用户名: 密码: 验证码:
石墨烯及其复合材料的制备与储能应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电化学超级电容器(ESC)是一种新型储能器件,它介于蓄电池和传统静电电容器之间,具有容量高、功率大、可逆性好、循环寿命长、环境稳定性好等优点,有着广阔的应用前景,因而它受到了广大研究者的青睐。对于电容器来说,最关键的是其电极材料。石墨烯是一种新发展起来的碳材料,它具有比表面积大、导电性能好等优点,是一种良好的电极材料。但是单一的石墨烯比容量有限,难以充分发挥其优异性能。导电聚苯胺具有原料成本低、合成工艺简单、化学和环境稳定性好等优点,是一种良好的电极材料。但是纯聚苯胺作为电极材料时,在长期充放电过程中,循环稳定性差、比容量低等缺点限制了其应用,因而它是一种需要修饰的电极材料。活性碳纤维由于其导电性能好、强度高、比表面积大等优点成为了电容器电极材料研究热点,但是纯碳纤维表观密度低、耐酸性能差等缺点,因而需要对其表面进行修饰。采用石墨烯修饰聚苯胺和活性碳纤维,可提高其电化学性能。
     本文主要研究了石墨烯及其复合材料的制备及电化学性能,并比较石墨烯、碳纳米管在其复合材料中电化学性能优劣。采用透射电镜、扫描电镜、XRD等测试手段,对材料形貌和结构进行了表征;并且表征了材料的电化学性能,主要是采用循环伏安、恒电流充放电等电化学测试手段来测试表征的。具体研究内容如下:
     1.采用Hummers方法制备氧化石墨烯,之后分别采用化学还原法和高温氢气还原法还原得到石墨烯。比较两种方法得到的石墨烯可以看出,CGR电化学性能更为优异,比电容、循环稳定性更高,其比电容达到104.4F/g。
     2.采用原位聚合法制备了石墨烯/聚苯胺复合材料(CGR/PANI)和碳纳米管/聚苯胺复合材料(CNTs/PANI),探讨了石墨烯与碳纳米管与聚苯胺聚合得到的复合材料性能优劣。通过电化学测试可以看出,石墨烯/聚苯胺复合材料的电化学性能比碳纳米管/聚苯胺复合材料的电化学性能更好,其比电容达到148.4F/g。
     3.采用浸渍法及高温还原法制得石墨烯/活性碳纤维复合材料(GR/ACF),采用化学气相沉积法(CVD)在活性碳纤维上生长碳纳米管制备碳纳米管/活性碳纤维复合材料(CNTs/ACF)。通过电化学测试可以看出石墨烯/活性碳纤维复合材料比电容、循环稳定性高于纯碳纤维和碳纳米管/活性碳纤维复合材料。
Electrochemical Supercapacitor (ESC) is a new kind of energy storage device with many outstanding properties, such as high specific capacity, good reversibility, long cycle life, good environmental stability and wide application perspectives. Supercapacitors are increasingly gaining attention because they fill a gap between batteries and ordinary capacitors. The choosing of the electrode material is the critical factor to the preparation of electrochemical capacitor. Graphene has been the most promising candidate of electrode materials since its discovery.owing to the many advantages graphene has like large specific surface area, great electrical conductivity and so on. However, supercapacitors, which are consisted of pure graphene, do not demonstrate desired capacitance as expected. Polyaniline (PANI) is a common conducting polymer, which has been considered as an important electrode material due to its cost efficiency, operation simplicity, high chemical and environmental stability. Unfor tunately, supercapacitors comprising electrodes which are made up of pure PANI, do not fulfill people's need of high capacitance, long cycle life. Active carbon fiber (ACF) has long been used as electrode material and other field with high significance because of its good conductivity, high strength and large specific surface area. Whereas pure ACF need to be futher modified forhigh apparent density, good acid resistance and so forth. In order to improve the electrochemical performance of the supercapacitors, graphene are employed to modify the PANI and ACF.
     In this paper, we primarily studied the preparation and their electrochemical properties of graphene and its composites, and comparing the properties of graphene and CNTs in their composites. Morphology and structure of the obtained materials were characterized by transmission electron microscope (TEM), field effect scanning electron microscopy (FE-SEM). X-Ray Diffraction was also adopted to analyze the component of the obtained material. In addition, the electrochemical performances of the obtained materials were characterized by cyclic voltammograms (CV), galvanostatic charging/discharging. The detailed information is listed as follows:
     1-Graphene oxide was prepared by Hummers method. And then the obtained graphene oxide was reduced by chemical method and high temperature hydrogen reduction process respectively. Comparing the two reduction methods mentioned above, graphene obtained by chemical method has better electrochemical performance withthe specific capacitance of104.4F/g(organic electrolyte).
     2. The CGR/PANI and CNTs/PANI composites were papered by in-situ polymeri-zation. In contrast to CNTs/PANI composites, CGR/PANI composites have better electrochemical performance and the specific capacitance of148.4F/g (organic electrolyte).
     3. By first immersing ACF into GO water solution, followed by hydrogen reduction at high temperature, the GR/ACF composites was achieved. While CNTs/ACF were prepared by chemical vapor deposition (CVD). The results showed that the graphene/ACF composites have higher specific capacity and cycling stability compared to CNTs/ACFand ACF.
引文
[1]Geim A. K, Novoselov K. S. The rise of graphene. Nat. Mater.,2007,6(3):183-191.
    [2]Kyotani T., Sonobe N., Tomita A. Formation of highly orientated graphite from polyacrylonitrile by using a two-dimensional space between montnorillonite lamellae. Nature,1988,331(6156): 331-333.
    [3]Novoselov K.S., Geim A.K., Morozov S.V., et al. Electric field effect in atomically thin carbon films. Science,2004,306(5296):666-669.
    [4]Meyer J.C., Geim A.K., Katsnelson M.I., et al. The structure of suspended graphene sheets. Nature, 2007,446(7131):60-63.
    [5]杨全红,吕伟,杨永岗.自由态二维碳原子晶体—单层石墨烯.新型炭材料,2008,23(2):97-103.
    [6]BolotinK.1., Sikes K.J., Jiang Z., Klima M., Fudenberg G., Hone J., Kim P., Stormer H. L. Utrahigh eleetron mobility in suspended graphene. Solid State Commun.,2008,146 (9):351-355.
    [7]Lee C, Wei X.D., Kysar J.W., Hone J. Measurement of the elastic properties and Intrinsic strength of monolayer graphene. Science,2008,321(5887):385-388.
    [8]Stoller M.D., Park S., Zhu Y.W., An J., Ruoff S.R. Graphene-based ultracapacitors. Nano. Lett., 2008,8(10):3498-3502.
    [9]Balndin A.A., Ghosh S., Bao W.Z., Calizo I.,Teweldebrhan D., Miao F. Superior thermal conductivity of single-layer graphene. Nano. Lett.,2008,8(3):902-907.
    [10]Wu J.S., Pisula W., Mullen K. Graphenes as potential material for electronics. Chem. Rev.,2007, 107(3):718-747.
    [11]Geim A K. Graphene:status and prospects. Science,2009,324(5934):1530-1534.
    [12]Novoselov, K.S., Jiang D., Sehedin F. Two-dimensional atomic crystals. Proc.Natl. Acad. Sci., 2005,102(30):10451-10453.
    [13]Brodie B.C. On the atomic weight of graphite. Phil.Trans.Roy.Soc.1859,149:249-259.
    [14]Staudenmaier L. Verfahren zu darstellung der Graphitsaure. Ber. Deut. Chem. Ges.,1898,31(2): 1481-1487.
    [15]William S., Hummers Jr., Riehard E. Offeman. Preparation of Graphitie Oxide. J. Am. Chem. Soc, 1958,80(6):1339-1339.
    [16]Li D., Muller M.B., Gilje S., et al. Processable aqueous dispersions of graphene nanosheets. Nature Nanotech.,2008,3(2):101-105.
    [17]Jo K., Lee T., CHoi H.J., Park J.H., et al. Stable Aqueous Dispersion of Reduced Graphene Nanosheets via Non-Covalent Functionalization with Conducting Polymers and Application in Transparent Electrodes. Langmuir,2011,27(5):2014-2018.
    [18]Shin H.J., Kim K.K., Benayad A.,et al. Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv. Funct. Mater.,2009,19(12):1987-1992.
    [19]Zhang J.L., Yang H.J., Shen G.X., Cheng P., et al. Reduction of graphene oxide via L-ascorbic acid. Chem. Commun.,2010,46(7):1112-1114.
    [20]Pei S., Zhao J., Du J., Ren W., Cheng H.M. Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon,2010,48(15):4466-4474.
    [21]Stankovich S., Dikin D.A., Piner R.D., Kohlhaas K.A. et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon,2007,45(7):1558-1565.
    [22]Zhu M.Y., Wang J.J., Outlaw, R.A., Hou, K., et al. Direct current discharge plasma chemical vapor deposition of nano crystalline graphite films on carbon fibers. Diamond Relat. Mater.,2007, 16(2):196-201.
    [23]Wang, J.J., Zhu, M.Y, Outlaw R.A., Zhao X., et al. Synthesis of carbon nanosheets by inductively coupled radio-frequency plasma enhanced chemical vapor deposition. Carbon,2004,42(14): 2867-2872.
    [24]Chae S.J., Gunes F., Kim K.K, Kim E.S.,et al. Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapor deposition:Wrinkle Formation. Adv. Mater.,2009,21(22): 2328-2333.
    [25]Kim K.S., Zhao Y, Jang H.,Lee S.Y., Kim J.M.,Kim K.S., et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature,2009,457(7230):706-710.
    [26]Li G.Q., Cai J., Deng J.K., Rocha A.R., Sanvito S.. The difference of the transport properties of graphene with corrugation structure and with flat structure. Appl. Phys. Lett.,2008,92(16): 163104-163107.
    [27]Kane C.L.. Erasing electron mass. Nature,2005,438(7065):168-170.
    [28]Lee C, Wei X., Kysar J.W., Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science,2008,321(5887):385-388.
    [29]Simon P., Gogotsi Y Materials for electrochemical capacitors. Nat. Mater.,2008,7(1):845-854.
    [30]Lv W., Tang D.M., He Y.B.,et al. Low-temperature exfoliated graphenes:vacuum-promoted exfoliation and electrochemical energy storage. ACS Nano.,2009,3(11):3730-3736.
    [31]Subrahmanyam K.S., Vivekchand S.R.C., Govindaraj A., et al. A study of graphenes prepared by different methods:characterization, properties and solubilization. Mater. Chem.,2008,18(13): 1517-1523.
    [32]Lai L., Yang H., Wang L.,Teh B.K., et al. Preparation of supercapacitor electrodes through selection of graphene surface functionalities. ACS Nano.,2012,6(7):5941-5951.
    [33]Khantha M., Cordero N.A., Molina L.M., et al. Interaction of lithium with graphene:An ab initio study. Physical Review B.,2004,70(12):125422-125430.
    [34]Pan D., Wang S., Zhao B., et al. Li storage properties of disordered graphene nanosheets. Chem. Mater,2009,21(14):3136-3142.
    [35]Lian P., Zhu X., Liang S.,Li Z., et al. Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries. Electrochim. Acta.,2010,55 (12):3909-3914.
    [36]Wang X., Zhi L., Mullen K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett.,2008,8(1):323-327.
    [37]Liu Q., Liu Z.F., Zhang X.Y., Zhang N., et al. Organic photovoltaic cells based on an acceptor of soluble graphene. Appl. Phys. Lett.,2008,92(22):223303-223306.
    [38]Schedin F., Geim A.K., Morozov S.V.,et al. Detection of individual gas molecules adsorbed on graphene. Nat. Mater.,2007,6(9):652-655.
    [39]Shang N.G., Papakonstantinou P., McMullan M., et al. Catalyst-free efficient growth, orientation and biosensing properties of multilayer graphene nanoflake films with sharp edge planes. Adv. Funct. Mater.,2008,18(21):3506-3514.
    [40]Lijima S. Helical microtubules of graphitic carbon. Nature,1991,354(6348):56-58.
    [41]Henning T. H., Salama F. Carbon in the universe.Science,1998,282(5397):2204-2210.
    [42]Hertel T., Walkup R.E., Avouris P. Deformation of carbon nanotubes by surface van der waals forces. Phys. Rev. B,1998,58(20):13870-13873.
    [43]Gao G., Cagin T., Goddard Ⅲ W.A. Energetics, structure, mechanical and vibrational properties of single-walled carbon nanotubes. Nanotechnology,1998,9(3):184.
    [44]Dai H., Wong E.W., Lieber C.M. Probing electrical transport in nanomaterials:conductivity of individual carbon nanotubes. Science,1996,272(5261):523-526.
    [45]Ebbesen T.W., Lezec H.J., Hiura H., Bennett J.W., et al. Electrical conductivity of individual carbon nanotubes. Nature,1996,382(6586):54-56.
    [46]Berber S., Kwon Y., Tomanek D. Unusually high thermal conductivity of carbon nanotubes. Phys. Rev. Lett.,2000,84(20):4613-4616.
    [47]Liao K., Li S. Interfacial characteristics of a carbon nanotube-polystyrene composite system. Appl. Phys.Lett.,2001,79(25):4225-4227.
    [48]曾凡龙,潘鼎.我国活性碳纤维的研究,工业化及前景(Ⅱ).材料导报,2003,17(10):55-58.
    [49]Turro N.J., Chow M.F., Chung C.J., Tung C.H. Magnetic field and magnetic isotope effects on photoinduced emulsion polymerization. J. Am. Chem. Soc,1983,105(6):1572-1577.
    [50]Chiang C.K., Fincher Jr.C.R., Park Y.W., et al. Electrical conductivity in doped polyace-tylene. Physical Review Lett.,1977,39(17):1098-1101.
    [51]MacDiarmid A.G., Chiang J.C., Richter A.F., et al. Polyaniline:a new concept in conducting polymers. Synth. Met,1987,18(1):285-290.
    [52]Chaing J.C., MacDiarmid A.G.'Polyaniline':Protonic acid doping of the emeraldine form to the metallic regime. Synth. Met,1986,13(1):193-205.
    [53]封伟,易文辉,朱长纯.高分子电致变色和电致发光材料应用技术的发展.液晶与显示.1997,12(3):206-212.
    [54]Zeng X.R., Ko T.M. Structures and properties of chemically reduced polyanilines. Polymer,1998, 39(5):1187-1195.
    [55]Joo J., Epstein A. J.. Electromagnetic radiation shielding by intrinsically conducting polymers. Appl. Phys. Lett.,1994,65(18):2278-2280.
    [56]Yang Y., Westerweele E., Zhang C, Smith P., Heeger A.J.. Enhanced performance of polymer light-emitting diodes using high-surface area polyaniline network electrodes. J. Appl. Phys.,1995, 77(2):694-698.
    [57]Parkhutik V.P., Diaz Calleja D., Matveeva E.S., Martinez-Duart J.M. Luminescent structures of porous silicon capped by conductive polymers. Synth. Met.,1994,67(1):111-114.
    [58]Oyama N., Tatsuma T., Sato T., Sotomura T.. Dimercaptan-polyaniline composite electrodes for lithium batteries with high energy density. Nature,1995,37(3):598-600.
    [59]Mengoli G., Musiani M.M., Pelli B., et al. Anodic synthesis of sulfur-bridged polyaniline coatings onto Fe sheets. J. Appl. Polym. Sci.,1983,28(3):1125-1136.
    [60]Xiao X., Xie T., Cheng Y.T. Self-healable graphene polymer composites. J. Mater. Chem.,2010, 20(17):3508-3514.
    [61]Zhang K., Zhang L.L., Zhao X.S., et al. Graphene/polyaniline nanofiber composites as supercap-acitor electrodes. Chem. Mater.,2010,22(4):1392-1401.
    [62]Muradyan V.E., Sokolov E.A., Babenko S.D., et al. Anomalous behavior of dielectric permittivity of graphene-filled polymer composite. Tech. Phys. Lett.,2010,36(12):1115-1117.
    [63]Wu Q., Xu Y.X., Yao Z.Y., Liu A.R., et al. Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano.,2010,4(4):1963-1970.
    [64]Kim I.H., Jeong Y.G. Polylactide/exfoliated graphite nanocomposites with enhanced thermal stability, mechanical modulus, and electrical conductivity. J. Polym. Sci. Pt. B:Polym. Phys.,2010, 48(8):850-858.
    [65]Dimitrakakis G.K., Tylianakis E., Froudakis G E. Pillared graphene:a new 3-D network nanostructure for enhanced hydrogen storage. Nano. Lett.2008,8(10):3166-3170.
    [66]Xu J.J., Wang K., Zu S.Z., Han B.H., et al. Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage. ACS Nano,2010,4(9): 5019-5026.
    [67]Cheng Q., Tang J., Ma J., Zhang H., et al. Graphene and nanostructured MnO2 composite electrodes for supercapacitors. Carbon,2011,9(49):2917-2925.
    [68]Bo Y, Yang H., Hu Y, Yao T., et al. A novel electrochemical DNA biosensor based on graphene and polyaniline nanowires. Electrochimica Acta.,2011,56(6):2676-2681.
    [69]Xu J., Hu Y, Song L., Wang Q., et al. Thermal analysis of Poly(vinyl alcohol)/graphite oxide Intercalated composites. Polym. Degrad. Stabil,2001,73(1):29-31.
    [70]UhI F.M., Wilkie C.A. Preparation of nanocomposites from styrene and modified graphite oxides. Polym. Degrad. Stabil.,2004,84(2):215-226.
    [71]Wang W.P., Pan C.Y. Preparation and characterization of polystyrene/graphite composite prepared by cationic grafting polymerization. Polymer,2004,45(12):3987-3995.
    [72]Bissessur R., Liu P.K., White W., Scully S.F. Encapsulation of polyanilines into graphite oxide. Langmuir,2006,22(4):1729-1734.
    [73]Zou Y.H., Wu J., Liu H.B., Chen Z.Z. Preparation of polyaniline-intercalated graphite oxide composite and ITS application in detecting DNA. New Carbon Mater.,2005,20(4):360-364.
    [74]Yasmin A., Luo J.J., Daniel I.M. Processing of expanded graphite reinforced polymer nanocomposites. Compos. Sci. Technol,2006,66(9):1182-1189.
    [75]Wang D.W., Li F., Zhao J., Ren W, et al. Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high performance flexible electrode. ACS Nano,2009, 3(7):1745-1752.
    [76]Wu Q., Xu Y., Yao Z., Liu A., Shi G. Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano.,2010,4(4):1963-1970.
    [77]Zhang K., Zhang L. L., Zhao X.S., Wu J. Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chem. Mater.2010,22(4):1392-1401.
    [78]Yan J., Wei T., Shao B., Fan Z., Qian W., et al. Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance. Carbon,2010,48(2):487-493.
    [79]Bolotin K.I., Sikes K.J., Jiang Z., Klima M., et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun.,2008,146(9):351-355.
    [80]Zhang Y., Tan Y. W., Stormer H. L., et al. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature,2005,438(7065):201-204.
    [81]张治安,邓梅根,胡永达等.电化学电容器的特点及应用.电子元件与材料,2003,22(11):1-5.
    [82]Du X., Guo P., Song H., Chen X. Graphene nanosheets as electrode material for electric double-layer capacitors. Electrochimica Acta.,2010,55(16):4812-4819.
    [83]Biswas S., Drzal L.T. Multilayered nano-architecture of variable sized graphene nanosheets for enhanced supercapacitor electrode performance. ACS Appl. Mater. Interf.,2010,2(8):2293-2300.
    [84]Vivekchand S.R.C., Rout C.S., Subrahmanyam K.S., et al. Graphene-based electroche-mical supercapacitors. J. Chem. Sci.,2008,120(1):9-13.
    [85]Zhao X., Tian H., Zhu M., Tian K., Wang J.J., et al. Carbon nanosheets as the electrode material in supercapacitors. J. Power Sources,2009,194(2):1208-1212.
    [86]Kotz R., Carlen M. Principles and applications of electrochemical capacitors. Electrochimica Acta., 2000,45(15):2483-2498.
    [87]江奇,卢晓英,赵勇,于作龙.碳纳米管微结构的改变对其容量性能的影响.物理化学学报.2004,20(5):546-549.
    [88]Basescu N., Liu Z.X., Moses D., Heeger A.J., et al. High electrical conductivity in doped polyacetylene. Nature,1987,327(6121):403-405.
    [89]Abell L., Adams P.N., Monkman A.P. Electrical conductivity enhancement of predoped polyaniline by stretch orientation. Polymer,1996,37(26):5927-5931.
    [90]Kanazawa K.K., Diaz A.F., Geiss R.H., Gill W.D., et al.'Organic metals':polypyrrole, a stable synthetic metallic polymer. J. Chem. Soc. Chem. Commun.,1979,19:854-855.
    [91]Delamar M., Lacaze P.C, Dumousseau J.Y., Dubois J.E. Electrochemical oxidation of benzene and biphenyl in liquid sulfur dioxide:formation of conductive deposits. Electrochem. Acta.,1982, 27(1):61-65.
    [92]杨红生,周啸,姜翠玲,王德全.电化学电容器最新研究讲展II.氧化还原电容器.电子元件与材料.2003,22:38-42.
    [93]Wang H.L., Hao Q.L., Yang X.J., Lu L.D., Wang X. Effect of Graphene Oxide on the Properties of Its Composite with Polyaniline. ACS Appl. Mater. Interfaces,2010,2(3):821-828.
    [94]Yan X., Chen J., Yang J., Xue Q., Miele P. Fabrication of free-standing, electrochem-ically active, and biocompatible graphene oxide-polyaniline and graphene-polyaniline hybrid papers. ACS Appl. Mater. Interfaces,2010,2(9):2521-2529.
    [95]Xu J.J., Wang, K., Zu S.Z., Han B.H., Wei Z.X. Hierarchical Nanocomposites of Polyaniline Nanowire Arrays on Graphene Oxide Sheets with Synergistic Effect for Energy Storage. ACS Nano.,2010,4(9):5019-5026.
    [96]江奇,刘宝春,瞿美臻,周固民,张伯兰,于作龙.多壁碳纳米管结构与其电化学容量之间关系的研究.化学学报,2002,60(8):1539-1542.
    [97]Zhang L L, Zhao X S Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev.,2009, 38(9):2520-2531.
    [98]Conway B.E.Transition from supercapacitor to battery behavior in electrochemical energy storage. J. Electrochem. Soc,1991,138(6):1539-1548.
    [99]Conway B.E., Birss V., Wojtowicz J. The role and utilization of pseudocapacitance for energy storage by supercapacitors. J. Power Sources,1997,66(1):1-14.
    [100]Boehm H.P. Some aspects of the surface chemistry of carbon black and other carbons. Carbon, 1994,32(5):759-769.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700