用户名: 密码: 验证码:
水轮机弱可压缩水体耦合水锤与空化流数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文是由包括国家自然科学基金重点项目“水电站的水机电耦合研究(50839003)”和内的多个项目的长期资助下完成的(项目编号:50079007,90210005,50579025,51279071)。从弱可压缩流体的相关理论出发建立了基于弱可压缩水体耦合水锤与空化流动的理论模型,针对理论模型开发了适用于弱可压缩问题求解的非对角占优非线性大规模并行计算求解器,并完成了一例高水头、长管线水电站耦合水锤的现场试验,获得了大量有关耦合水锤的实测数据。基于自主开发的数万条程序代码,对某高水头水电站管道竖井段的耦合水锤问题、高水头混流式水轮机以及低水头混流式水轮机的空化流动问题进行了精细数值模拟并与试验实测和文献进行了比较,结果吻合很好,验证了本文理论、方法及源程序代码的正确性,取得了具有创新性的研究成果。研究工作主要表现在以下四个方面:
     1.理论建模
     (1)根据相关的弱可压缩流体理论,在柱坐标下建立了适合描述水电站管道弱可压缩水体运动的控制方程,能够描述管道水锤波-流耦合、波-波耦合的水力瞬态过程。
     (2)在经典压力管道壳模型的基础上将传统用势流理论描述流体的方法改用三维粘性流体来描述,在任意曲线坐标下基于ALE框架建立弱可压缩水体基于壳模型的控制方程,得到了考虑管道与水轮机波-流耦合、波-波耦合、流-固耦合的水锤模型。
     (3)建立了考虑弱可压缩水体的单相空化模型和质量输运空化模型,可描述水轮机弱可压缩水体瞬态条件下的空化特性。
     2.程序代码开发
     (1)在OpenFoam开源C++类库之下基于提出的水轮机弱可压缩水体耦合水锤及空化模型,编写了数万条程序代码,自主开发了适用于弱可压缩水体的非对角占优三维高效并行求解器。
     (2)实现了基于OpenFoam扩展版中有限元模块和本文弱可压缩水体CFD代码的耦合,建立了高精度的插值方法,使描述流体空间离散的有限体积在单元中心处的属性插值到节点上,实现了根据物面条件进行力及位移的传递。
     (3)构造了弱可压缩水体CFD代码与FEAP开源有限元壳单元代码相结合的考虑弱可压缩水体与管道耦合的程序代码,并在FEAP上构造了基于正交曲线坐标的壳单元,同时利用面向对象技术调用OpenFoam类库中的k-ε湍流模型,使得代码既考虑了水体的弱可压缩性又可描述流体的湍流特性。
     3.原型试验研究
     结合理论研究,耗时2年完成了某高水头、长管道水电站耦合水锤的原型观测和试验分析工作,得到了大量的试验实测数据,获得了高水头电站水体弱可压缩性及甩负荷耦合水锤波动特性第一手数据,验证了本文理论模型及程序代码的正确性。
     4.数值模拟及验证
     (1)基于本文建立的弱可压缩水体耦合水锤理论、空化模型以及开发的求解器,对荷兰DELFT水锤基准试验装置A进行了数值模拟,数值结果清晰给出了该装置“波-流”、“波-波”及“流-固”耦合的耦合水锤波动情况,计算的相关数据与试验实测完全吻合。
     (2)利用本文开发的求解器,对上述试验的高水头、长管道水电站压力管道的竖管段进行了流体-结构耦合作用分析。通过两种工况下竖管弯头处的压力及应力的比较,计算的管壁应变及压力结果与试验实测数据吻合。
     (3)用本文提出的空化模型和开发的程序代码模拟了文献广泛使用的NACA0015翼型,并将计算结果与文献提供的实验和计算数据进行对比,结果表明,本文模型和代码的计算结果与文献提供的空化实验结果吻合,并能清晰的捕捉翼型前沿片状空泡初生、反向射流使空泡断裂、后部云状空泡脱落以及前沿片状空泡再生成的准周期运动规律。
     (4)分别对高、低水头混流式水轮机空化流特性用本文模型及代码进行了全流道空化数值模拟,并对蜗壳-固定导叶区、活动导叶区、转轮区及尾水管区的空化特性进行了分析,得到的尾水管中的涡带形状、转轮区及尾水管锥管段内空化特性以及压力脉动等与相应机组的实际运行情况吻合。
     (5)用本文开发的程序代码对上述高水头电站水轮机尾水管补入自然空气进行了考虑相变的水-气-汽多相流数值模拟,分析了空气进入尾水管后压力脉动的改善情况,计算得到的结果与实际工程运行的情况吻合。
     通过以上四个方面的工作,本文将水轮机弱可压缩水体耦合水锤及空化问题从理论建模、计算方法、源程序代码开发、原型水电站水锤试验观测、水轮机空化流数值模拟等方而进行了系统的理论研究及相关技术开发,研究工作耗时近10年,取得了具有创新性的成果。
This work was financially supported by the National Natural Science Foundation of china key project "Water-electro-mechanical coupling studies of hydropower station (50839003)" and other National Natural Science Foundation of china projects (number:50079007,90210005,50579025,51279071) long-term funded. The theoretical model of weakly compressible coupling water hammer and cavitation were established based on related theories about weakly compressible fluid. A non-diagonally dominant nonlinear massively parallel computing solver was developed based on the proposed theoretical model for the weakly compressible problem. Completed a coupling water hammer field test for a high head, long pipeline hydropower station and get a lot of measured data about coupling water hammer. Based on tens of thousands of self-developed code, we completed a series of fine numerical simulation about the problem of coupling water hammer for a high head hydropower station shaft penstock and the problem of cavitation flow in high head and low head Francis turbine. The results were compared with the literature and test measured in good agreement. It proves the correctness of theories, methods and source code in this thesis. Some innovative research has been made. Research work mainly in the following four areas:
     1. Theoretical modeling
     (1) According to the relevant weakly compressible fluid theory, established equations suitable for describing weakly compressible water in hydropower penstock. It can describe the hydraulic transients of water hammer wave for wave-fluid coupling, wave-wave coupling.
     (2) On the basis of classic penstock shell model, instead the potential flow theory traditionally with a three-dimensional viscous fluid. In any curvilinear coordinates, based on the ALE framework the shell model control equations of weakly compressible water were created. The water hammer model of the wave-fluid coupling, wave-wave coupling, fluid-structure interaction for the penstock and hydroturbine was obtained.
     (3) The weakly compressible water single phase cavitation model and mass transport cavitation model was created. It can describe the cavitation of weakly compressible water for a hydroturbine under transient conditions.
     2. Programming
     (1) Use OpenFoam C++class library, wrote tens of thousands of program code, a non-diagonally dominant nonlinear massively parallel computing solver was developed based on the proposed theoretical model for the hydroturbin weakly compressible and cavitation.
     (2) Implemented coupling the finite element module in OpenFoam extended version and self-developed weakly compressible CFD code. Precision interpolation method was completed. It enables the attributes of finite volume cell center of description fluid spatial dispersion interpolated to node. According to contact surface condition, the displacement and force transfer is implemented.
     (3) A program code was developed for coupled weakly compressible water with penstock movement. It combines the weakly compressible water source CFD code and FEAP finite element shell element code. Based on orthogonal curvilinear coordinates shell element was completed in FEAP. Meanwhile, the k-ε turbulence model in OpenFoam class library was called by using object-oriented technology. This code takes into account both the weak compressibility of water and fluid turbulence characteristics.
     3. Prototype test study
     Combined with theoretical study, took two years to complete coupling water hammer prototype observation and test analysis for a high head, long pipeline hydropower. A large number of measured data was obtained. The first-hand data about weak compressibility of water and coupling water hammer characteristics after the load rejection were obtained too. It verifies the theoretical model and program code is correct.
     4. Numerical simulation and validation
     (1) Based on weakly compressible coupling water hammer theory, cavitation models and solver crated in this thesis, numerical simulation of the Netherlands DELFT water hammer benchmark test device A was completed. Numerical results clearly shows that the coupling water hammer fluctuation including:wave-flow, waves-waves and flow-structure coupled in test device. Calculations and test measured data fully consistent.
     (2) Using the solver developed in this thesis, a fluid structure interation analysis to be completed for the above tests high head, long pipeline hydropower shaft of penstock segment. The pressure and the stress were calculated at the penstock elbow on tow case. The result of wall strain and stress agree with the test measured data.
     (3) Using the cavitation model proposed and program code developed in this thesis, simulated a NACA0015hydrofoil widely used in the literature, and compared the calculation results with the test and calculated data by literature provided. The results show that the results calculated by the proposed model and the developed code in this thesis accord with the cavitation test results by literature. It can clearly capture the cavity quasi-periodic motion law for hydrofoil leading edge the growth of the sheet cavity, the reentrant jet breaking the cavity, rear cloud cavitation shedding while a new sheet cavity is growing.
     (4) A numerical simulation of cavitation was implemented for full flow channel of a high and a low head Francis turbine with the proposed model and the code respectively. The cavitation characteristics were analyzed for spiral casing-vanes, guide vanes, runner and draft tube. The draft tube vortex shape, the cavitation characteristics and pressure pulsation for runner and draft tube cone segment are identical with an actual operation hydroturbin unit.
     (5) With program code developed in this thesis, a numerical simulation of cavitating turbulent flow in a Francis turbine with draft tube natural air admission was completed. It takes into account the phase change for water-gas-vapor multiphase flow. The pressure pulsation was analyzed after air into the draft tube. The calculated results coincide with the actual operation.
     Through the above four aspects of the work, In this thesis, for the problem about hydroturbin weakly compressible water coupling water hammer and cavitation, from theoretical modeling, computational methods, source code development, hydropower water hammer test prototype observations, hydroturbine cavitation flow simulation and other aspects, the theoretical research and related technology development was completed systematically. Research work took nearly10years, has made innovative achievements.
引文
[1]潘家铮,何璟.中国大坝五十年,北京,中国水利水电出版社,2008.
    [2]Ghidaoui M S, Zhao M, McInnis D A, et al. A review of water hammer theory and practice[J]. Applied Mechanics Reviews,2005,58(1/6):49-76
    [3]张立翔,杨柯.流体结构互动理论及其应用,北京,科学出版社,2004
    [4]Tijsseling A S, Anderson A. The Joukowsky equation for fluids and solids[R]. GIRT-CT-2002-05069 (www.surge-net.info),2006.
    [5]Tijsseling A S, Anderson A. Thomas Young's research on fluid transients:200 years on[J]. Proceedings of the BHR Group 2008 on Pressure Surges,2008:21-33.
    [6]E.B.怀利,V.L.斯特里特.瞬变流,北京,水利电力出版社,1983.2
    [7]张国忠.管道瞬变流动分析,山东东营,中国石油大学出版社,1994
    [8]Bergant A, Ross Simpson A, Vitkovsk J. Developments in unsteady pipe flow friction modelling[J]. Journal of Hydraulic Research,2001,39(3):249-257.
    [9]Werner Zielke. Frequency-Dependent Friction in Transient Pipe Flow, PhD Dissertation,The University of Michigan
    [10]Vardy A E, Brown J M B. Transient turbulent friction in smooth pipe flows[J]. Journal of Sound and Vibration,2003,259(5):1011-1036.
    [11]Vardy A E, Brown J M B. Transient turbulent friction in fully rough pipe flows[J]. Journal of Sound and Vibration,2004,270(1):233-257.
    [12]Vardy A E, Brown J. Efficient approximation of unsteady friction weighting functions[J]. Journal of hydraulic engineering,2004,130(11):1097-1107.
    [13]Vardy A E, Brown J M. Approximation of turbulent wall shear stresses in highly transient pipe flows[J]. Journal of Hydraulic Engineering,2007,133(11):1219-1228.
    [14]Nowak M. Wall shear stress measurement in a turbulent pipe flow using ultrasound Doppler velocimetry[J]. Experiments in fluids,2002,33(2):249-255.
    [15]Bocchiola D, Menduni G, Ward D. Testing block probes for wall shear stress measurement in water flows[J]. Journal of Hydraulic Engineering,2003,129(2): 102-109.
    [16]Groβe S, Schroder W. Dynamic wall-shear stress measurements in turbulent pipe flow using the micro-pillar sensor MPS [J]. International Journal of Heat and Fluid Flow,2008, 29(3):830-840.
    [17]H. Zidouh.Velocity Profiles and Wall Shear Stress in Turbulent Transient Pipe Flow,International Journal of Dynamics of Fluids,Volume 5, Number 1 (2009):61-83
    [18]Brunone B, Berni A. Wall shear stress in transient turbulent pipe flow by local velocity measurement[J]. Journal of Hydraulic Engineering,2010,136(10):716-726.
    [19]Durst F, Kikura H, Lekakis I, et al. Wall shear stress determination from near-wall mean velocity data in turbulent pipe and channel flows[J]. Experiments in Fluids,1996,20(6): 417-428.
    [20]He S, Ariyaratne C, Vardy A E. A computational study of wall friction and turbulence dynamics in accelerating pipe flows[J]. Computers & fluids,2008,37(6):674-689.
    [21]Gardhagen R, Lantz J, Carlsson F, et al. Quantifying turbulent wall shear stress in a stenosed pipe using large eddy simulation[J]. Journal of biomechanical engineering,2010, 132:1-7.
    [22]Gijsen F J H, Goijaerts A, Van De Vosse F N, et al. A new method to determine wall shear stress distribution[J]. Journal of Rheology,1997,41:995-1006.
    [23]Abreu J, Betamio de Almeida A. Timescale behavior of the wall shear stress in unsteady laminar pipe flows[J]. Journal of Hydraulic Engineering,2009,135(5):415-424.
    [24]Vardy A E, Brown J M B. Evaluation of unsteady wall shear stress by Zielke's method[J]. Journal of Hydraulic Engineering,2010,136(7):453-456.
    [25]Levitsky S P, Bergman R M, Haddad J. Wave propagation in a cylindrical viscous layer between two elastic shells[J]. International journal of engineering science,2004,42(19): 2079-2086.
    [26]Muggleton J M, Brennan M J, Linford P W. Axisymmetric wave propagation in fluid-filled pipes:wavenumber measurements in in vacuo and buried pipes[J]. Journal of Sound and Vibration,2004,270(1):171-190.
    [27]Kaliatka A, Uspuras E, Vaisnoras M. RELAP5 code analysis of water hammer wave behavior[J]. Power Engineering, Lithuanian Academy of Sciences, Vilnius,2005,4:1-9.
    [28]Prek M. Analysis of wave propagation in fluid-filled viscoelastic pipes[J]. Mechanical systems and signal processing,2007,21(4):1907-1916.
    [29]Bergant A, Tijsseling A S, Vitkovsky J P, et al. Parameters affecting water-hammer wave attenuation, shape and timing-Part 1:Mathematical tools[J]. Journal of Hydraulic Research,2008,46(3):373-381.
    [30]Wiggert D C, Sundquist M J. Fixed-grid characteristics for pipeline transients[J]. Journal of the Hydraulics division,1977,103(12):1403-1416.
    [31]Goldberg D E, Benjamin Wylie E. Characteristics method using time-line interpolations[J]. Journal of Hydraulic Engineering,1983,109(5):670-683.
    [32]Lai C. Comprehensive method of characteristics models for flow simulation[J]. Journal of Hydraulic Engineering,1988,114(9):1074-1097.
    [33]Yang J C, Hsu E L. Time-line interpolation for solution of the dispersion equation[J]. Journal of Hydraulic Research,1990,28(4):503-520.
    [34]Yang J C, Hsu E L. On the use of the reach-back characteristics method for calculation of dispersion[J]. International journal for numerical methods in fluids,1991,12(3): 225-235.
    [35]Sibetheros I A, Holley E R, Branski J M. Spline interpolations for water hammer analysis[J]. Journal of Hydraulic Engineering,1991,117(10):1332-1351.
    [36]Karney B W, Ghidaoui M S. Flexible discretization algorithm for fixed-grid MOC in pipelines[J]. Journal of Hydraulic Engineering,1997,123(11):1004-1011.
    [37]Lai C. Multicomponent-flow analyses by multimode method of characteristics[J]. Journal of Hydraulic Engineering,1994,120(3):378-395.
    [38]Shimada M, Brown J, Vardy A. Estimating friction errors in MOC analyses of unsteady pipe flows[J]. Computers & fluids,2007,36(7):1235-1246.
    [39]Wylie E, STONER M, STREETER V. Network:System Transient Calculations by Implicit Method[J]. Old SPE Journal,1971,11(4):356-362.
    [40]Sanchez Bribiesca J L. A finite-difference method to evaluate water hammer phenomena[J]. Journal of Hydrology,1981,51(1):305-311.
    [41]M. H. Chaudhry,M. Y. Hussaini.Second-Order Accurate Explicit Finite-Difference Schemes for Waterhammer Analysis[J], J. Fluids Eng., December 1985, Volume 107:1-7
    [42]Guinot V. Riemann solvers for water hammer simulations by Godunov method[J]. International journal for numerical methods in Engineering,2000,49(7):851-870.
    [43]Hwang Y H, Chung N M. A fast Godunov method for the water-hammer problem[J]. International journal for numerical methods in fluids,2002,40(6):799-819.
    [44]Zhao M, Ghidaoui M S. Godunov-type solutions for water hammer flows[J]. Journal of Hydraulic Engineering,2004,130(4):341-348.
    [45]Sabbagh-Yazdi S R, Mastorakis N E, Abbasi A. Water hammer modeling by Godunov type finite volume method[J]. INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION,Volume 1,2007:350-355
    [46]ARTURO S. LEON,ARTHUR R. SCHMIDT,MARCELO H. GARCIA. GODUNOV-TYPE SOLUTIONS FOR TWO-PHASE WATER HAMMER FLOWS[J],JournaI of Hydraulic Engineering 132.8 (2006):800-813.
    [47]Jovic V. Finite elements and the method of characteristics applied to water hammer modelling[J]. International Journal for ENGINEERING MODELLING,1995,8(3-4).
    [48]Kochupillai J, Ganesan N, Padmanabhan C. A new finite element formulation based on the velocity of flow for water hammer problems[J]. International journal of pressure vessels and piping,2005,82(1):1-14.
    [49]Tijsseling A S, Bergant A. Meshless computation of water hammer[M]. Department of mathematics and computer science. University of technology,2007.
    [50]张立翔,黄文虎.压力管道流体-结构耦合振动研究进展[J].水动力学研究与进展:A辑,2000,15(003):366-379
    [51]Zhang L, Tijsseling A S, Vardy E A. FSI analysis of liquid-filled pipes[J]. Journal of sound and vibration,1999,224(1):69-99.
    [52]Tijsseling A S. Fluid-structure interaction in liquid-filled pipe systems:a review[J]. Journal of Fluids and Structures,1996,10(2):109-146.
    [53]Heinsbroek A. Fluid-structure interaction in non-rigid pipeline systems[J]. Nuclear engineering and design,1997,172(1):123-135.
    [54]Tijsseling A S. Water hammer with fluid-structure interaction in thick-walled pipes[J]. Computers & structures,2007,85(11):844-851.
    [55]Tijsseling A S, Lambert M F, Simpson A R, et al. Skalak's extended theory of water hammer[J]. Journal of Sound and Vibration,2008,310(3):718-728.
    [56]Tijsseling A S. Fluid-structure interaction in case of water hammer with cavitation[J]. Ph. D. Thesis, Delft University of Technology, Faculty of Civil Engineering, Communications on Hydraulic and Geotechnical Engineering,1993
    [57]Fuller C R. The effects of wall discontinuities on the propagation of flexural waves in cylindrical shells[J]. Journal of Sound and Vibration,1981,75(2):207-228.
    [58]Fuller C R, Fahy F J. Characteristics of wave propagation and energy distributions in cylindrical elastic shells filled with fluid[J]. Journal of Sound and Vibration,1982,81(4): 501-518.
    [59]Fuller C R. Monopole excitation of vibrations in an infinite cylindrical elastic shell filled with fluid[J]. Journal of Sound and vibration,1984,96(1):101-110.
    [60]Paidoussis M P, Li G X. Pipes conveying fluid:a model dynamical problem[J]. Journal of Fluids and Structures,1993,7(2):137-204.
    [61]D.C.Wiggert.F.J.Hatfield. Analysis of Liquid and Structural Transients in Piping by the Method of Characteristics[J],J.Fluids Eng.June 1987, Volume 109:161-166
    [62]Vardy A E, Alsarraj A T. Coupled axial and flexural vibration of 1-D members[J]. Journal of sound and vibration,1991,148(1):25-39.
    [63]Lavooij C S W, Tijsseling A S. Fluid-structure interaction in liquid-filled piping systems[J]. Journal of fluids and structures,1991,5(5):573-595.
    [64]Misra A K, Paidoussis M P, Van K S. On the dynamics of curved pipes transporting fluid. Part Ⅰ:Inextensible theory[J]. Journal of Fluids and Structures,1988,2(3):221-244.
    [65]Misra A K, Paidoussis M P, Van K S. On the dynamics of curved pipes transporting fluid Part Ⅱ:Extensible theory[J]. Journal of fluids and structures,1988,2(3):245-261.
    [66]Dupuis C, Rousselet J. The equations of motion of curved pipes conveying fluid[J]. Journal of sound and vibration,1992,153(3):473-489.
    [67]Lin W, Qiao N, Yuying H. Dynamical behaviors of a fluid-conveying curved pipe subjected to motion constraints and harmonic excitation[J]. Journal of Sound and Vibration,2007,306(3):955-967.
    [68]Lin W, Qiao N. In-plane vibration analyses of curved pipes conveying fluid using the generalized differential quadrature rule[J]. Computers & structures,2008,86(1):133-139.
    [69]Paidoussis M P, Denise J P. Flutter of thin cylindrical shells conveying fluid[J]. Journal of Sound and Vibration,1972,20(1):9-26.
    [70]D.S. Weaver,T E. Unny. On the Dynamic Stability of Fluid-Conveying Pipes[J], Journal of Applied Mechanics, March 1973,Volume 40, Issue 1:48-53
    [71]Matsuzaki Y, Fung Y C. Unsteady fluid dynamic forces on a simply-supported circular cylinder of finite length conveying a flow, with applications to stability analysis[J]. Journal of Sound and Vibration,1977,54(3):317-330.
    [72]Dym C L. Some new results for the vibrations of circular cylinders[J]. Journal of Sound and Vibration,1973,29(2):189-205.
    [73]Kornecki A. Static and dynamic instability of panels and cylindrical shells in subsonic potential flow[J]. Journal of Sound and Vibration.1974,32(2):251-263.
    [74]Bochkarev S A, Matveyenko V P. The dynamic behaviour of elastic coaxial cylindrical shells conveying fluid[J]. Journal of Applied Mathematics and Mechanics,2010,74(4): 467-474.
    [75]Kuiken G D C. Wave propagation in a thin-walled liquid-filled initially stressed tube[J]. Journal of Fluid Mechanics,1984,141(1):289-308.
    [76]Kuiken G D C. Amplification of pressure fluctuations due to fluid-structure interaction[J]. Journal of fluids and structures,1988,2(5):425-435.
    [77]张立翔,黄文虎.压力管道流体-结构耦合非线性动力稳定分析[J].应用数学和力学,2002,23(9):951-960.
    [78]张立翔,黄文虎,A. S. Tijsseling.水锤诱发弱约束管道流固耦合振动频谱分析[J].工程力学,2000,17(1):1-12.
    [79]Zhang Li-xiang,HUANG Wen-hu. NORMAL MODES OF FLUID-STRUCTURE INTERACTION IN INTERNAL FLOWS[J]. Journal of Hydrodynamics, Ser. B,1995, 4(1998):71-89.
    [80]Li Q S, Yang K, Zhang L, et al. Frequency domain analysis of fluid-structure interaction in liquid-filled pipe systems by transfer matrix method[J]. International journal of mechanical sciences,2002,44(10):2067-2087.
    [81]T. Adachi, S. Ujihashi, H. Matsumoto. Impulsive Responses of a Circular Cylindrical Shell Subjected to Waterhammer Waves[J],Journal of Pressure Vessel Technology,November 1991,Volume 113, Issue 4:517-524
    [82]Gopalakrishnan S, Martin M, Doyle J F. A matrix methodology for spectral analysis of wave propagation in multiple connected Timoshenko beams[J]. Journal of Sound and Vibration,1992,158(1):11-24.
    [83]Tijsseling A S, Vardy A E. Fluid-structure interaction and transient cavitation tests in a T-piece pipe[J]. Journal of fluids and structures,2005,20(6):753-762.
    [84]Tijsseling A S, Vardy A E, Fan D. Fluid-structure interaction and cavitation in a single-elbow pipe system[J]. Journal of Fluids and Structures,1996,10(4):395-420.
    [85]A.S. Elansary. Valve Closure:Method for Controlling Transients[J],J. Pressure Vessel Technol.,November 1994,Volume 116, Issue 4:437_443
    [86]Tijsseling A S, Lavooij C S W. Waterhammer with fluid-structure interaction[J]. Applied Scientific Research,1990,47(3):273-285.
    [87]Edelstein W S, Chen S S, Jendrzejczyk J A. A finite element computation of the flow-induced oscillations in a cantilevered tube[J]. Journal of sound and vibration,1986, 107(1):121-129.
    [88]Finnveden S. Spectral finite element analysis of the vibration of straight fluid-filled pipes with flanges[J]. Journal of Sound and Vibration,1997,199(1):125-154.
    [89]J.H. Sallstrom. Fluid-conveying damped Rayleigh-Ttimoshenko beams in transverse vibration analyzed by use of an exact finite element Part Ⅱ:Applications[J],Journal of Fluids and Structures,Volume 4, Issue 6, November 1990:573-582
    [90]G. C. Everstine. Dynamic Analysis of Fluid-Filied Piping Systems Using Finite Element Techniques[J], Journal of Pressure Vessel Technology,FEBRUARY 1986, Vol.108:57-61
    [91]F. J. Hatfield, D. C. Wiggert, R. S. Otwell. Fluid Structure Interaction in Piping by Component Synthesis[J],Journal of Fluids Engineering,September 1982,Volume 104, Issue 3:318-328
    [92]Zhang Y L, Gorman D G, Reese J M. A finite element method for modelling the vibration of initially tensioned thin-walled orthotropic cylindrical tubes conveying fluid[J]. Journal of sound and vibration,2001,245(1):93-112.
    [93]Hansson P A, Sandberg G. Dynamic finite element analysis of fluid-filled pipes[J]. Computer methods in applied mechanics and engineering,2001,190(24):3111-3120.
    [94]Zhang Y L, Reese J M, Gorman D G. Finite element analysis of the vibratory characteristics of cylindrical shells conveying fluid[J]. Computer methods in applied mechanics and engineering,2002,191(45):5207-5231.
    [95]Wiggert D C, Tijsseling A S. Fluid transients and fluid-structure interaction in flexible liquid-filled piping[J]. Applied Mechanics Reviews,2001,54(5):455-481.
    [96]Yeo M F, Schmid L J. Wave propagation in solid and fluid structures using finite element transfer matrices[J]. Journal of sound and vibration,1989,130(3):439-452.
    [97]Lisheng Suo,Wylie E B. Impulse response method for frequency-dependent pipeline transients[J]. Journal of fluids engineering,1989,111(4):478-483.
    [98]El-Raheb M. Vibrations of three-dimensional pipe systems with acoustic coupling[J]. Journal of Sound and Vibration,1981,78(1):39-67.
    [99]Nanayakkara S, Perreira N D. Wave propagation and attenuation in piping systems[J]. Journal of Vibration Acoustics Stress and Reliability in Design,1986,108:441-446.
    [100]C. Dupuis, J. Rousselet. The equations of motion of curved pipes conveying fluid[J],Journal of Sound and Vibration.Volume 153, Issue 3,22 March 1992:473-489
    [101]Lesmez M W, Wiggert D C, Hatfield F J. Modal analysis of vibrations in liquid-filled piping systems[J]. Journal of fluids engineering,1990,112(3):311-318.
    [102]任建亭,林磊,姜节胜.管道流固耦合振动的行波方法研究[J].应用力学学报,2005,22(4):530-535.
    [103]任建亭,林磊,姜节胜.管道轴向流固耦合振动的行波方法研究[J].航空学报,2006,27(2):280-284
    [104]Li H, Cheng J Q, Ng T Y, et al. A meshless Hermite-Cloud method for nonlinear fluid-structure analysis of near-bed submarine pipelines under current[J]. Engineering structures,2004,26(4):531-542.
    [105]FRUNZULICA F, DUMITRACHE A, STOIA-DJESKA M. A NUMERICAL SIMULATION OF FLUID-STRUCTURE INTERACTION PROBLEMS BY A MESH-FREE METHOD[J]. Rev. Roum. Sci. Tech.-Mec. Appl,2010,55(2):135-144.
    [106]张立翔,黄文虎.压力管道非线性流固耦合振动的数学建模[J].水动力学研究与进展,2000,Vol.15,No.1:116-128
    [107]Bajaj A K, Sethna P R. Lundgren T S. Hopf bifurcation phenomena in tubes carrying a fluid[J]. SIAM Journal on Applied Mathematics,1980,39(2):213-230.
    [108]Bajaj A K, Sethna P R. Flow induced bifurcations to three-dimensional oscillatory motions in continuous tubes[J]. SIAM Journal on Applied Mathematics,1984,44(2): 270-286
    [109]Bajaj A K, Sethna P R. Effect of symmetry-breaking perturbations on flow-induced oscillations in tubes[J]. Journal of fluids and structures,1991,5(6):651-679
    [110]Paidoussis M P. Flutter of conservative systems of pipes conveying incompressible fluid[J]. Journal of Mechanical Engineering Science,1975,17(1):19-25
    [111]Holmes P J. Bifurcations to divergence and flutter in flow-induced oscillations:a finite dimensional analysis[J]. Journal of Sound and Vibration,1977,53(4):471-503
    [112]Holmes P J. Pipes supported at both ends cannot flutter[J]. Journal of Applied Mechanics,1978,45:619
    [113]Modarres-Sadeghi Y, Paidoussis M P. Nonlinear dynamics of extensible fluid-conveying pipes, supported at both ends[J]. Journal of Fluids and Structures,2009,25(3):535-543
    [114]Qian Q, Wang L, Ni Q. Nonlinear responses of a fluid-conveying pipe embedded in nonlinear elastic foundations[J]. Acta Mechanica Solida Sinica,2008,21(2):170-176
    [115]Nikolic M, Rajkovic M. Bifurcations in nonlinear models of fluid-conveying pipes supported at both ends[J]. Journal of Fluids and Structures,2006,22(2):173-195
    [116]Paidoussis M P, Moon F C. Nonlinear and chaotic fluidelastic vibrations of a flexible pipe conveying fluid[J]. Journal of Fluids and Structures,1988,2(6):567-591
    [117]Tang D M, Dowell E H. Chaotic oscillations of a cantilevered pipe conveying fluid[J]. Journal of Fluids and structures,1988,2(3):263-283.
    [118]Paidoussis M P, Li G X, Moon F C. Chaotic oscillations of the autonomous system of a constrained pipe conveying fluid[J]. Journal of Sound and Vibration,1989,135(1): 1-19.
    [119]Qiao N, Lin W, Qin Q. Bifurcations and chaotic motions of a curved pipe conveying fluid with nonlinear constraints[J]. Computers & structures,2006,84(10):708-717.
    [120]PaTdoussis M P, Amabili M, Sarkar A. Chaotic vibrations of circular cylindrical shells: Galerkin versus reduced-order models via the proper orthogonal decomposition method[J]. Journal of sound and vibration,2006,290(3):736-762.
    [121]黄继汤.空化与空蚀的原理及应用,北京,清华大学出版社,1991
    [122]Bergant A, Simpson A R, Tijsseling A S. Water hammer with column separation:A historical review[J]. Journal of Fluids and Structures,2006,22(2):135-171.
    [123]Wylie E B. Simulation of vaporous and gaseous cavitation[J]. Journal of fluids engineering,1984,106(3):307-311.
    [124]Shu J J. Modelling vaporous cavitation on fluid transients[J]. International journal of pressure vessels and piping,2003,80(3):187-195.
    [125]Chaiko M A. A finite-volume approach for simulation of liquid-column separation in pipelines[J]. Journal of fluids engineering,2006,128(6):1324-1335.
    [126]Adamkowski A, Lewandowski M. A new method for numerical prediction of liquid column separation accompanying hydraulic transients in pipelines[J]. Journal of Fluids Engineering,2009,131(7):71302.
    [127]Adamkowski A, Lewandowski M. Improved numerical modelling of hydraulic transients in pipelines with column separation[C],3 rd IAHR International Meeting of the Workgroup on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems.2009:419-431.
    [128]Adamkowski A, Lewandowski M, Marcinkiewicz J. New Method for Numerical Prediction of Water Hammer With Column Separation:Comparison With Experiment and the Relap5 Program[C]. ASME,2009.
    [129]Huang B, Wang G, Yuan H. A cavitation model for cavtating flow simulations[J]. Journal of Hydrodynamics, Ser. B,2010,22(5):798-804.
    [130]Grekula M, Bark G. Experimental Study of Cavitation in a Kaplan model turbine[J]. http://resolver. caltech. edu/cav200l:sessionB9.004,2001.
    [131]Bajic B. Methods for vibro-acoustic diagnostics of turbine cavitation[J]. Journal of hydraulic research,2003,41(1):87-96.
    [132]Bajic B. Multidimensional diagnostics of turbine cavitation[J]. TRANSACTIONS-AMERICAN SOCIETY OF MECHANICAL ENGINEERS JOURNAL OF FLUIDS ENGINEERING,2002,124(4):943-950.
    [133]Escaler X, Egusquiza E, Farhat M. et al. Detection of cavitation in hydraulic turbines[J]. Mechanical systems and signal processing,2006,20(4):983-1007.
    [134]RUS T, Dular M, Sirok B, et al. An investigation of the relationship between acoustic emission, vibration, noise, and cavitation structures on a Kaplan turbine[J]. Journal of fluids engineering,2007,129(9):1112-1122.
    [135]Vu T C. Nennemann B. Avellan F. Experimental study and numerical simulation of the FLINDT draft tube rotating vortex[J]. Journal of Fluids Engineering, Vol.129, FEBRUARY 2007:147-158
    [136]Avellan F. Analysis of the cavitating draft tube vortex in a Francis turbine using particle image velocimetry measurements in two-phase flow[J]. Journal of Fluids Engineering, 2008.130:1-10
    [137]Kurosawa S, Matsumoto K. Numerical prediction of critical cavitation performance in hydraulic turbines[C]. Proceedings of FEDSM'03 4TH ASME_JSME Joint Fluids Engineering Conference Honolulu, Hawaii, USA, July 6-10,2003
    [138]Liu S, Chen Q, Wu Y. Unsteady Cavitating Turbulent Flow Simulation In A Kaplan Turbine[C],2007 Proceedings of the 2nd IAHR International Meeting of the Workgroup on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems.2007.
    [139]Jo D, Lipej A, Meznar P. Numerical Prediction of Efficiency, Cavitation and Unsteady Phenomena in Water Turbines[C]. Proceedings of the 9th Biennial ASME Conference on Engineering Systems Design and Analysis, July 7-9,2008, Haifa, Israel.
    [140]Liu S, Zhang L, Nishi M, et al. Cavitating turbulent flow simulation in a Francis turbine based on mixture model[J]. Journal of fluids engineering,2009,131(5).
    [141]Xiao Y, Wang Z, Zhang J, et al. Numerical Analysis of Blade Channel Vortex in Francis Turbine at Part Load of Middle-Low Head[C]. ASME,2009.
    [142]Ji B, Luo X, Wu Y, et al. Numerical and Experimental Study on Unsteady Shedding of Partial Cavitation[J]. Modern Physics Letters B,2010,24(13):1441-1444.
    [143]Ahmed A, Kshirsagar J T. Numerical Prediction of Cavitation Free Zone Operation for Francis Turbine[C]. ASME,2009.
    [144]Peng Y C, Chen X Y, Cao Y, et al. Numerical study of cavitation on the surface of the guide vane in three gorges hydropower unit[J]. Journal of Hydrodynamics, Ser. B,2010, 22(5):703-708.
    [145]Susan-Resiga R, Vu T C, Muntean S, et al. Jet control of the draft tube vortex rope in Francis turbines at partial discharge[C]//Proceedings of the 23rd IAHR Symposium on Hydraulic Machinery and Systems, Yokohama, Japan.2006:1-14
    [146]Susan-Resiga R, Muntean S, Hasmatuchi V, et al. Development of a swirling flow control technique for Francis turbines operated at partial discharge[C],Proceedings of the 3rd German-Romanian Workshop on Turbomachinery Hydrodynamics, Timisoara, Romania.2007:10-12.
    [147]QIAN Z, YANG J, Huai W. Numerical simulation and analysis of pressure pulsation in Francis hydraulic turbine with air admission[J]. Journal of Hydrodynamics, Ser. B,2007, 19(4):467-472.
    [148]Michael P. Paidoussis. Fluid-Structure Interactions:Slender Structures and Axial Flow, Volume 1, London:Academic Press, 1998.
    [149]Michael P. Paidoussis. Fluid-Structure Interactions Slender Structures and Axial Flow Volume 2, London:Academic Press,2004.
    [150]韩强,黄小清,宁建国.高等板壳理论[M].北京:科学出版社,2002
    [151]何福宝,沈亚鹏.板壳理论[M].西安:西安交通大学出版社,1993
    [152]王献孚,熊鳌魁.高等流体力学[M].武汉:华中科技大学出版社,2003
    [153]SONG C, Yuan M. A weakly compressible flow model and rapid convergence methods[J]. ASME, Transactions, Journal of Fluids Engineering,1988,110:441-445.
    [154]Goncharova O N. Exact solutions of linearized equations of convection of a weakly compressible fluid[J]. Journal of applied mechanics and technical physics,2005,46(2): 191-201.
    [155]Munz C D, Roller S, Klein R, et al. The extension of incompressible flow solvers to the weakly compressible regime[J]. Computers & fluids,2003,32(2):173-196.
    [156]Lee E S. Moulinec C, Xu R, et al. Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method[J]. Journal of Computational Physics,2008,227(18):8417-8436.
    [157]Taliadorou E G, Neophytou M, Georgiou G C. Perturbation solutions of Poiseuille flows of weakly compressible Newtonian liquids[J]. Journal of Non-Newtonian Fluid Mechanics,2009,163(1):25-34.
    [158]Emans M. Performance of parallel AMG-preconditioners in CFD-codes for weakly compressible flows[J]. Parallel Computing,2010,36(5):326-338.
    [159]Roussel O, Schneider K. Coherent Vortex Simulation of weakly compressible turbulent mixing layers using adaptive multiresolution methods[J]. Journal of Computational Physics,2010.229(6):2267-2286.
    [160]Hirt C W. Amsden A A. Cook J L. An arbitrary Lagrangian-Eulerian computing method for all flow speeds[J]. Journal of Computational Physics.1974.14(3):227-253.
    [161]Margolin L G. Introduction to "An arbitrary Lagrangian-Eulerian computing method for all flow speeds"[J]. Journal of Computational Physics,1997,135(2):198-202.
    [162]Kuhl E, Hulshoff S, De Borst R. An arbitrary Lagrangian Eulerian finite-element approach for fluid-structure interaction phenomena[J]. International journal for numerical methods in engineering,2003,57(1):117-142.
    [163]Rodolfo A. K. Sanches, Humberto B. Coda.FLUID-STRUCTURE INTERACTION USING AN ARBITRARY LAGRANGIAN-EULERIAN FLUID SOLVER COUPLED TO A POSITIONAL LAGRANGIAN SHELL SOLVER,Mecanica Computacional Vol XXIX,(2010):1627-1647
    [164]张雄,陆明万,王建军.任意拉格朗日2欧拉描述法研究进展[J].计算力学学报,1997,14:1.
    [165]Franc J P, Michel J M. Fundamentals of cavitation[M]. Springer Science+ Business Media,2004.
    [166]Brennen C E. Cavitation and bubble dynamics[M]. Oxford University Press on Demand, 1995.
    [167]Singhal A K, Athavale M M, Li H, et al. Mathematical basis and validation of the full cavitation model[J]. TRANSACTIONS-AMERICAN SOCIETY OF MECHANICAL ENGINEERS JOURNAL OF FLUIDS ENGINEERING,2002,124(3):617-624.
    [168]Bakir F. Rey R, Gerber A G, et al. Numerical and experimental investigations of the cavitating behavior of an inducer[J]. International Journal of Rotating Machinery,2004, 10(1):15-25.
    [169]Kunz R F, Boger D A, Stinebring D R, et al. A preconditioned Navier-Stokes method for two-phase flows with application to cavitation prediction[J]. Computers & Fluids, 2000,29(8):849-875.
    [170]Yuan W, Sauer J, Schnerr G H. Modeling and computation of unsteady cavitation flows in injection nozzles[J]. Mecanique & industries,2001,2(5):383-394.
    [171]Mejri I, Bakir F, Rey R, et al. Comparison of computational results obtained from a homogeneous cavitation model with experimental investigations of three inducers[J]. Journal of fluids engineering,2006,128(6):1308-1323.
    [172]Som S, Ramirez A, Aggarwal S, et al. Investigation of nozzle flow and cavitation characteristics in a diesel injector[J]. J. Eng. Gas Turbines Power,2010, 132(ANL/ES/JA-62050).
    [173]Sansone E, Pellone C, Maitre T. Modeling the Unsteady Cavitating Flow in a Cross-Flow Water Turbine[J]. Journal of fluids engineering,2010,132(7).
    [174]Liu S, Zhang L, Nishi M, et al. Cavitating turbulent flow simulation in a Francis turbine based on mixture model[J]. Journal of fluids engineering,2009,131(5).
    [175]Ji B, Luo X, Wang X, et al. Unsteady numerical simulation of cavitating turbulent flow around a highly skewed model marine propeller[J]. Journal of fluids engineering,2011, 133(1).
    [176]Schmidt D P. Cavitation in diesel fuel injector nozzles[D]. Doctoral dissertation, UNIVERSITY OF WISCONSIN,1997.
    [177]Pascarella C, Salvatore V, Ciucci A. Effects of speed of sound variation on unsteady cavitating flows by using a barotropic model[C],5th. Int. Symp. on Cavitation, Osaka, Japan.2003.
    [178]Coutier-Delgosha O, Fortes-Patella R, Reboud J L. Evaluation of the turbulence model influence on the numerical simulations of unsteady cavitation[J]. Journal of Fluids Engineering,2003,125(1):38-45.
    [179]Pouffary B, Fortes-Patella R, Reboud J L. Numerical Simulation of Cavitating Flow Around a 2D hydrofoil:a barotropic approach[C],Fifth International Symposium on Cavitation, Osaka, Japan.2003.
    [180]Ciro Pascarella,Vito Salvatorey.NUMERICAL STUDY OF UNSTEADY CAVITATION ON A HYDROFOIL SECTION USING A BAROTROPIC MODEL,CAV2001:sessionB2.005:1-12
    [181]http://wenku.baidu.com/view/34219009763231126edb11f5.html
    [182]http://www.openfoam.com
    [183]Guide, OpenFOAM User. "Programmers Guide." JDT Core., retrieved from on 23rd June 2010
    [184]Guide, OpenFOAM User. " User Guide." JDT Core., retrieved from on 23rd June 2010
    [185]Zong N, Yang V. An efficient preconditioning scheme for real-fluid mixtures using primitive pressure-temperature variables[J]. International Journal of Computational Fluid Dynamics,2007,21(5-6):217-230.
    [186]Asouti V G, Papadimitriou D I, Koubogiannis D G, et al. Low Mach Number Preconditioning for 2D and 3D Upwind Flow Solution Schemes on Unstructured Grids[C],5th GRACM International Congress on Computational Mechanics, Limassol. 2005.
    [187]Guillard H, Murrone A. On the behavior of upwind schemes in the low Mach number limit:Ⅱ. Godunov type schemes[J]. Computers & fluids,2004,33(4):655-675.
    [188]Huang D G. Preconditioned dual-time procedures and its application to simulating the flow with cavitations[J]. Journal of Computational Physics,2007,223(2):685-689.
    [189]De Wilde J, Baudrez E, Heynderickx G. et al. PRECONDITIONING APPLIED TO EULERIAN-EULERIAN GAS-SOLID FLOW CALCULATIONS WITH VARIABLE DENSITY[J].2006.
    [190]Birken P, Meister A. Stability of preconditioned finite volume schemes at low Mach numbers[J]. BIT Numerical Mathematics,2005,45(3):463-480.
    [191]Kassiotis C, Rogers B, Stansby P. A coupling strategy and its software implementation for waves propagation and their impact on coast[J].2010.
    [192]Kassiotis C, Ibrahimbegovic A, Niekamp R, et al. Nonlinear fluid-structure interaction problem. Part Ⅰ:implicit partitioned algorithm, nonlinear stability proof and validation examples[J]. Computational Mechanics,2011,47(3):305-323.
    [193]Kassiotis C, Ibrahimbegovic A, Niekamp R. et al. Nonlinear fluid-structure interaction problem. Part Ⅱ:space discretization, implementation aspects, nested parallelization and application examples[J]. Computational Mechanics.2011,47(3):335-357.
    [194]Zienkiewicz O C, Taylor R L. The Finite Element Method:Solid Mechanics[M]. Butterworth-heinemann,2000.
    [195]Taylor R L. FEAP-ein finite element analysis programm[M]. Ing.-Gemeinschaft Klee & Wrigges,1987.
    [196]https://www.tu-braunschweig.de, CTL Manual for Linux/Unix for the Usage with C++.
    [197]Trimarchi D, Vidrascu M, Taunton D J, et al. Fluid structure interactions applied to downwind yacht sails[J].2011.
    [198]Trimarchi D, Turnock S R, Chapelle D. Fluid-Structure Interaction on sail fabric type structures[C].6th OpenFOAMR Workshop PennState University, USA,13-16 June 2011
    [199]Trimarchi D, Turnock S R, Chapelle D, et al. Fluid-structure interactions of anisotropic thin composite materials for application to sail aerodynamics of a yacht in waves[J]. 12th Numerical Towing Tank Symposium, Cortona, Italy,04-06 Oct 2009
    [200]Lombardi M, Parolini N, Quarteroni A, et al. Numerical simulation of sailing boats: dynamics, FSI, and shape optimization[M],Variational Analysis and Aerospace Engineering:Mathematical Challenges for Aerospace Design. Springer US,2012: 339-377.
    [201]Trimarchi D, Turnock S R, Taunton D J, et al. The use of shell elements to capture sail wrinkles, and their influence on aerodynamic loads[J]. The Second International Conference on Innovation in High Performance Sailing Yachts, Lorient, France,2010.
    [202]Tezduyar T, Benney R. Mesh moving techniques for fluid-structure interactions with large displacements[J]. J. Applied Mechanics, JANUARY 2003, Vol.70:58-63
    [203]Slone A K, Pericleous K, Bailey C, et al. Dynamic fluid-structure interaction using finite volume unstructured mesh procedures[J]. Computers & structures,2002,80(5): 371-390.
    [204]Stein K, Benney R, Kalro V, et al. Parachute fluid-structure interactions:3-D computation[J]. Computer Methods in Applied Mechanics and Engineering,2000, 190(3):373-386.
    [205]Degand C, Farhat C. A three-dimensional torsional spring analogy method for unstructured dynamic meshes[J]. Computers & structures,2002,80(3):305-316.
    [206]Farhat C, Degand C, Koobus B, et al. Torsional springs for two-dimensional dynamic unstructured fluid meshes[J]. Computer methods in applied mechanics and engineering, 1998,163(1):231-245.
    [207]Jasak H, Tukovic Z. Automatic mesh motion for the unstructured Unite volume method[J]. Transactions of FAMENA,2006,30(2):1-20.
    [208]Bos F M. Numerical simulations of flapping foil and wing aerodynamics:Mesh deformation using radial basis functions[J].2010.
    [209]Jakobsson S, Amoignon O. Mesh deformation using radial basis functions for gradient-based aerodynamic shape optimization[J]. Computers & fluids,2007,36(6): 1119-1136.
    [210]Aukje de Boer, Martijn S. van der Schoot, Hester Bijl.NEW METHOD FOR MESH MOVING BASED ON RADIAL BASIS FUNCTION INTERPOLATION,European Conference on Computational Fluid Dynamics,TU Delft, The Netherlands,2006
    [211]Beaudoin M, Jasak H. Development of a generalized grid interface for turbomachinery simulations with OpenFOAM[C],open Source CFD International Conference. Berlin, Germany.2008:4-5.
    [212]Tijsseling A S. Exact solution of linear hyperbolic four-equation system in axial liquid-pipe vibration[J]. Journal of Fluids and Structures,2003,18(2):179-196.
    [213]Gale J. Fluid-Structure Interaction for simulations of fast transients. Doctoral thesis, UNIVERSITY OF LJUBLJANA.2008
    [214]Ahmadi A. Keramat A. Investigation of fluid-structure interaction with various types of junction coupling[J]. Journal of Fluids and Structures,2010,26(7):1123-1141.
    [215]Tijsseling A S, Bergant A. Meshless computation of water hammer[M]. Department of mathematics and computer science. University of technology,2007.
    [216]Heinsbroek A. Fluid-structure interaction in non-rigid pipeline systems[J]. Nuclear engineering and design.1997,172(1):123-135.
    [217]Sobey R. Analytical solutions for unsteady pipe flow[J]. Journal of Hydroinformatics, 2004,6:187-207.
    [218]Tijsseling A S, Lavooij C S W. Waterhammer with fluid-structure interaction[J]. Applied Scientific Research,1990,47(3):273-285.
    [219]Tijsseling A S. Exact solution of the FSI four-equation model[M]. Eindhoven University of Technology, Department of Mathematics and Computing Science,2002.
    [220]Tijsseling A S, Vardy A E. Time scales and FSI in oscillatory liquid-filled pipe flow[C].BHR Group. Proc. of the 10th Int. Conf. on Pressure Surges (Editor S. Hunt). Edinburgh, United Kingdom.2008:553-568.
    [221]Tijsseling A, Lambert M F, Simpson A R, et al. Wave front dispersion due to fluid-structure interaction in long liquid-filled pipelines[C],IAHR Symposium on Hydraulic Machinery and Systems (23rd:2006:Yokohama, Japan).2006.
    [222]Bergant A, Tijsseling A S, Vitkovsky J P, et al. Parameters affecting water-hammer wave attenuation, shape and timing-Part 1:Mathematical tools[J]. Journal of Hydraulic Research,2008,46(3):373-381.
    [223]Bergant A, Tijsseling A S, Vitkovsky J P, et al. Parameters affecting water-hammer wave attenuation, shape and timing-Part 2:Case studies[J]. Journal of Hydraulic Research,2008,46(3):382-391.
    [224]Keramat A, Tijsseling A S, Hou Q, et al. Fluid-structure interaction with pipe-wall viscoelasticity during water hammer[J]. Journal of Fluids and Structures,2012,28: 434-455.
    [225]张立翔等.兰坪县大华水电站有压过水系统负荷突变水力暂态试验研究报告,2002.
    [226]Arndt R E A, Wosnik M, Qin Q. Experimental and Numerical Investigation of Large Scale Structures in Cavitating Wakes[C],Proceedings of the 36th AIAA Fluid Dynamics Conference and Exhibit, AIAA Paper.2006 (2006-3046).
    [227]Kravtsova A Y, Markovich D M, Pervunin K S, et al. Experimental Investigation of Cavitating Flow about a Cascade of NACA0015 Series Hydrofoils[J].16th Int Symp on Applications of Laser Techniques to Fluid Mechanics,Lisbon, Portugal,09-12 July, 2012
    [228]Kubota A, Kato H, Yamaguchi H. A new modelling of cavitating flows:A numerical study of unsteady cavitation on a hydrofoil section[J]. Journal of fluid Mechanics,1992, 240(1):59-96.
    [229]Li D, Grekula M, Lindell P. Towards numerical prediction of unsteady sheet cavitation on hydrofoils[J]. Journal of Hydrodynamics, Ser. B,2010,22(5):741-746.
    [230]Song C, Qin Q. Numerical simulation of unsteady cavitation flows[J]. http://resolver. caltech. edu/cav2001:sessionB5.004,2001.
    [231]Wang G, Ostoja-Starzewski M. Large eddy simulation of a sheet/cloud cavitation on a NACA0015 hydrofoil[J]. Applied mathematical modelling,2007,31(3):417-447.
    [232]Qin Q, Song C C S, Arndt R E A. A numerical study of the unsteady turbulent wake behind a cavitating hydrofoil[J]. Bulletin of the American Physical Society,2003, 48(10):107.
    [233]张博,王国玉.黄彪,等.云状空化非定常脱落机理的数值与试验研究[J].力学学报,2009,41(5):652-658.
    [234]乌晓明.高水头混流式水轮机长短叶片转轮裂纹分析[J].水力发电,2007,33(1):53-55.
    [235]Jost D, Lipej A. Numerical prediction of the vortex rope in the draft tube[C].3rd IAHR International Meeting of the Workgroup on cavitation and Dynamic Problems in Hydraulic Machinery and Systems.2009:75-85.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700