen flow[C].Proceedings of the10th Japan-China Symposium on Science and Technology of Iron andSteel,2004, p162-167
    【4】 Nernst W. Electrolyte conduction in solid substances at high temperature[J]. Z.Electrochem.,1900,6: p41-45.
    【5】 Kiukkola K, Wagner C. Measure on galvanic cells involving solid electrolytes[J]. J.Electrochem. Soc.,1957,104: p379-383.
    【6】 Yao S, Kozuka Z. Deoxidization of Copper, Indium, Nickel and Molybdenum Oxide byhydrogen gas from electrochemical technique[J]. J. Jpn. Soc. Powder Powder Metall.,1988,35(4): p252-256.
    【7】鲁雄刚,周国治,丁伟中,等.带电粒子流控制技术在冶金过程中的应用及前景[J].钢铁研究学报,2003,15(05): p69-73
    【8】 Korousic B, Marincke B. Electrolytische Desoxydation von Kupferschmelzen [J]. Helv.Chim. Acta.,1968,51: p907-911.
    【9】王龙妹,金振坚,高锋,等.金属溶液中氧化物固体电解质电池电解脱氧动力学[J].中国稀土学报,1998,16(5): p441-444
    【10】 Koo H W, Park H J, Choi G M. Electrochemical deoxidation of molten steel withapplication of an oxygen permeable membrane. ISIJ Int.,2007,47(5): p689-698.
    【11】 Iwase M, Tanida M, Mclean A, et al. Electronically driven transport of oxygen fromliquid iron to CO-CO2gas mixtures through stabilized zirconia [J]. Metall. Trans.,1981,12B(9): p517-524.
    【12】 Pal U, Chou K C. Method for refining molten metals and recovering metals from slags[P].United States Patent,5312525, May17,1994
    【13】 Yuan S, Pal U, Chou K C. Deoxidation of molten metals by short circuitingyttria-stabilized zirconia electrolyte cell[J]. J. Electrochem. Soc.,1994,141(2): p467-474
    【14】 Pal U, Chou K C, Hasham Z. Method for refining molten metals and recovering metalsfrom slags. United States Patent,5443699, Auguest22,1995
    【15】 Yuan S, Pal U, Chou K C. Modeling and scaleup of galvanic deoxidation of moltenmetals using solid electrolyte cells[J]. J. Am. Ceram. Soc.,1996,79(3): p641-650.
    【16】 Sumiko S, Koichi A, Takahiro K, et al. Photocatalytic reduction of selenate and selenitesolutions using TiO2powders[J]. Metall. Mater. Trans. B.1999,30(1): p15-20
    【17】周国治,李福燊.一种无污染脱氧体[P]中国专利:CN1187542,1998-07-15
    【18】胡晓军,肖莉,李福燊,等.一种无污染脱氧方法[J].金属学报,1999,35(03): p316-319
    【19】李福燊,鲁雄刚,金从进,等.钢液的固体电解质无污染脱氧[J].金属学报,2003,39(03): p287-292
    【20】李福燊,金从进,鲁雄刚,等.钢液固体电解质脱氧体脱氧时的二次氧化现象[J].金属学报,2004,40(07): p673-676
    【21】 Lu X G, Li F S, Hu X J, et al. A new unpolluted deoxidation way [C]. Proceedings of theTMS Fall Extraction and Processing Conference: Extraction and Processing DivisionCongres,2004, p45-48
    【22】 Jiao Q, Themelis N J. Correlations of electrical conductivity to slag composition andtemperature[J]. Metall. Tran. B,1988,19(1): p133-140
    【23】王常珍.冶金物理化学研究方法[M].北京:冶金工业出版社,2000.
    【24】郭文华,张乐福,安兵.氧化锆固体电解质电子导电性能的测定[J].功能材料,1995,26(4): p313-315
    【25】鲁雄刚,梁小伟,袁威,等.渣金间外加电场无污染脱氧方法的研究[J].金属学报,2005,41(02): p113-117.
    【26】李建朝,张捷宇,鲁雄刚,等.渣金间外加直流电场无污染脱氧[J].过程工程学报,2006,6(z1): p30-34.
    【27】 Lu X G, Ding W Z, Li F S, et al. Electrochemistry of oxygen ion transport in slag[J]. TNonferr Metal Soc,2002,12(2): p326-329
    【28】高运明,郭兴敏,周国治.熔渣中氧传递的机理研究[J].钢铁研究学报,2004,16(4):p1-5.
    【29】蒋汉赢.冶金电化学[M].北京:冶金工业出版社,1989.
    【30】 Handbook on propertics of liquid iron and slag[M], The Iron and Steel Institute of Japan,Tokio,1972, p261
    【31】 Verein Deutscher Eisenhüttenleute Slag Atlas[M], Verlag Stahleisen MBH Düsseldorf,1995
    【32】 Martin A E, Derge G. The electrical conductivity of molten blast-furnace slags[J]. Trans.AIME,1943,154: p104-115.
    【33】 Goto K S, Sasabe M, Kawakami M. Relation between trace diffusivity and electricalconductivity on multi-componet oxide slags at900℃to1600℃[J]. Trans. ISIJ,1977,17(1): p212-214.
    【34】 Goto K S. Relationship between the partial conductance of ionic and their diffusivity [C].Proceedings of International Symp on Metall Slag. New York: TMS-AIME,1984,p839-861
    【35】 Simnad M T, Derge G. Note on the nature of conduction in liquid iron oxide and ironsilicates[J]. J. of Chem. Phys.,1953,21(4): p933-934
    【36】 Simnad M T, Derge G, George I. Ionic nature of liquid iron-silicate slags[J]. Trans. AIME,1954,200(4): p1386-1390
    【37】 Dukelow D A, Derge G. Electrochemical characteristics of FeO-MnO-SiO2melts[J].Trans. AIME,1960,218(3): p136-139
    【38】 Dancy E A, Derge G J. The electrical conductivity of FeOx-CaO slag[J]. Trans. AIME,1966,236(3): p1642-1648
    【39】 Dickson R W, Dismukes E B. The electrolysis of FeO-CaO-SiO2melts[J]. Trans. AIME,1962,224(3): p505-511
    【40】 Fontana A, Segers L, Twite K, et al. Electrical conductivity of ferrous silicate melts fromslag cleaning operation[C]. TMS-AIME Paper Selection,1984: A84-38
    【41】 Engell H J, Vygen P. Ionen-und Elektronenleitung in CaO-FeO-Fe2O3-SiO2Schmelzen[J].Ber. Bunsenges. Phys Chem.,1968,72: p5-12
    【42】鲁雄刚,丁伟中,李福燊,等. Wagner极化法对熔渣电子电导的研究[J].金属学报,2001,37(02): p184-188.
    【43】 Bockris J, Kitchener J A, Davies A E. Electric transport in liquid silicates [J]. Trans.Faraday Soc.,1952,48: p536-548.
    【44】 Gupta Y P, King T B. Self-diffusion of sodium in sodium silicate liquids [J]. Trans. Metall.Soc. AIME,1967.239(4): p1701-1706
    【45】吴宣方译冶金电化学[M].沈阳:东北工学院出版社,1991.
    【46】 Koros P J, King T B. The self-diffusion of oxygen in a lime-silica-alumina slag [J]. Trans.Metall. Soc. AIME,1962,224(2): p299-306.
    【47】肖海明,刘业翔.冰晶石-氧化铝熔盐系氧离子迁移数的推测[J].中南矿冶学院学报,1989.20(2): p150-154.
    【48】 Goto K, Schmalzried H, Nagata, K. Relation between the transport or friction coefficientsof elementary ions and the interdiffusion coefficients of neutral oxide components inmulticomponent slags [J] Tetsu-to-Hagane,1975,61(13): p2794-2804.
    【49】 Nagata K, Goto K S. Transport coefficients of ions and interdiffusivities inmulticomponent ionic solution of CaO-SiO2-Al2O3at1500℃[J]. J. Electrochem. Soc.,1976,123(12):p1814-1820.
    【50】 Ilschner-Gensch C, Wagner C. Local cell action during the scaling of metals, I [J]. J.Electrochem. Soc.,1958,105(4): p198-200.
    【51】 Caley W F, Marple B R, Masson C R. Diffusion and electrochemical transport of oxygenin PbO-SiO2melts [J]. Can. Metall. Quart.,1981,20(2): p215-223.
    【52】 Pal U, Debroy T, Simkovich G. Electronic and ionic transport in liquid PbO-SiO2systems[J]. Metall. Trans.,1985,16B(3): p77-82
    【53】 Pal U, Debroy T, Simkovich G. Oxygen pressure dependence of Lead ion transport inPbO-SiO2melts [J]. J Am Ceram Soc,1985,68(4): p104-105
    【54】 Leewis K G, Caley W F, Masson C R. Electrochemically-enhanced oxygen transfer anddesulfurization in a gas-slag-metal system [C]. Second international symposium onmetallurgical slags and fluxes, Warrendale PA: The Metallurgical Society of AIME,1984,p685-697
    【55】 Speelman J L, Caley W F, Leewis K G. Electrochemical transport through aLime-Silica-Alumna slag [J]. Metall Trans,1989,20B(2): p31-37.
    【56】 Krishna murthy G G, Sawada Y, Elliott J F. Reduction of FeO dissolved in CaO-SiO2-Al2O3slags by Fe-C droplets [J]. Ironmaking&Steelmaking,1993,20(3): p179-190.
    【57】 Krishna murthy G G, Hasham A, Pal U. Reduction rates of FeO in CaO-SiO2-Al2O3-Xslags by Fe-C droplets [J]. Ironmaking&Steelmaking,1993,20(3): p191-200.
    【58】 Krishna Murthy Hasham A, Pal U. Removal of FeO during foaming ofCaO-Al2O3-SiO2-FeO slags by low carbon-iron melts [J]. ISIJ Int.,1994,34(5):p408-413.
    【59】 Woolley D E, Pal U. Experimental evidence for electrochemical nature of the reactionbetween iron oxide in calcia-silica-alumina slag and carbon in liquid iron[J]. Metall.Mater. Trans. B.1999,30(5): p877-889.
    【60】 Woolley D E, Pal U. Rate of reduction of ferric and ferrous oxide fromCalcia-Silica-Alumina slag by carbon in liquid Iron. ISIJ Int.,1999,39(2): p103-112
    【61】鲁雄刚,李福燊,胡晓军,等.铁碳金属颗粒与熔渣的反应[J].钢铁研究学报,1999.11(03): p5-8.
    【62】鲁雄刚,李福燊,胡晓军,等. Fe-C熔体与熔渣反应的电化学机理[J].化工冶金,1999,20(03): p278-282.
    【63】 Macdonald R. Applications of Impedance Spectroscopy [M]. Newyork:Wirey-Interscience Publication,1987
    【64】王淑兰,李光强,隋智通.熔融Sn-S/ZnCl-NaCl体系界面脱硫反应动力学的阻抗分析[J].金属学报,1998,34(5): p521-525.
    【65】王淑兰,李光强,隋智通.融熔Cu-S, Fe-S/CaO-SiO2-Al2O3体系界面脱硫反应动力学的阻抗谱分析[J].金属学报,1999,35(3): p306-310.
    【66】王淑兰,李光强,王庚华,等.融熔Cu-S/CaO-SiO2-Al2O3体系界面脱硫反应动力学的阻抗分析[J].中国有色金属学报,1999,9(1): p150-154.
    【67】 Keller H, Schwerdtfeger K, Petri H, et al. Tracer diffusivity of18O in CaO-SiO2Melts at1600℃[J]. Metall. Mater. Trans. B,1982,13(2): p237-240.
    【68】 Shiraishi Y, Nagahama H, Ohta H. Self-diffusion of oxygen in CaO-SiO2melt [J]. Can.Metall. Quart.,1983,22(1): p37-43.
    【69】 Xie D, Belton G R. The rate of reaction of solid iron with oxidized“FeO”-CaO-SiO2-Al2O3slags at1360℃-the chemical diffusivity of iron oxide[J]. Metall.Mater. Trans. B,1999,30(3): p465-472.
    【70】 Li Y, Lucas J A, Fruehan R J, et al. The chemical diffusivity of oxygen in liquid ironoxide and a calcium ferrite [J]. Metall. Mater. Trans. B,2000,31(5): p1059-1068.
    【71】 Sayadyaghoubi Y, Sun S, Jahanshahi S. Determination of the chemical diffusion ofoxygen in liquid iron oxide at1615℃[J]. Metall. Mater. Trans. B,1995.26(4): p795-802
    【72】 Grieveson P, Turkdogan E T. Iron and steel division-kinetics of oxidation and reductionof molten iron oxide [J]. Trans. Metall. Soc. AIME,1964,230(4): p1609-1614.
    【73】 Sasabe M, Goto K S. Permeability, diffusivity and solubility of oxygen gas in liquidslag[J]. Metall. Mater. Trans. B,1974,5(10): p2225-2233.
    【74】魏季和,刘宗远.电渣重熔用CaF2-Al2O3和CaF2-Al2O3-CaO系熔渣传氧的研究[J].金属学报,1994,309(8): p351-360.
    【75】 Goto K S, Kurahashi T, Sasabe M. Oxygen pressure dependence of tracer diffusivities ofCa and Fe in liquid CaO-SiO2-FexO system [J]. Metall. Mater. Trans. B,1977,8(4):p523-528.
    【76】 Sasabe M, Goto K S, Someno M. Rate of change of exygen chemical potential in liquidPb-SiO2binary solution [J]. Metall. Mater. Trans. B,1970,1(4): p811-817.
    【77】 Sasabe M, Kinoshita Y. Permeability, diffusivity and solubility of oxygen gas in moltenCaO-SiO2-Al2O3system [J]. Tetsu-to-Hagane,1978.64(9): p1313-1322.
    【78】 Sasabe M, Kinoshita Y. Permeabilities of oxygen through molten CaO-SiO2-Al2O3systemwith Fe2O3or CaF2[J]. Tetsu-to-Hagane,1979.65(12): p1727-1736.
    【79】 Sasabe M, Jibiki M. Permeability and apparent diffusivity of oxygen in molten ironOxide-CaO-SiO2system [J]. Tetsu-to-Hagane,1982.68(7): p767-773.
    【80】 Sasabe M, Kitamura S. Transport phenomena of oxygen through molten CaO-SiO2system containing Zinc and/or Nickel oxide [J]. ISIJ Int.,1993,33(1): p133-139.
    【81】 Li Y, Lucas J A, Evans G M, et al. Rate of interfacial reaction between liquid iron oxideand CO-CO2[J]. Metall. Mater. Trans. B,2000,31(5): p1049-1057.
    【82】 Chou K C. A kinetic model for oxidation of Si-Al-O-N materials [J]. J. Am. Ceram. Soc.,2006,89(5): p1568-1576.
    【83】赵玉涛,孙建祥,戴起勋,等.Al-Zr(CO3)2体系反应合成复合材料的反应机制及动力学模型[J].中国有色金属学报,2005,15(9): p1343-1349.
    【84】胡晓军,松浦宏行,月桥文孝,等.界面非平衡氧传递过程动力学的解析[J].金属学报,2007,43(8): p829-833.
    【85】 Hu X J, Matsuura H, Tsukihashi F. Oxygen exchange reaction between CO2-CO gas andmolten oxide containing iron oxide. ISIJ Int.,2006,46(7): p974-980.
    【86】 Hu X J, Matsuura H, Tsukihashi F. Interfacial reaction between CO2-CO gas and molteniron oxide containing P2O5[J]. Metall. Mater. Trans. B,2006,37(3): p395-401.
    【87】胡晓军. P2O5对熔渣界面氧迁移反应的影响及机理[J].金属学报,2005,41(6):p655-658.
    【88】胡晓军.13CO2-CO同位素交换技术研究含铁氧化物熔渣表面CO2分解反应的动力学[J].中国稀土学报,2006,24(s1): p151-153.
    【89】 Matsuura H, Tsukihashi F. Surface active effect of Na2O on the rate of CO2dissociationon the surface of molten FeOx-Na2O and FeOx-SiO2-Na2O systems [J]. ISIJ Int.,2005,45(7): p1035-1040.
    【90】 Matsuura H, Tsukihashi F. Chlorination and evaporation behaviors of PbO-PbCl2systemin Ar-Cl2-O2atmosphere [J]. ISIJ Int.,2005,45(12): p1804-1812.
    【91】 Masahiko M, Seiichi S, Katsuhiko T, et al. Electrochemical behaviors of multivalentcomplexes in room temperature ionic liquids based on quaternary phosphoniumcations[J]. Journal of Electroanalytical Chemistry,2008,622(2): p129-135.
    【92】 Matsuura H, Hu X J, Tsukihashi F. Measurement of oxygen exchange reaction ratebetween gas and molten iron oxide by mass spectrometry of CO-CO2gas containing18O[J]. J. Mass Spectrom Society. Janpan,2005,53(5): p257-264.
    【93】鲁雄刚.钢渣脱碳反应的电化学机理研究[D].北京:北京科技大学,1997
    【94】张明杰,邱竹贤.冰晶石-氧化铝熔液电解中阳极过程的研究[J].东北工学院学报,1984,(1): p49-59.
    【95】 Zhuxian, Q. and Z. Mingjie, Anode effect in aluminium electrolysis. Aluminium,1985.12:p.911.
    【96】 Thonstad J. On the Anode Gas Reactions in Aluminum Electrolysis [J]. J. Electrochem.Soc.,1964.111(8): p955-959.
    【97】张明杰,邱竹贤.炭阳极在冰晶石-氧化铝熔体中反应机理的研究[J].东北工学院学报,1986,(4): p79-85.
    【98】张明杰,邱竹贤,王洪宽.铝电解中的电极过程-Ⅰ.阳极过程[J].东北大学学报(自然科学版),2001,22(2): p123-126
    【99】翟玉春,张明杰,邱竹贤,等.铝电解中氧在石墨电极上放电机理的量子化学研究-Ⅰ生成CO的情况[J].东北工学院学报,1988,(2): p154-160.
    【100】 Zhang M J, Zhai Y C, Qiu Z X, ed al. Microstructure of the ionic discharge of oxygen ongraphite anode in aluminium electrolysis [J]. Journal of Materials Science&Technology,1991,7(1): p1-8.
    【101】张明杰,王兆文.熔盐电化学原理与应用[M].北京:化学工业出版社,2006.
    【102】邱竹贤.铝电解中界面现象及界面反应[M].沈阳:东北工学院出版社,1986.
    【103】 Goto K S. A review of the electrolytic properties of metallurgical slags[C]. Secondinternational symposium on metallurgical slags and fluxes. Lake Tahoe, Nevada: TheMetallurgical Society of AIME,1984, p839-862
    【104】 King T B, Ramachandran S. Physical chemistry of steelmaking[M]. Cambridge, MA:MIT Press,1958.
    【105】 Sen N, Ghosh M, Banerjee U K, et al. Desulphurisation of high sulphur cast iron usingan electrochemical technique [J]. Scandinavian Journal of Metallurgy,1999,28(6):p249-253.
    【106】梁小伟,孙铭山,鲁雄刚,等.渣金间外加电场无污染脱氧新方法[J].上海大学学报(自然科学版),2003,9(4): p318-320
    【107】 Zhang J Y, Li J C, Lu X G, et al. Study of unpolluted deoxidization with applied externalvoltage between molten steel and slag[C]. TOFA2006conference,2006, pO60-O71
    【108】 Xu J F, Zhang J Y, Chai N, et al. Unpolluted deoxidization with applied DC voltagebetween molten steel and Al2O3-CaO-MgO slag system[C]. The5th China-Korea JointSymposium on Advanced Steel Technology for Future Industry.2009, p62-67
    【109】 Bottinga Y, Weill D F. Densities of liquid silicate systems calculated from partial molarvolumes of oxide components [J]. Amer. J. Sci.,1970,269: p169-182.
    【110】 Mills K C, Keene B J. Physical properties of BOS slags[J]. International MaterialsReviews,1987,32: p1-120.
    【111】 Robinson J, Dinsdale A T,Chapman L A, ed al. The prediction of thermophysicalproperties of steels and slags [C].2nd International Conference of Science andTechnology of Steelmaking, London: IOM,2001, p149-160
    【112】 Hayashi M, Abas R, Seetharaman S. Effect of crystallinity on the thermal diffusivity ofmould fluxes for the continuous casting of steels[J]. ISIJ Int.,2004,44(4): p691-697
    【113】 Persson M, Matsushita T, Zhang J, et al. Estimation of molar volumes of some binaryslags from enthalpies of mixings[J]. Steel Res. Int.,2007,78(2): p102-108.
    【114】 Priven A I. General method for calculating the properties of oxide glasses and glassforming melts from their composition and temperature [J]. Glass Technology,2004.45(6): p244-254.
    【115】 Riboud P V, Larrecq M. Lubrification and heat transfer in continuous casting mould[J].Steelmaking proceedings, ISS-AIME,1978,62: p78-87.
    【116】 Urbain G. Viscosity of slags[J]. Steel Reseach,1987,58(3): p111-116.
    【117】 Iida T, Sakai H, Kita Y, et al. An equation for accurate prediction of the viscosities ofblast furnace type slags from chemical composition[J]. ISIJ Int.,2000,40(1): p110-114.
    【118】 Senior C L, Srinivasachar S. Viscosity of ash particles in combustion systems forprediction of particle sticking[J]. Energy&Fuels,1995,9(2): p277-283.
    【119】 Mills K C, Sridhar S. Viscosities of ironmaking and steelmaking slags[J]. Ironmakingand Steelmaking,1999,26(4): p262-268.
    【120】 Li C F, Gupta V K, Sureshkumar R, et al. Turbulent channel flow of dilute polymericsolutions: Drag reduction scaling and an eddy viscosity model [J]. Journal ofNon-Newtonian Fluid Mechanics,2005,139(3): p177-189.
    【121】 Koyama K. Design for chemical and physical properties of continuous casting powder[J].Nippon Steel Technical Report,1987,34: p41-48.
    【122】 Lee I R, Kim J W, Choi J, et al. Development of mould powder for high speedcontinuous casting [C]. Conference on Continuous Casting of Steel in DevelopingCountries, Beijing: Chinese Society of Metals,1993, p814-822.
    【123】 Seetharaman S. Fundamentals of metallurgy [M]. Boca: CRC Press,2005, p156
    【124】 Reddy R G, Yen J Y, Zhang Z. Proc. Viscosities of Na2O-SiO2-B2O3melts[J]. High.Temp. Sci.,1990,20: p195-202
    【125】 Seetharaman S, Du S C. Estimation of the viscosities of binary metallic melts usingGibbs energies of mixing [J]. Metall. Mater. Trans. B,1994,25(4): p589-595.
    【126】 Zhang L, Jahanshahi S. Review and modeling of viscosity of silicate melts: Part I,viscosity of binary and ternary silicates containing CaO, MgO, and MnO[J]. Metall.Mater. Trans. B,1998,29(1): p177-186.
    【127】 Nakamoto M, Tanaka T, Lee J, et al. Evaluation of viscosity of molten SiO2-CaO-MgO-Al2O3slags in blast furnace operation[J]. ISIJ Int.,2004,44(12): p2115-2119.
    【128】 Kondratiev A, Jak E. Review of experimental data and modeling of the viscosities offully liquid slags in the Al2O3-CaO-‘FeO’-SiO2system[J]. Metall. Mater. Trans. B,2001,32(6): p1015-1025.
    【129】 Nishioka K, Maeda T, Shimizu M. Application of square-wave pulse heat method tothermal properties measurement of CaO-SiO2-Al2O3system fluxes[J]. ISIJ Int.,2006,46(3): p427-433
    【130】 Zhang G H, Chou K C. Simple method for estimating the electrical conductivity of oxidemelts with optical basicity [J]. Metall. Mater. Trans. B,2010,41(1): p131-136.
    【131】 Zhang G H, Yan B J, Chou K C, et al. Relation between viscosity and electricalconductivity of silicate melts [J]. Metall. Mater. Trans B,2011,42(2): p261-264.
    【132】 Tanaka T, Kitamura T, Back I A. Evaluation of surface tension of molten ionicmixtures[J]. ISIJ Int.,2006,46(3): p400-406.
    【133】 Nakamoto M, Kiyose A, Tanaka T. Evaluation of the surface tension of ternary silicatemelts containing Al2O3, CaO, FeO, MgO or MnO [J]. ISIJ Int.,2007,47(1): p38-43.
    【134】 Zhang J Y, Shu Q F, Wei S K. Prediction of surface tension in molten ionic systems[J].High Temperature Materials and Processes,2001,20(3-4): p235-239.
    【135】 Hanao M, Kawamoto, Tanaka T, et al. Estimation of surface tension of molten silicatesusing neural network computation [J]. ISIJ Int.,2007,47(8): p1075-1081.
    【136】张鉴,袁伟霞. CaO-Al2O3-SiO2熔渣的作用浓度计算模型[J].北京科技大学学报,1995,17(5): p418-423
    【137】牛四通,张鉴,成国光,等. LF埋弧渣技术的开发及其应用[J].钢铁,1997,32(3):p21-24
    【138】牛四通,张鉴,成国光,等.埋弧渣精炼技术的应用[J].特殊钢,1996,17(2): p47-51
    【139】王书桓,唐国章,李福民,等.12CaO·7A12O3型精炼合成渣物性与脱硫实验[J].河北理工学院学报,2001,23(3): p9-13
    【140】 Turkdogan T. Slags and fluxes for ferrous ladle metallurgy[J]. Ironmaking andSteelmaking,1985,12(2): p64-77
    【141】李阳,姜周华,姜茂发,等. CaO-A12O3基精炼渣对钢液脱氧的影响[J].钢铁研究学报,2002,14(5): p12-15
    【142】李文献. LF炉预熔精炼渣的研究与应用[D].东北大学硕士论文,2003
    【143】张东力,王晓鸣,匡世波,等. LF精炼渣发泡性能的实验研究[J].钢铁研究报,2003,15(6): p12-15
    【144】胡夏雨,林李全,李辽沙,等.高Al2O3炉渣性能的研究[J].中国冶金,2006,16(2):p38-41
    【145】兰杰,姜周华,黄宗泽,等. CaO-A12O3-CaF2-SiO2-MgO五元精炼渣系的起泡性能[J].钢铁研究学报,1999,11(2): p14-18
    【146】郑颖,乔光,宋海.包钢炼钢厂3#LF炉改进渣系的研究[J].包钢科技,2005,31(2):p17-19
    【147】 Jonsson P G, Jonsson L, Du S C. Viscosities of LF slags and their impact on ladlerefining [J]. ISIJ Int.,1997,37(5): p484-491
    【148】崔传孟,徐秀光,张显鹏,等. B2O3-MgO-SiO2-Al2O3-CaO系渣组成对熔体物性的影响[J].金属学报,1996,32(6): p637-641
    【149】 Lide D R. CRC handbook of Chemistry and Physics (84th Ed.)[M]. Boca: CRC Press,2003, p4-39
    【150】 Mills K C. The influence of structure on the physico-chemical properties of slags [J].ISIJ Int.,1993,33(1): p148-155
    【151】 Hanao M, Tanaka T, Kawamoto M, et al. Evaluation of surface tension of molten slag inmulti-component systems[J]. ISIJ Int.,2007,47(7): p935-939.
    【152】刘振.表面张力对保护渣设计及选用的影响[J].山东冶金,2005,27(1): p38-39
    【153】刘永庆,唐萍,文光华,等.结晶器含钛无氟保护渣的粘度和熔化特性[J].中国有色金属学报,2006,16(3): p550-554.
    【154】 De Aza A H, Iglesias J E, Pena P, et al. Ternary System Al2O3-MgO-CaO: Part II, Phaserelationships in the subsystem Al2O3-MgAl2O4-CaAl4O7[J]. J. Am. Ceram. Soc.,2000,83(4): p919-927.
    【155】 Zhang G H, Chou K C. Model for evaluating density of molten slag with opticalbasicity[J]. Journal of Iron and Steel Research International,2010,17(4): p1-4
    【156】 Park J H, Min D J, Song H S. Amphoteric behavior of alumina in viscous flow andstructure of CaO-SiO2(-MgO)-Al2O3slags[J]. Metall. Mater. Trans. B,2004,35(2):p269-275.
    【157】 Machin J S, Yee T B, Hanna D L. Viscosity studies of the system CaO-MgO-Al2O3-SiO2:III,35,45, and50%SiO2[J]. J. Am. Ceram. Soc.1952,35(12): p332-325
    【158】 Schwartz L D, Lukaniuk C M, Estell T H. A new production technique forMolybdenum-Zirconia cermets[J]. Adv. Eng. Mater.,1999,1(2): p111-113.
    【159】 Lukaniuk C M, Schwartz L D, Estell T H. A new method for the production of aMolybdenum-Zirconia cermet [J]. J. Mater. Res.,1999,14(5):1801-1804.
    【160】 Funami K, Eto G, Muramatsu Y. Mechanical properties and fracture toughness ofMo-ZrO2sintered composites[J]. J. Jpn. Inst. Met.,1986,50(9): p834-840.
    【161】 Brokhin I S, Platov A B. Preparation and microstructure of cermets Al2O3-Mo andZrO2-Mo[J]. Poroshk. Metall.,1965,7(31): p74-79
    【162】 Popova I A, Burenina A A, Karasik N Y, et al. Microstructure of cermets of the systemsMo-ZrO2and W-ZrO2[J]. Poroshk. Metall.,1967,57(9): p52-57
    【163】李荣久.陶瓷-金属复合材料[M].北京:冶金工业出版社2004
    【164】 Kita H. Highly durable ceramic thermometer for molten metal[J]. Int. J. App. Ceram.Technol.,2006,3(1): p13-22
    【165】许继芳,张捷宇,阮飞,等.高氧含量下的渣金间外加直流电场脱氧研究[C].第四届宝钢学术年会论文集, pB169-B172
    【166】揭畅,刘恭源,张捷宇,等. Mo-ZrO2金属陶瓷耐蚀性能与组成的关系[J].过程工程学报,2010,10(6): p1206-1211
    【167】 Newnham R. E. Composite electroceramics[J]. Journal of Materials Education,1985,7(4): p601-651.
    【168】 Mclachlan D S, Blaszkiewicz M, Newnham R E. Electric resistivity of composites[J]. J.Am. Ceram. Soc.,1990,73(8): p2187-2203
    【169】 Maxwell J C. A treatise on electricity and magnetism[M]. New York: Dover Books onScience,1954.
    【170】 Sherman D, Middleman L M, Jacobs S M. Electro transport processes in conductivefilled polymer[J]. Polym. Eng. Sci.,1983,23: p36-46
    【171】 Sen P N, Scala C, Cohen M H. A selt-similar model for sedimentary rocks with anapplication to the dielectric constant of fused glass beads [J]. Geophysics.,1981,46:p78-95
    【172】 Kirkpatrick S. Percolation and conduction [J]. Rev. Mod. Phys.,1973,45(4): p574-588.
    【173】 McLachlan D S. An equation for the conductivity of binary mixtures with anisotropicgrain structures [J]. J Phys C: Solid State Phys.,1987,20(7): p865-877.
    【174】 McLachlan D S. Morphology dependence of the resistivity and Merssner curves in twophase superconductors [J]. Solid State Communications,1989,69(9): p925-929.
    【175】 McLachlan D S, Berger J P. An analysis of the electrical conductivity of the two phasePd-Hxsystem [J]. Solid State Communications,1988,65(2): p159-161.
    【176】 Deprez N, McLachlan D S. The measurement and comparative analysis of the electricaland thermal conductivities, permeabilityand Young’s modulus of sintered Nickel[J].Solid State Communications,1988,66(8): p869-872.
    【177】 Blaszkiewicz M, McLachlan D S, Newnham R E. The study of the volume fraction,temperature and pressure dependence of theresistivity in a ceramic-polymer compositeusing a general effective media theory equation[J]. J. Mater. Sci.,1991,26(21):p5899-5903.
    【178】 Marinsek M, Pejovnik S and Macek J. Modelling of electrical properties of Ni-YSZcomposites[J]. Journal of the European Ceramic Society,2007,27(2-3): p959-964.
    【179】 Simwonis D, Tietz F, Stover D. Nickel coarsening in annealed Ni/8YSZ anode substratesfor solid oxide fuel cells[J]. Solid State Ionics,2000,132(3-4): p241-251.
    【180】关振铎,张中太,焦金生.无机材料物理性能[M].北京:清华大学出版社,1992
    【181】 Jia L, Lu Z, Miao J P, et al. Effects of pre-calcined YSZ powders at differenttemperatures on Ni-YSZ anodes for SOFC[J]. Journal of Alloys and Compounds,2006,414: p152-157.
    【182】 Anselmi-Tamburini U, Chiodelli G, Arimondi M, et al. Electrical properties of Ni/YSZcermets obtained through combusion synthesis[J]. Solid State Ionics,1998,110(1-2):p35-41
    【183】唐辉,林振汉,王欣,等.氧化锆材料的掺杂机理探讨[J].稀有金属快报,2007,26(1): p69-73.
    【184】 Lee J H, Moon H, Lee H W, et al. Quantitative analysis of microstructure and its relatedelectrical property of SOFC anode, Ni-YSZ cermet[J].Solid State Ionics,2002,148(1-2):p15-26
    【185】 Muccillo E, Kleitz M. Impedance spectroscopy of Mg-partially stabilized zirconia andcubic phase decomposition[J]. J. Eur. Ceram. Soc.,1996,16(4): p453-465
    【186】黄培云.粉末冶金原理(第二版)[M].北京:冶金工业出版社,1997
    【187】长崎诚三,平林真.二元合金状态图集[M].刘安生译.北京:冶金工业出版社,2004.
    【188】王魁汉,崔传孟.钼基金属陶瓷热电偶保护管的研究[J].东北工学院学报,1992,13(4): p348-352.
    【189】王魁汉,崔传孟.钢水连续测温用Mo-MgO金属陶瓷保护管的腐蚀过程[J].东北工学院学报,1981,28: p45-52
    【190】王威.提高水泥窑用MgO-MgO·Al2O3制品挂窑皮性能的研究[D].鞍山:辽宁科技大学,2007
    【191】张锡平,陈树江,薛文东,等. m-ZrO2和ZrSiO4对MgO-CaO砖性能的影响[J].耐火材料,2008,42(1): p25-28
    【192】高运明,姜英,张华,等.可控氧流冶金[J].武汉科技大学学报(自然科学版),2007,30(5): p449-453.
    【193】胡晓军.冶金反应过程中氧定向迁移的理论和应用研究[J].钢铁,2006,41(S2):p196-199
    【194】 Xu J F, Zhang J Y, Chai N, et al. Unpolluted deoxidization with applied DC voltagebetween molten steel and Al2O3-CaO-MgO slag system[C]. The5th China-Korea JointSymposium on Advanced Steel Technology for Future Industry.2009, p62-67.
    【195】 Masuda M, Takenishi H, Katagiri A. Electrodeposition of tungsten and relatedvoltammetric study in a basic ZnCl2-NaCl (40-60mol%) melt[J]. J. Electro-Chem. Soc.,2001,148(1): pc59-c67
    【196】 Macdonald R. Applications of Impedance Spectroscopy [M]. Newyork:Wirey-Interscience Publication.1987, chapter1.
    【197】 Gabrilli C. Technical report number004/83. Solartron Instruments,1984,2: p15-25
    【198】 Otsuka S, Kozuka Z. The diffusivities of oxygen in liquid nickel and liquid irondetermined by electrochemical measurements [J]. Transactions of the Japan Institute ofMetals,1977,18(10): p690-696
    【199】 Bard A J, Faulkner L R. Electrochemical methods fundamentals and applications[M].New York: John Wiley&Sons,1980, p156-163.
    【200】 Southampton Electrochemistry Group. Instrumental methods in electrochemisty[M].Chichester: Ellis Horwood,1985: p210-239
    【201】高运明,无污染短路还原法提铁的基础研究[D].2004,北京科技大学:北京
    【202】 Maskalick N J. Design and Performance of Tubular Solid Oxide Fuel Cells[C].Proceedings of the First International Symposium on Solid Oxides Fuel Cells,Hoolywood, FL: Electrochemical Society1993, p279-287
    【203】 Mori K, Hiwasa S, Kawai Y. Rate of transfer of oxygen from slag to liquid iron[J].Journal of the Japan Institute of Metals,1980,44(11): p1282-1287.
    【204】 Grimble M, Ward R G, Williams. Kinetics of silica reduction by Cabon-saturated iron [J].J. Iron and Steel Institute,1965,203(3): p264-267
    【205】 Ontani M, Gocken N A. Physical chemistry of process energy [M]. New York: InterScience,1961, p1213
    【206】 Mclean A, Sommerville I D, Kemeny F L. Enhanced slag-metal reactions [C].4thinternational conference on molten slags and fluxes. Sendai: ISIJ Int1992: p268-273

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700