用户名: 密码: 验证码:
高转速高压比离心压气机内部流动研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着全球范围内的能源与动力需求结构特别是电力系统的放松控制以及环境保护等要求的变化,微型燃气轮机近年来得到了电力、动力等有关部门的高度重视。作为微型燃气轮机的核心部件之一的高转速、高压比离心压气机的设计在微型燃气轮机的设计体系中具有举足轻重的地位。国内外学者对高转速、高压比的离心压气机已经进行了大量的实验和数值研究,并取得了一些进展。我国从八十年代起开始了对高压比离心压气机的型号研究,但是对其中详细的流动机理研究较少,这也影响了我国对高转速、高压比离心压气机的自主研发能力。在这一背景下,本文对高压比的离心压气机中的流动特性进行了详细的研究,主要内容如下:
     1.对高转速、高压比离心压气机内部流动进行了详细的数值研究,分析了高转速、高压比离心压气机中影响性能提高的因素,并对叶轮流道中间隙泄漏流动的发展以及叶轮尾迹损失的发展进行了详细分析。
     2.研究了叶轮中不同形状叶片前缘对离心压气机性能和流场的影响,分别研究了无叶顶间隙和带有叶顶间隙的情况。对十轮通道中叶片前缘顶部激波引起的流动分离对流道中流场的影响进行了详细分析,指出了在高转速、高压比离心压气机中叶片前缘形状对压气机性能产生较大影响的原因。分别研究了大小叶片前缘形状对流场作用的不同效果,并对带有叶顶间隙情况下,叶片前缘形状对前缘间隙泄漏损失的影响进行了比较。还进一步研究了不同叶顶间隙的影响,分析了叶顶间隙存在对流场产生的影响以及不同叶顶间隙对间隙涡的发展、叶顶激波引起的流动分离等现象的影响。
     3.在以上工作的基础上,结合863微燃机项目,针对设计的离心压气机的叶轮与扩压器进行数值计算,并与实验结果进行对比,基本达到设计要求。对离心压气机和向心涡轮进行性能匹配,并与整机的实验结果对比,能较好的预测微型燃气轮机的共同工作曲线。
     4.对离心压气机中叶轮和有叶扩压器之间的相互作用进行了非定常的数值研究,分别研究了不同无叶扩压段以及扩压器叶片不同倾角对离心压气机性能和流场的影响。分析了无叶扩压段变化对离心压气机性能的影响方式,以及其对叶轮和扩压器相互作用强度的影响,探讨了合理选择无叶扩压段对于离心压气机性能的优化的可能。分析了扩压器叶片倾角变化对扩压器叶片压力面流动的影响,同时分析了倾角变化对叶轮和扩压器间相互干涉造成的流场波动的影响。
     本论文的研究结果表明,高转速、高压比离心压气机内部存在复杂的流动,通过对其流动机理的探讨与研究,可以为进一步开展离心压气机内部流动的研究提供有效的理论依据;为提高离心压气机设计水平提供技术积累。
In the recent few years, microturbine has been paid more and more attentions in the field of electric power. The design of centrifugal compressor with high rotation speed and high pressure ratio, which is one of the cores of the microturbine, plays an important part in the microturbine design. A lot of manpower and financing have been spent on studying the centrifugal compressor, since the centrifugal compressor was invented. In our country, the study on centrifugal compressor with high rotation speed and high pressure ratio started from the 1980s, and the study was mainly about some specific types of centrifugal compressor. More work is necessary to improve the ability of design centrifugal compressor with high rotation speed and high pressure ratio. The detailed flow analysis in a centrifugal with high rotation speed and high pressure ratio is undertaken in this paper. The main content in this paper is listed as follows:
     1. The analysis of the flow in the centrifugal compressor with high rotation speed and high pressure ratio is performed to investigate the factors that affect the performance improvement, and to analyze the development of the tip leakage in the impeller and the development of the wake in the impeller.
     2. Investigations are performed to study the effect of the blade leading edge on the performance and flow of the compressor. The cases with tip gap and without tip gap are investigated separately. The interaction between the shock wave and the boundary layer at the leading edge of the blade is analyzed to discuss the reason of the obvious effect of blade leading edge on the stage performance. The leading edge geometry of main blade and splitter are also separately studied. As the tip leakage in the impeller has great influence on the flow and performance, different sizes of the tip gap are applied to the impeller to study the effect of tip gap on the development of tip leakage vortex and flow separation caused by shock wave near leading edge.
     3. Based on the former work and the 863 project on microturbine, the designed centrifugal compressor with high rotation speed and high pressure ratio was simulated, and the performance of the experiment meets the design requirement. The matching between the compressor and turbine is also undertaken, and is compared to the result of the microturbine operation, which shows good agreement between prediction and experiment.
     4. Unsteady simulations are performed to study the interaction between the impeller and vaned diffuser. Different radial gaps and different vane incline angles are separately analyzed. The effect of radial gap on the performance of different parts in the centrifugal compressor is investigated. The reasonable radial gap is discussed to optimum the performance of the compressor. For the analysis of the different vane incline angle, the focus is the investigation on the flow field of the pressure side in the vaned diffuser. The effect of the incline angle on the fluctuation of the flow field in both the impeller and vaned diffuser is also studied.
     The work of this paper shows that the flow in centrifugal compressor with high pressure ratio is very complex, and to investigate the flow characteristics will supply efficient suggestions for the improvement of the centrifugal compressor.
引文
[1]James H,Watts,Microturbines.A New Class of Gas Turbine Engines.ASME International Gas Turbine Institute,Global Gas Turbine News,No.1,1999.01.
    [2]Lee S.Langston.Gas Turbine Industry Overview.ASME International Gas Turbine Institute,Global Gas Turbine News,N0.2,1999.06.
    [3]Jon Lane.State of the Power Generation Gas Industry.ASME International Gas Turbine Institute,Global Gas Turbine New,N0.2,2000.06.
    [4]Capstone Turbine Corporation.Capstone Low Emissions Micro Turbine Technology,White Paper,2000.07.
    [5]Fuel Cell and Gas Turbine,A Marriage of Efficiency,Siemens Research and Innovation,No.1,2000.
    [6]丰镇平.先进微型燃气轮机技术进展及其在我国的研发应用前景[A].周光召.西部大开发科教先行与可持续发展——中国科协2000年学术年会文集[C],中国科学技术出版社,2000.
    [7]国家高技术研究发展计划(863计划)重大专项可行性报告[R],科技部能源办公室,2002.
    [8]舒士甄,朱力,柯玄龄,蒋滋康.《叶轮机械原理》.清华大学热能工程系,1999年6月.
    [9]Katanis et al.Use of Arbitrary Quasi-Orthogonal Line for Calculating Flow Distribution in the Meridional Plane of Turbomachine[J].1964,NASA TND-2546.
    [10]Hirsch C,Wargee G.A Finite Element Method of Through Flow Calculation in Turbomachines[J].ASME Journal of Fluids Engineering,1976,98(3):403-421.
    [11]Senno Y,Nakase Y.A Blade Theory of an Impeller with an Arbitrary Surface of Revolution[J].ASME Journal of Engineering for Power,1971,93(3):454-460.
    [12]Wu C H.A General Theory of Three Dimensional Flow in Subsonic and Supersonic Turbo-machines of Axial-,Radial-and Mixed-flow Types[R].1952,NACA TN2604.
    [13]Krimerman Y,Alder D.The Complete Three-Dimensional Calculation of the Compressible Flow Field in Turbo Impeller[J].Journal of Mechanical Engineering Science,1978,20:149-158.
    [14]Alder D,Krimerman Y.On the Relevance of lnviscid Subsonic Flow Calculations to Real Centrifugal Impeller Flow[J].ASME Journal of Fluids Engineering,1980,102(3):728-737.
    [15]Adler D.Status of Centrifugal Impeller Internal Aerodynamics,Part 1:Inviscid Flow Prediction Methods[J].Journal of Engineering for Power,1980,102:728-737.
    [16]Dawes W.N.Development of a 3D Navier Stokes Solver for Application to all Types of Turbomachinery.ASME-Paper,88-GT-70.
    [17]Hah C.,Bryans A.C.,Moussa Z.,Tomsho M.E.Application of viscous Flow Computations for the Aerodynamic Performance of a Back-Swept Impeller at Various Operating Conditions.ASME-Paper,88-GT-39,1988.
    [18]Hirsch Ch.,Kang S.,Pointel G.A Numerically supported Investigation of the 3D Flow in Centrifugal Impellers.Part Ⅰ and Ⅱ.ASME-Papers,96-GT-151 and 96-GT-152,1996.
    [19]赵晓路.离心压缩机转子内部流场S1/S2全三元迭代解[J].工程热物理学报,1994,15(3):257-263.
    [20]Dawes W N.A Simulation of the Unsteady Interaction of a Centrifugal Impeller with Its Vaned Diffuser:Flow Analysis[J].ASME Journal of Turbomachinery,1995,117:213-222.
    [21]Steger J L,Warming R F.Flux Vector Splitting of Inviscid Gas-Dynamic Equations with Application to Finite Difference Method[J].Journal of Computational Physics,1981,40:263-293.
    [22]Seaford C M,Hassan H A.Transonic flow Calculations Using a Flux Vector Splitting Method for the Euler Equations.AIAA Paper 84-0090,
    [23]Harten A.Resolution Schemes for Hyperbolic Conservation Laws[J].Journal of Computational Physics,1984,49:357-393.
    [24]Harten A,Osher S.Uniformly High-Order Accurate Non Oscillatory Schemes[J]. SIAM Journal on Numerical Analysis,1987,24(2):279-309.
    [25]张涵信.无波动.无自由参数的耗散差分格式[J].空气动力学报,1986,6(2).
    [26]Ma Y W,Fu D X.Numerical Solutions of Compressible Flow with Compact Scheme.AIAA Paper 87-1123,1987.
    [27]Fu D X,Ma Y W.A High Order Accurate Difference Scheme for Complex Flow Fields.Journal of Computational Physics,1997,134:1-15.
    [28]Krain H,Hoffman W.Verification of an Impeller Design by Laser Measurements and 3D-Viscous Flow Calculations.ASME Paper,1989,89-GT-159.
    [29]席光,王尚锦.半开式离心式压缩机叶轮三维湍流场数值分析[J].西安交通大学学报,1997,31(2):90-96.
    [30]Clayton R P,Leong W.A Numerical Study of the Three-Dimensional Turbulent Flow in the Impeller of a High Speed Centrifugal Compressor.ASME Paper,1998,98-GT-49.
    [31]Yang C,Li Zhigang,Jiang Zikang.Numerical Investigation of a High-Speed Centrifugal Compressor Impeller[J].Tsinghua Science and Technology,1999,4(4):1678-1682.
    [32]Hirsch Ch,Kang S,Pointer G,A Numerically Supported Investigation on the 3D Flow in Centrifugal Impeller,Part Ⅰ:the Validation Base.ASME Paper,1996,96-GT-151.
    [33]Hirsch Ch,Kang S,Pointer G.A Numerically Supported Investigation on the 3D Flow in Centrifugal Impeller,Part Ⅱ:Second Flow Structure.ASME Paper,1996,96-GT-152.
    [34]Bansod P,Rhie C M.Computation of Flow Through a Centrifugal Impeller with Tip Leakage.AIAA Paper,1990,No.90-2021.
    [35]Basson A H,Kunz R F,Lakshminarayana B.Grid Generation for Three-Dimensional Turbomachinery Geometried Including Tip Clearance[J].Journal of Propulsion and Power,1993,9:59-67.
    [36]Basson A,Lakshminarayana B.Numerical Simulation of Tip Clearance Effects in Turbomachinery[J].ASME Journal ofTurbomachinery,1995,117:348-359.
    [37]Kang S,Hirsch Ch.Numerical Investigation of the Three-Dimensional Flow in NASA LSCC Impeller[C].4th ISAIF,Dresden,Germany,1999.
    [38]Kang S,Hirsch Ch.Effects of Flow Rate on the Development of Three-Dimensional Flow in NASA LSCC Impeller Based Numerical Solutions.ISABE paper,1999,No.99-7225.
    [39]赖焕新,康顺,谭春青.有无叶顶间隙条件下斜流风机叶轮内部三维流动的数值研究[J].航空动力学报,2000,15(1):17-21.
    [40]贾希诚等.叶轮机械中叶顶间隙形态对气动性能影响的数值研究[J].工程热物理学报,2001,22(4):431-434.
    [41]Tang Hua,Du Jianyi,Zhao Xiaolu,Xu Jianzhong.Numerical Investigation of High Pressure Ratio Centrifugal Impeller with Tip Clearance.ISABE-2005-1226.
    [42]Douglas A.Roberts,Suresh C.Kacker.Numerical Investigation of Tandem-Impeller Designs for a Gas Turbine Compressor.ASME paper,2001,2001-GT-0324.
    [43]Duccio Bonaiuti,Andrea Amone.Development of Secondary Flow Field in a Low Solidity Diffuser in a Transonic Centrifugal Comperssor Stage.ASME paper 2002,GT-2002-30371.
    [44]Shun KANG.Numerical Investigation of a High Speed Centrifugal Compressor Impeller.ASME paper GT2005-68092.
    [45]A.Hildebrandt,M.Genrup.Numerical Investigation of the Effect of Different Back Sweep Angle and Exducer Width on the Impeller Outlet Flow Pattern of a Centrifugal Compressor with Vaneless Diffuser.ASME paper GT2006-90622.
    [46]Marconcini,M.,Rubechini F.,Arnone,A.,and Ibaraki,S.Numerical Investigation of a Transonic Centrifugal Compressor.ASME paper GT2006-90098,ASME Turbo Expo,2006,May 8.11,Barcelona,Spain(accepted for publication on the ASME Journal of Turbomachinery).
    [47]Michele Marconcini,Filippo Rubechini,Andrea Arnone.Numerical Analysis of the Vaned Diffuser of a Transonic Centrifugal Cmopressor.ASME paper GT2007-27200.
    [48]Seiichi Ibaraki,Masato Furukawa.Vortical Flow Structure and Loss Generation Process in a Transonic Centrifugal Compressor Impeller.ASME paper GT2007-27791.
    [49]Prian V.D.Michel D.J.An Analysis of Flow in Rotating Passage of Large Radial Inlet Centrifugal Compressor at Tip Speed of 700 Feet per Second.NACA TN 2584.1951.
    [50]Michel D.J.,Mizisin J.,Prian V.D.Characteristics of a 48-Inch Centrifugal compressor.I-Change in Blade shape.NACATN 2706,1952.
    [51]Mizisin J.,Michel D.J..Effect of Changing Passage Configuration on Internal Flow Characteristics of a 48-Inch Centrifugal Impeller.Change in Hub-Shape.NACATN 2835,1952.
    [52]Fischer,K.,Thomas D.Investigation of the Flow Conditions in a Centrifugal Pump.Trans.ASME,Vol 54,1952,141.
    [53]Hamrick.J.T.Some Aerodynamic Investigations in Centrifugal Impellers.Trans.ASME,Vol.78,1956,591-602.
    [54]Stanitz,J.D.,Ellis G.Two Dimensional Compressible Flow With Straight Blades.NACA Rep.954,1950.
    [55]Stanitz.J.D.,Prian V.D.A Rapid Approximate Method for Determining Velocity Distribution on Impeller Blades of Centrifugal Compressors.NACA TN 2421,1951.
    [56]Hamrick J.T.Ginsburg A.,Osborn W.M.Method of analysis for compressible flow Through Mixed flow Centrifugal Impellers of Arbitrary Design.NACA Rep.1082.1952.
    [57]Stanitz J.D.Ellis G.Comparison of Two-and Three dimensional Potential flow solutions in a rotating Impeller Passage.NACATN 2086,1952.
    [58]Michel D.J.Ginsburg A.,Mizisin J.Experimental Investigation of flow in the rotating Passages of a 48-inch Impeller at Low speed.NACA RM E5ID20,1951.
    [59]Hamrick J.T.Mizisin J.,Michel D.J.Study of Internal flow distribution Based on Measurements in a 48-inch Radial-Inlet Centrifugal Impeller.NACA TN 3101. 1954.
    [60]Acosta A,Bowerman R.An experimental study of centrifugal-pump impellers[J].Trans.ASME Paper,1957,79:1821-1839.
    [61]Dean R,Senoo Y.Rotating wakes in vaneless diffusers.ASME Journal of Basic Engineering[J].1960,82:563-574.
    [62]Dean,R.C.,Senoo,Y.Rotating Wakes in Vaneless Diffusers.ASME,J.of Basic Eng.,September 1960,563-574.
    [63]Fowler H.S.Research on the internal Aerodynamics of the Centrifugal Compressor.11th Anglo-american Aeronautical Conference,London 8.-12.Sept.1969,Paper No.:19,14.
    [64]Eckardt D.Detailed flow investigations in a high speed centrifugal compressor impeller[J].ASME Journal of Fluids Engineering,1976,98:390-402.
    [65]Howard J H G,Kittmer C W.Measured passage velocities in a radial impeller with shrouded and unshrouded configurations[J].ASME Journal of Engineering for Power,1975,97(2):207-213.
    [66]Schodl R.A Dual focus Velocimeter for Turbomachine Applications.Von Karman Institute,LS 78,April 1975,39.
    [67]Eckardt D.Detailed Flow Investigations within A High-speed Centrifugal Compressor Impeller[J].ASME Journal of Fluid Engineering,1976,98(3):390-402.
    [68]Johnson M W,Moore J.The Development of Wake Flow in A Centrifugal Impeller[J].ASME Journal of Engineering for Power,1980,102:382-389.
    [69]Anand A K,Lakshminarayana B.An Experimental Study of Three-Dimensional Turbulent Boundary Layer and Turbulence Characteristics inside A Turbomachinery Rotor Passage[J].ASME Journal of Engineering for Power,1978,100(4):676-690.
    [70]Moore J.A Wake and an Eddy in a Rotating,Radial-Flow Passage[J].ASME Journal of Engineering for Power,1973,95:205-219.
    [71]Johnson M W,Moore J.The Influence of Flow Rte on the Wake in A Centrifugal Impeller[J].ASME Journal of Engineering for Power,1983,105:33-39.
    [72]Krain H.A study on Centrifugal Impeller and Diffuser Flow[J].ASME Journal of Engineering for Power,1981,103:688-697.
    [73]Krain H.Swirling Impeller Flow[J].ASME Journal of Turbomachinery,1988,110:122-128.
    [74]Farge T Z,Johnson M W,Maksoud T M.Tip Leakage in A Centrifugal Impeller[J].ASME Journal of Turbomachinery,1989,111:244-249.
    [75]Ishdia M,Ueki H,Senoo Y.Effect of Blade Tip Configuration on Tip Clearance Loss of A Centrifugal Impeller[J].ASME Journal of Turbomachinery,1990,112(1):14-18.
    [76]Ishdia M,Senoo Y,Ueki H.Secondary Flow due to the Tip Clearance at the Exit of Centrifugal Impeller[J].ASME Journal of Turbomachinery,1990,112(1):19-24.
    [77]Rohne K H,Banzhaf M.Investigation of the Fow at the Exit of an Unshrouded Centrifugal Impeller and Comparison with the “Classical” Jet-Wake Theory[J].ASME Journal of Turbomachinery,1990,113:654-659.
    [78]Abramian M,Howard J H G.Experimental Investigation of the Steady and Unsteady Relative Flow in a Model Centrifugal Impeller Passage[J].ASME Journal of Turbomachinery,1994,116:269-279.
    [79]Marina,Ubaldi.Detailed Measurements within the Impeller and the Vaneless Diffuser of a Centrifugal Turbomachine[J].Experimental Thermal and Fluids Science,1998,17:147-155.
    [80]Krain H.A study on Centrifugal Impeller and Diffuser Flow[J].ASME Journal of Engineering for Power,1981,103:688-697.
    [81]Hiroyuki MIYAMOTO,Yukitoshi NAKASHIMA.Effects of Splitter Blades on the Flows and Characteristics in Centrifugal Impeller[J].JSME International Series Ⅱ,1992,35(2):238-246.
    [82]赵晓路.含分流叶片离心压缩机叶轮内部流场全三元数值模拟[J].工程热物理学报,1996,17(1):31-35.
    [83]汤华.离心压气机流场分析与扩压器设计.中科院工程热物理所硕士论文,2005.
    [84]刘瑞韬,徐忠.叶片数及分流叶片位置对压气机性能的影响.2004,Vol.25,No.2 Mar,223—225.
    [85]李良明.带分流叶片的离心压缩机叶轮三元流场计算[J].风机技术,1989,2:14-27.
    [86]屠仁涌.带长短叶片离心叶轮的三元流场[J].上海交通大学学报,1988,22(4):105-109.
    [87]罗晟,蔡兆麟.变叶片数和长短叶片结构对离心叶轮内三维粘性流场的影响[J].风机技术,2000,6:27-31.
    [88]李磊,华耀男.具有分流叶片的离心式压缩机S1流场计算[C].中国工程热物理学会热机气动热力学学会会议论文集,北京:科学出版社,1993.
    [89]Chunill Hah,H.Krain,Analysis of Transonic Flow Fields inside a High Pressure Ratio Centrifugal at Design and off Design Conditions.ASME,95-GT-79.
    [90]H.krain.High Pressure Ratio Centrifugal Compressor with Transonic Flow.ASME-Summer Meeting 1999,FEDSM99-7801.
    [91]H.Krain.Flow Analysis in a Transonic Centrifugal Compressor Rotor Using 3-Component Laser Velocimetry.ASME,2001,2001-GT-0315.
    [92]Seiichi Ibaraki Tetsuya Matsuo.Aerodynamics of a Transonic Centrifugal Compressor Impeller.ASME,2002,GT-2002-30374.
    [93]H.Krain.Investigations of the Flow Through a Hihg Pressure Ratio Centrifugal Impeller.ASME,2002,GT-2002-30394.
    [94]G.Ferrara,L.Ferrari.Experimental Investigation and Characterization of the Rotating Stall in a High Pressure Centrifugal Compressor:Part Ⅰ — Influence of Diffuser Geometry on Stall Inception.ASME,2002,GT-2002-30389.
    [95]G.Ferrara,L.Ferrari.Experimental Investigation and Characterization of the Rotating Stall in a High Pressure Centrifugal Compressor:Part Ⅱ—Influence of Diffuser Geometry on Stage Performance.ASME,2002,GT-2002-30390.
    [96]Jae Ho Choi,Ok Suck Sung.Experimental and Numerical Investigations on a High Pressure Ratio Centrifugal Compressor.ASME,2005,GT2005-68679.
    [97]席光,王尚锦.离心式叶轮出口及其无叶扩压器内部流场的实验研究[J].工 程热物理学报,1992,13(2):91-96.
    [98]刘立军,徐忠.离心压缩机无叶 扩压器内部流动的实验测量和数值分析[J].西安交通大学学报,2001,35(3):270-274.
    [99]闻苏平.旋转离心叶轮及扩压器内部非定常流动的实验和数值研究[D].西安交通大学博士学位论文,2001.
    [100]张莉,陈汉平,王启杰.离心 叶轮机械有叶扩压器内部流动的PIV测量[J].机械工程学报,2002,38(5):105-108.
    [101]张玮.离心叶轮/扩压器级内湍流流动的DPIV实验研究和数值模拟[D].西安交通大学博士学位论文,2003.
    [102]Kai U.Ziegler.A Study on Impeller-Diffuser Interaction:part 1—Influence on the Performance.ASME Paper GT-2002-30381.
    [103]Denton,J.D.The Calculation of Three Dimensional Viscous Flow through Multistage Turbomachines.ASME Paper,1990,GT-19.
    [104]Dawes,W.N.Towards Improved Throughflow Capability:the Use of 3D Viscous Flow Solvers in a Multistage Environment.ASME Journal of Turbomachinery[J],1992,Vol.114:8-17.
    [105]Rodgers,C.The Performance of Centrifugal Compressor Channel Diffusers.ASME Paper[C],1982,GT-10.
    [106]Kirtley K,Beach T.Deterministic Blade Row Interactions in a Centrifugal Compressor Stage[J].ASME Journal of Turbomachinery,1992,114:304-311.
    [107]Y.K.P.Shum,C.S.Tan,N.A.Cumpsty.Impeller-Diffuser Interaction in Centrifugal Compressor.ASME Paper,2000,GT-428.
    [108]A.Koumoutsos,A.Tourlidakis and R.L.Elder.CFD Analysis of Unsteady Flow Interactions in a Centrifugal Compressor Stage.ASME Paper,2000,GT-460.
    [109]K.Sato and L.He.A Numerical Study on Performance of Centrifugal Compressor Stages with Different Radial Gaps.ASME Paper,2000,GT-462.
    [110]N.He and A.Tourlidakis.Analysis of Diffusers with Different Number of Vanes in a Centrifugal Compressor Stage.ASME Paper,2001,GT-0321.
    [111]E.benini,A.Toffolo.Centrifugal Compressor of a 100KW Microturbine:part2-Numerical Study of Impeller-Diffuser Interaction.ASME Paper,2003, GT-38l53.
    [112]宁卫,刘前智,姚吉先等.跨音速压气机动静叶排相干的三维非定常流动数值分析.航空动力学报[J],1996,12(2):161-164.
    [113]刘前智,周新海.跨音速压气机级的三维周期性非定常流动计算.应用力学学报[J],1997,14(4):84-87.
    [114]刘前智,周新海.轴流叶轮机械三维非定常粘性流动数值分析[C].杭州:中国工程热物理年会,1998,982025.
    [115]孟庆国,周盛.叶轮机械非定常流动进展.力学进展[J],1997.27(2):232-247.
    [116]赵养正,刘前智.考虑压气机动静干涉效应的非设计工况性能数值模拟.推进技术,2006,27(5).
    [117]毛明明,宋彦萍,王仲奇.跨声压气机动静干涉效应的数值研究.航空动力学报,2007,22(9).
    [118]党政,席光,王尚锦.应用滑移界面方法求解动/静相干叶片排内非定常流动。西安交通大学学报,1999,33(7).
    [119]赵晓路,肖翔.使用确定应力模型研究离心压缩机叶片相互作用[J].工程热物理学报,2001,22(4).
    [120]刘立军,徐忠,张玮.离心式压气机模型级内非定常流动的数值试验.航空动力学报[J],2002,17(1).
    [121]王彤,谷传纲.设计工况下离心压气机内部动静部件耦合非定常流动的数值模拟.机械工程学报,2001,37(3).
    [122]Krain H.A Study on Centrifugal Impeller and Diffuser Flow[J].ASME Journal of Engineering for Power,1981,103:688-697.
    [123]Inoue,M.,Cumpsty,N.A..Experimental Study of Centrifugal Impeller Discharge Flow in Vaneless and Vaned Diffusers.ASME Journal of Engineering for Gas Turbines and Power,1984,106,455-467.
    [124]Ubaldi,M.,Zunino,P.,Barigozzi,G.,Cattanei,A.A Experimental Investigation of a Stator Induced Unsteadiness on Centrifugal Impeller Outflow.ASME Journal of Turbomachinery[J],1996,Vol.118:41-54.
    [125]Jeong-Seek Kang,Shin-Hyoung Kang.Stall Inception in a High-Speed Centrifugal Compressor.ASME Paper 2001-GT-0301.
    [126]Rodgers,C.The Performance of Centrifugal Compressor Channel Diffusers.ASME Paper,1982,GT-10.
    [127]Jin,D.,Jiang,Z..Hasemann,H.,Haupt,U.,Rautenberg,M..Influence of Vaned Diffuser on Dangerous Blade Vibration Due to Blade Flow Interactions in a Centrifugal Compressor.ASME Paper,1995,GT-122.
    [128]Shum,Y.K.P.,Tan,C.S.,Cumpsty,N.A..Impeller-Diffuser Interaction in Centrifugal Compressor.ASME Paper,2000,GT-428.
    [129]K.ai U.Ziegler.A Study on Impeller-Diffuser Interaction:part 1—Influence on the Performance.ASME Paper,2002,GT-30381.
    [130]Kai U.Ziegler.A Study on Impeller-Diffuser Interaction:part Ⅱ-Detailed Flow Analysis.ASME Paper,2002,GT-30382.
    [131]Jameson A,Schmidt W.and Baker T J.Numerical Solution of the Euler Equations by Finite Volume Methods Using Runge-Kutta Time Stepping Scheme,AIAA Paper 81-1259,1981.
    [132]Jameson A.Time dependent calculations using multigrid,with applications to unsteady flows past airfoils and wings,AIAA Paper 91-1596,1991.
    [133]Spalart P,Allmaras S.A One-Equation Turbulence Model for Aerodynamic Flows.AIAA Paper 92-0439,1992.
    [134]Fine Turbo User Manual 6-2-9,Brussels:NUMECA International,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700