用户名: 密码: 验证码:
离心泵内不稳定流动的试验及数值模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文的研究工作是在国家自然科学基金项目“低比转数离心泵驼峰现象的不稳定流动机理研究”(No.51079062)资助下展开。
     随着社会进步和科学技术的发展,离心泵的运行稳定性和可靠性越来越受到重视,而泵内部的非定常流动情况是决定运行稳定性的关键因素之一。为了更好地理解和研究离心泵的内部流动情况,本文从其内部不稳定流动的角度出发,采用试验和数值模拟相结合的方法,探索其叶轮内不稳定流动的发生和发展规律。同时针对离心叶轮流道内摩擦损失大、逆压梯度高和叶片曲率大等特点,在SST k-ω湍流模型的基础上提出了一种基于旋转和曲率修正的非线性湍流模型。基于OpenFOAM软件建立了一套适用于离心叶轮流道特点的数值模型。本文的主要工作和创造性成果有:
     1.总结了离心泵PIV测试技术、压力脉动测试技术、振动测试技术的国内外研究现状;归纳了线性涡粘性模型的研究现状及不足,阐述了显式代数雷诺应力方程模型结合二方程湍流模型求解是工程上计算旋转和曲率流场的一种趋势。
     2.首次采用PIV技术探索了一离心叶轮流道内不稳定流动涡的发生、发展规律,定量分析了不稳定流动对性能曲线的影响规律,揭示了不稳定流动对叶轮流道内绝对速度的影响规律,研究结果表明:(1)不稳定流在0.6QBEP工况开始产生,直到0.4QBEP工况得到发展,最后在0.1QBEP时几乎扩展到整个叶轮流道;叶轮旋转的过程中,靠近蜗壳隔舌处的叶轮流道内的流动最不稳定,也是最先出现分离涡的流道;随着流量的降低,附着于叶片工作面的分离涡逐渐增多、汇聚,不断发展的漩涡向流道出口移动的同时,也偏向于流道中心。(2)平均出口绝对速度圆周分量Vu2/U2随着流量的增加先升高后降低,在0.1QBEP到0.6QBEP之间出现驼峰现象;从0.6QBEP到1.0QBEP,平均出口绝对速度圆周分量和扬程均随着流量增加稳定下降;不稳定流动是导致离心泵性能曲线出现驼峰或平坦现象的主要原因。(3)绝对速度圆周分量vu随着流道半径的增加,呈先升高后降低的趋势;在不同工况下,vu的整体变化规律基本相似,其大小与流量成反比。绝对速度径向分量vm随着流道半径的增加,基本呈先下降后上升的趋势;在不同工况下,vm的整体大小与流量成正比。
     3.采用HSJ2010水力机械综合测试仪和高频动态压力传感器对离心泵叶轮出口圆周方向的压力脉动特性进行了试验研究。获得了流道内不稳定流动和叶轮出口压力脉动之间的关系。研究结果表明:(1)“射流-尾迹”结构诱导的叶频脉动和叶轮流道内流动的不对称性诱导的轴频脉动是压力脉动的主要成分;(2)“射流-尾迹”结构引起的周期性压力脉动幅值随着叶轮与蜗壳壁面(正对叶轮出口的蜗壳壁面)间距的增加而逐渐衰弱,叶轮出流对压力脉动的影响逐渐减弱;(3)在叶轮出口处的压力脉动特征频域中存在一个100Hz~145Hz的宽带频率,大约介于4倍轴频到叶频之间,该宽频幅值随着不稳定涡尺度的增强逐渐变大。
     4.采用INV3020C数据采集系统、DASP-V10软件以及ICP型振动加速度传感器对离心泵不稳定流动下的振动特征进行了试验研究。总结了离心泵叶轮流道内的不稳定流动现象对振动的影响规律,发现了振动信号与压力脉动信号在频域特征具有一定的相关性,彼此的主要激励频率均分布在轴频和叶频;对于振动信号而言,其在100Hz~145Hz之间(大约介于4倍轴频到叶频之间)同样存在一个由不稳定涡引起的宽频振动。
     5.针对离心叶轮流道强旋转、大曲率的特点,在开源软件OpenFOAM平台上,首先用代数雷诺应力方程模型求解雷诺应力和涡粘性系数,然后用SST k-ω模型中考虑旋转和曲率改进的k方程和w方程进行封闭求解,最后用扩展内禀旋转张量对模型中的平均旋转张量进行修正,从而实现对SST k-ω湍流模型的旋转和曲率改进,并首次开发了一套适用于计算旋转和曲率流场的非线性湍流模型(EASMRC)程序。用旋转直通道和90°弯管进行了计算检验。结果表明,改进后的非线性湍流模型与原模型相比,计算结果更接近试验值。
     6.首次将改进模型分别应用于OpenFOAM的MRFSimpleFoam和pimpleDyMFoam求解器中,并对研究模型进行了稳态和瞬态计算。将EASMRC计算结果与OpenFOAM的SST k-ω计算结果、CFX的SST k-ω计算结果、外特性测试结果、PIV测试结果、压力脉动测试结果进行了对比,结果表明:从外特性上看,EASMRC模型总体上与试验值更接近;从内流场上看,EASMRC在预测分离涡的发生、发展方面更接近PIV测量结果;从压力脉动特性上看,EASMRC计算的压力脉动幅值、时域结果以及频域结果与测量结果最接近。
The research is supported by National Natural Science Foundation of China (Grant No.51079062) project.
     With the development of society, science and technology, the stability and reliability of centrifugal pump operation is gradually important. While, the unsteady flow inside the pump is an essential factor that determines the stability of pump operation. In order to get a better understanding and researching about the internal flow in the pump, this paper takes the unstable flow pattern inside the impeller as the subject. The research method combining experiments and CFD has been applied to investigate the onset and development law of unstable flow within the impeller. Meanwhile, a new nonlinear turbulence model is generated based on SST k-co turbulence model, that aiming at simulating more precisely on the centrifugal pump because of its higher friction loss inside passage, higher adverse pressure gradient and bigger curvature of blade. Furthermore, a set of numerical method is set up for fitting the characteristics of centrifugal impeller passages based on OpenFOAM. The main research contents and creative achievements as below:
     1. The present situations on measurements in centrifugal pump, such as PIV measurement technique, pressure fluctuation experiment technique and vibration measurement technique, were summarized. The present research status and defects on linear eddy viscosity model were concluded. The development trends for combining explicit algebraic stress equation model with turbulence model of quadratic equation to solve the flow with rotation and curvature were illustrated.
     2. Onset and development rule of unstable vortex within the impeller were discovered using PIV technique. The effect law of unstable flow both on hydraulic performance curve and on absolute velocity distribution in impeller passages were quantitated and revealed separately. The main conclusions were following:(1) The flow was separated at0.6QBEP, developed at0.4QBEP, and spread almost the whole impeller passage at0.1QBEP In addition, flow in the passage near the tongue was the most unstable, and the vortex was also occurred in this passage firstly by comparing with rest of passages. With the flow rate decreasing, the vortex on the pressure side was increased and converged to a large-size vortex, in the end, the large-size vortex spread to the outlet of passage, and moved to the centre area of the passage.(2) The average circumferential component of absolute velocity vu2/u2at the impeller exit went up firstly, then down, and there was a hump on the above velocity distribution curve between0.1QBEP and0.6QBEP. Moreover, both vu2/u2and head fell steadily with the flow rate increased from0.6QBEP and1.0QBEP. Furthermore, the unstable flow was the main factor to cause the hump or flat area on the H-Q curve.(3) With the radius of the impeller passages increasing, the circumferential component of absolute velocity vu rose firstly, and then reduced. In addition, the changing law of vu was very similar under different working conditions, that was, it varied inversely as the flow rate. In contrast, the radial component of absolute velocity vm firstly decreased, and then increased with the radius of the impeller passages increasing. Meanwhile, the magnitude of vm was proportional to the flow rate.
     3. The experimental investigation was performed on pressure fluctuation of impeller exit in circumferential direction by utilizing the HSJ2010tester and high-frequency dynamic pressure transducers. The relationship between pressure pulsation and unstable flow in the impeller passages was summarized. The following3results were obtained:(1) The blade passing frequency and the shaft frequency were the domain frequencies, here, the blade passing frequency was induced by "jet-wake" structure and the shaft frequency was induced by the asymmetric flow in the impeller passages.(2) The periodic pressure pulsation amplitude, which caused by "jet-wake" structure, was gradually decreasing along with the gap between impeller exit and volute wall(the wall which directly against the impeller exit) increasing. In other words, the pressure pulsation amplitude, which was influenced by impeller outlet flow, was weakened along with the gap between impeller and volute wall was increasing.(3) There was a100Hz-145Hz broad-band frequency among the overall frequency domain of pressure pulsation near the impeller exit, and the broad-band frequencies were between about4times the shaft frequency and the blade passing frequency. In addition, the amplitude of above broad-band frequency was increasing with the scale of the unstable vortex enlarging.
     4. The experimental investigation was performed on vibration of centrifugal pump with unstable flow phenomena by utilizing the INV3020C data acquisition system, DASP-V10software and ICP acceleration sensors. Effects of unstable flow phenomena in impeller passages on vibration were summarized. Moreover, the correlation between vibration signals and pressure fluctuation signals among frequency domain was found. Here, their shaft frequency and blade passing frequency are the domain frequencies. For the vibration signals, there also existed a100Hz-145Hz broadband vibration, that was between about4times the shaft frequency and the blade passing frequency, caused by unstable vortex.
     5. A new computational program with nonlinear turbulence model which considering the effects of rotation and curvature, that was EASMRC, was developed firstly based on an open source code named OpenFOAM. The idea of the nonlinear turbulence model was given as follows:Firstly, the Reynolds stress and the eddy viscosity were calculated by explicit algebraic stress equation model. Then, the improved k equation and co equation in SST k-co turbulence model which considered the effects of rotation and curvature were used for governing equations closure. Finally, the mean spin tensor in the above equations was improved by the extended intrinsic mean spin tensor. Therefore, a new nonlinear turbulence model combining explicit algebraic stress equation model and SST k-co turbulence model was improved. Both a rotating turbulent duct flow and a90°curved duct flow is simulated for validation. The result showed that the calculation result of improved nonlinear turbulence model was closer to experimental results.
     6. The improved turbulence model (EASMRC) was added into MRFSimpleFoam and pimpleDyMFoam solver based on OpenFOAM respectively for the first time. Both steady simulation and transient simulation were performed on the pump internal flow. Then, the calculation results by EASMRC model was compared with the results by SST k-co turbulence model in OpenFOAM, the results by SST k-co turbulence model in CFX, the result by hydraulic performance test, the result by PIV measurement and the result by pressure pulsation measurement respectively. The results were followed:in terms of the pump hydraulic performance, the calculation accuracy of EASMRC was much better than original model both in OpenFOAM and CFX; in terms of the internal flow, EASMRC revealed that the evolution process of vortex in the impeller passages, which was more consistent with the PIV test; in terms of the pressure pulsation, EASMRC was much closer to test results from pressure pulsation charateristics, such as pressure fluctuation amplitude, pressure pulsation results on time domain, and on frequecy domain respectively,
引文
[1]关醒凡.现代泵理论与设计[M].北京:中国宇航出版社,2011.
    [2]王福军.水泵与水泵站[M].北京:中国农业出版社,2011.
    [3]邹涛.离心泵内部三维复杂流场的数值研究[D].西安:西安理工大学,2007.
    [4]Wernet M P. Development of digital particle imaging velocimetry for use in turbomachinery[J]. Experiments in Fluids,2000,28 (1):97-115.
    [5]黄远民.离心泵内部流动PIV测试研究与三维数值模拟[D].杭州:浙江理工大学,2011.
    [6]杨华.离心泵内部流场PIV实验研究[D].扬州:扬州大学,2001.
    [7]Paone N, Riethmuller M L, Van den Braembussche R A. Experimental investigation of the flow in the vaneless diffuser of a centrifugal pump by particle image displacement veiocimetry[J]. Experiments in Fluids,1989,7 (6):371-378.
    [8]Akin O, Rockwell D. Flow structure in a radial flow pumping system using high-image-density particle image velocimetry [J]. Journal of Fluids Engineering-Transactions of the ASME,1994, 116 (3):538-544.
    [9]Dong R, Chu S, Katz J. Effect of modification to tongue and impeller geometry on unsteady flow, pressure fluctions, and noise in a centrifugal Pump[J]. Journal of Turbomachinery,1997, 119 (3):506-515.
    [10]Chu S, Dong R , Katz J. Relationship between unsteady flow, pressure fluctuation, and noise in a centrifugal pump, Part A:Use of PDV data to compute the pressure field[J]. Journal of Fluids Engineering-Transactions of the ASME,1995,117 (1)= 24-29.
    [11]Chu S, Dong R, Katz J. Relationship between unsteady flow, pressure fluctuation, and noise in a centrifugal pump, Part A:Effect of blade-tongue interactions[J]. Journal of Fluids Engineering-Transactions of the ASME,1995,117 (1):30-35.
    [12]Sinha M, Katz J. Quantitative visualization of the flow in a centrifugal pump with diffuser vanes, Part A:On Flow Structure and Turbulence[J]. Journal of Fluids Engineering-Transactions of the ASME,2000,122 (1):97-107.
    [13]Sinha M, Katz J, Meneveau C. Quantitative visualization of the flow in a centrifugal pump with diffuser vanes, Part B:addressing passage-averaged and LES modeling issues in turbomachinery flows[J]. Journal of Fluids Engineering-Transactions of the ASME,2000,122(1):108-116.
    [14]Sinha M, Pinarbasi A, Katz J. The flow structure during onset and developed states of rotating stall within a vaned dffuser of a centrifugal pump[J]. Journal of Fluids Engineering-Transactions of the ASME,2001,123 (3):490-499.
    [15]Pedersen N, Larsen P S, Jacobsen C B. Flow in a centrifugal pump impeller at design and off-design conditions—part Ⅰ:particle image velocimetry and laser doppler velocimetry measurements[J]. Journal of Fluids Engineering-Transactions of the ASME,2003,125 (1) 61-72.
    [16]Pedersen N. Experimental investigation of flow structures in a centrifugal pump impeller using particle image velocimetry[D]. Technical University of Denmark, Lyngby, Denmark,2000.
    [17]Choi Y D, Nishino K, Kurokawa J, and Matsui J. PIV measurement of internal flow characteristics of very low specific speed semi-open impeller[J]. Experiments in Fluids,2004, 37 (5):617-630.
    [18]Westra R W, Broersma L, Van Andel K, Kruyt N P. PIV measurements and CFD computations of secondary flow in a centrifugal pump impeller[J]. Journal of Fluids Engineering-Transactions of the ASME,2010,132 (6):1-8.
    [19]Wuibaut G, Bois G, Dupont P, et al. PIV measurements in the impeller and the vaneless diffuser of a radial flow pump in design and off-design operating conditions[J]. Journal of Fluids Engineering-Transactions of the ASME,2002,124 (9):791-797.
    [20]朱宏武,薛敦松,董守平.用PIV技术研究离心泵扩散段第八断面内流场[J].工程热物理学报,1995,16(4):440-443.
    [21]周正富,陈松山,耿卫明,等.3叶片离心泵内流场的PIV测量[J].扬州大学学报(自然科学版),2006,9(3):72-75.
    [22]刘在伦,杨倩,夏宏克,等.离心泵叶轮内三维PIV测量实验分析[J].西华大学学报(自然科学版),2010,29(5):25-27.
    [23]WU Y L, LIU S H, YUAN HuiJing, et al. PIV measurement on internal instantaneous flows of a centrifugal pump[J]. Science China,2011,54 (2):270-276.
    [24]Wu Y L, Yuan H J, Shao J, et al. Experimental study on internal flow of a mini centrifugal pump by PIV measurement[J]. Journal of Fluid Mechanics,2009,2 (2):121-126.
    [25]陈松山,周正富,葛强,等.长短叶片离心泵叶轮内部流动的PIV测量[J].农业机械学报,2007,38(2):98-101.
    [26]邵春雷,顾伯勤,陈晔.离心泵压水室内部定常和非定常流动PIV测量[J].农业工程学报,2010,26(7):128-133.
    [27]刘栋.离心泵叶轮内部液固两相流场的数值模拟和实验研究[D].镇江:江苏大学,2006.
    [28]赵斌娟,袁寿其,刘厚林,等.双流道及双叶片式叶轮内流场的PIV测量与比较[J].农业机械学报,2008,39(12):82-85.
    [29]赵斌娟,袁寿其,刘厚林,等.双流道泵内非定常流动数值模拟及粒子图像测速测量[J].机械工程学报,2009,45(9):82-88.
    [30]袁寿其,何有世,袁建平,等.带分流叶片的离心泵叶轮内部流场的PIV测量与数值模拟[J].机械工程学报,2006,42(5):60-63.
    [31]王凯,刘厚林,袁寿其,等.零流量工况下双叶片泵内部流场三维PIV测量[J].农业机械学报,2011,42(7):61-65.
    [32]Wang Kai, Liu Houlin, Yuan Shouqi, et al. Numerical simulation and stereo PIV test of inner flow in a double blades pump[C]. Proceedings of ASME-JSME-KSME Joint Fluids Engineering Conference 2011/AJK2011-06062, July 24-29,2011, Hamamatsu, Japan.
    [33]刘厚林,杨东升,谈明高,等.双叶片离心泵内失速现象的三维PIV分析[J].上海交通大学学报,2012,46(5):734-739.
    [34]Tourret J, Badie-Cassagnet A, Bernard G, et al. Experiment Studies of Noise Emmission and Noise Generation from a Centrifugal Pump[M]. New York:ASME Paper No.95-WA/FE-8, 1985.
    [35]Iino T, Kasai K. An Analysis of unsteady flow in-duced by interaction between a centrifugal impelle and a vaned diffuser[J]. Transactions of the Japan Society of Mechanical Engineering 1985,51 (471):154-159.
    [36]Wang H, Tsukamoto H. Fundamental analysis on rotor-stator interaction in a difruser pump by vortex method[J]. Journal of Fluids Engineering-Transactions of the ASME,2001,123 (4) 737-747.
    [37]Wang H, Tsukamoto H. Experimental and numerical study of unsteady flow in a diffuser pump at off-design conditions[J]. Journal of Fluids Engineering-Transactions of the ASME,2003, 125 (5):767-778.
    [38]Kaupert K A, Staubli T. The unsteady pressure field in a high specific speed centrifugal pump impeller-Part I:Influence of the volute[J]. Journal of Fluids Engineering-Transactions of the ASME,1999,121 (3):621-626.
    [39]Kaupert K A, Staubli T. The unsteady pressure field in a high specific speed centrifugal pump impeller-Part 2:Transient hysteresis in the characteristic[J]. Journal of Fluids Engineering-Transactions of the ASME,1999,121 (3):627-632.
    [40]Guo P, Luo X, Liao W, Zhu G. Numerical investigation on impeller-volute interaction in the centrifugal pump with radial gap and tongue profile variation[C]. Proceeding of 2008 ASME Fluids Engineering Conference, Jacksonville, Florida USA,2008.
    [41]Parrondo J, Gonzalez J, Fernandez J. The effect of the operating point on the pressure fluctuations at the blade passage frequency in the volute of a centrifugal pump[J]. Journal of Fluids Engineering-Transactions of the ASME,2002,124 (3):784-790.
    [42]Pose P. Detecting NPSH available & cavitation in pumps through high frequency pressure measurement[D]. Cranfield, UK:Cranfield University,2007.
    [43]Furukawa A, Takahara H, Nakagawa T and et al. Pressure fluctuation in a vaned difruser downstream from a centrifugal pump impeller [J]. International Journal of Rotating Machinery, 2003,9 (4):285-292.
    [44]姚志峰,王福军,杨敏,等.叶轮形式对双吸离心泵压力脉动特性影响试验研究[J].机械工程学报,2011,47(12):133-138.
    [45]徐朝晖.高速离心泵内全流道三维流动及其流体诱发压力脉动研究[D].北京:清华大学,2004.
    [46]郑源,刘君,周大庆,等.大型轴流泵装置模型试验的压力脉动[J].排灌机械工程学报,2010,28(1):51-55.
    [47]何秀华.水泵压力脉动的类型研究[J].排灌机械,1996,(4):47-49.
    [48]袁寿其,薛菲,袁建平,等.离心泵压力脉动对流动噪声影响的试验研究[J].排灌机械,2009,27(5):287-290.
    [49]潘中永,倪永燕,袁寿其,等. 基于动静干涉的离心泵转速测量机理与实验[J].农业机械 学报,2010,41(3):81-85.
    [50]倪永燕.离心泵非定常湍流场计算机流体诱导振动研究[D].镇江:江苏大学,2008.
    [51]Rodriguez C G, Egusquiza E, Santos IF. Frequencies in the Vibration Induced by the Rotor Stator Interaction in a Centrifugal Pump Turbine[J]. Journal of Fluids Engineering-Transactions of the ASME,2007,129 (11):1428-1435.
    [52]Beekman B. Resonant vibrations in vertical pumps[J]. World Pumps,2004,458:18-22.
    [53]Trethewey M W, Friell J C, Chandra M J, and et al. A spectral simulation approach to evaluate probabilistic measurement precision of a reactor coolant pump torsional vibration shaft crack monitoring system[J]. Journal of Sound and Vibration,2008,310 (4):1036-1056.
    [54]Srivastav O P, Pandu K R, Gupra K. Effect of radial gap between impeller and diffuser on vibration and noise in a centrifugal pump[C]. Journal of the Institution of Engineers (India) Mechanical Engineering Division,2003.
    [55]Guo S J, Yoshiyuki M. Experimental investigations on pressure fluctuations and vibration of the impeller in a centrifugal pump with vaned diffusers[J]. JSME International Journal Series B Fluids and Themal Engineering,2005,48 (1):136-143.
    [56]Al-Qutub A, Khalifa A, Khulief Y. Experimental investigation of the effect of radial gap and impeller blade exit on flow-induced vibration at the blade-passing frequency in a centrifugal pump[J]. International Journal of Rotating Machinery,2009:1-8.
    [57]何希杰,于禧民.离心泵水力设计对振动的影响[J].水泵技术,1995,1:17-21.
    [58]吴英友,邢维升,朱显明,等.某型离心水泵振动特性分析[J].中国舰船研究,2008,3(1):51-54.
    [59]胡芳芳,陈涛,吴大转,等.导叶式混流泵振动噪声的实验研究[J].工程热物理学报,2013,34(5):874-877.
    [60]刘厚林,王勇,袁寿其,等.叶轮出口宽度对离心泵流动诱导振动噪声的影响[J].华中科技大学学报:自然科学版,2012,40(1):123-127.
    [61]王勇,刘厚林,袁寿其,等.离心泵非设计工况空化振动噪声的试验测试[J].农业工程学报,2012,28(2):35-38.
    [62]王勇,刘厚林,刘东喜,等.叶片包角对离心泵流动诱导振动噪声的影响[J].农业工程学报,2013,29(1):72-77.
    [63]王勇,刘厚林,袁寿其,等.叶片数对离心泵空化诱导振动噪声的影响[J].哈尔滨工程大学学报,2012,33(11):1406-1409.
    [64]李忠,杨敏官,高波,等.空化诱发的轴流泵振动特性试验研究[J].工程热物理学报,2012,33(11):1888-1891.
    [65]高波,杨敏官,李忠,等.空化流动诱导离心泵低频振动的实验研究[J].工程热物理学报,2012,33(6):965-968.
    [66]吴登昊,袁寿其,任芸,等.管道泵不稳定压力及振动特性研究[J].农业工程学报,2013,29(4):79-86.
    [67]吴登昊,袁寿其,任芸,等.管道泵压力脉动及振动的研究[J].华中科技大学学报(自然 科学版),2013,41(4):16-20.
    [68]吴登昊,袁寿其,任芸,等.叶片几何参数对管道泵径向力及振动的影响[J].排灌机械工程学报,2013,31(4):277-283.
    [69]陈池,袁寿其,金树德.离心泵叶轮内流计算方法综述[J].流体机械,1999,27(2):35-39.
    [70]何有世,袁寿其,陈池.CFD进展及其在离心泵叶轮内流计算中的应用[J].水泵技术,2002,3:23-26.
    [71]阎超.流体机械内部流动数值计算方法的新进展(一)[J].流体机械,1994,22(8):35-38.
    [72]PillerM, Nobile E, Thomas J. DNS study of turbulent transport at low Prandtl numbers in a channel flow[J]. Journal of Fluid Mechanics,2002,458:419-441.
    [73]Wisink J G. DNS of separating low Reynolds number flow in a turbine cascade with incoming wakes[J]. International Journal of Heat and Fluid Flow,2003,24 (4):625-635.
    [74]Wu X H, Moin P. Direct numerical simulation of turbulence in a nominally zero-pressure-gradient flat-plate boundary layer[J]. Journal of Fluid Mechanics,2009,630: 5-41.
    [75]胡晶晶,韦安阳,罗坤,等.煤灰对圆管磨损及传热耦合的直接数值模拟[J].工程热物理学报,2013,34(4):684-688.
    [76]Byskov R K, Jacobsen C B, Pedersen N. Flow in a centrifugal pump impeller at design and off-design conditions-PartⅡ:Large eddy simulations[J]. Journal of Fluids Engineering,2003, 125 (1):73-83.
    [77]刘厚林,丁剑,谈明高,等.叶轮出口宽度对离心泵噪声辐射影响的分析与试验[J].农业工程学报,2013,29(6):66-73.
    [78]Tokay T E, Constantinescu S G. Validation of a large-eddy simulation model to simulate flow in pump intakes of realistic geometry[J]. Journal of Hydraulic Engineering,2006,132 (12) 1303-1315.
    [79]Jesus Manuel F O, Jose G, Katia M A D, et al. Decomposition of deterministic unsteadiness in a centrifugal turbomachine:nonlinear interactions between the impeller flow and volute for a double suction pump[J]. Journal of Fluids Engineering,2011,133 (1):011103.1-011103.10.
    [80]Brain DE S, Andrew N, Richard M. A numerical investigation of constant-velocity volute design approach as applied to the single blade impeller pump[J]. Journal of Fluids Engineering,2010, 132 (6):061103.1-061103.7.
    [81]施卫东,蒋婷,曹卫东,等.高扬程无过载潜水排污泵的优化设计与试验[J].农业工程学报,2011,27(5):151-155.
    [82]林建忠,阮晓东,陈邦国,等.流体力学[M].北京:清华大学出版社,2005.
    [83]Launder B E, Spalding D B. Lectures in Mathematical Models of Turbulence. Academic Press, London,1972.
    [84]Wilcox D C. Reassessment of the scale-determining equation for advanced turbulence models[J]. AIAA Journal,1988,26 (11):1299-1310.
    [85]Shih T H, Liou W W, Shabbir A et al. A New k-ω Eddy Viscosity Model for High Reynolds Number Turbulent Flows[J]. Computers Fluids,1995,24 (3):227-238.
    [86]Yakhot V, Orszag S A. Renormalization group analysis of turbulence-I. Basic theory[J]. Journal of Scientific Computing,1986,1(1):1-51.
    [87]Menter F R. Improved Two-Equation k-ω Turbulence Models for Aerodynamic Flows. NASA Technical Memorandum 103975,1992.
    [88]Menter F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal,1994,32(8):1598-1605.
    [89]Menter F R. Zonal two-equation k-ω turbulence model for aerodynamic flows. AIAA Journal 1993-2906,1993.
    [90]Majidi K. Numerical study of unsteady flow in a centrifugal pump[J]. Journal of Turbomachinery -Transactions of the ASME,2005,127:363-371.
    [91]Tanabe S, Ikegawa M, Tanaka Y, et al. A study on internal flow of a centrifugal runner[C]. Proc. IAHR Symp., Motreal, Pap.1986.
    [92]Zhang M J, Pomfret M J, Wong C M. Three-dimensional viscous flow simulation in a backswept centrifugal impeller at the design point[J]. Computers & Fluids,1996,25(5): 497-507.
    [93]钱健.离心泵叶轮内部三维紊流数值模拟研究[D].扬州:扬州大学,2003.
    [94]张伟.离心泵叶轮非设计工况下内部湍流流场的模拟[J].排灌机械工程学报,2010,28(1):38-42.
    [95]杨敏官,刘栋,贾卫东,等.离心泵叶轮内部三维湍流流动的分析[J].江苏大学学报(自然科学报),2006,27(6):524-527.
    [96]Jafarzadeh B, Hajari A, Alishahi M M, et al. The flow simulation of a low-specific-speed high-speed centrifugal pump[J]. Applied Mathematical Modelling,2011,35:242-249.
    [97]吕培文.基于CFD离心泵数值模拟及性能优化[D].上海:华东理工大学,2011.
    [98]Ojala J, Rautaheimo P, Siikonen T. Numerical simulation of a centrifugal pump using a k-ω model including the effects of rotation[C].4th ECCOMAS computational fluid dynamics conference,1998, Athens, Greece.
    [99]Howard J H G, Patankar S V, Bordynuik R M. Flow prediction in rotating ducts using Coriolis-Method Turbulence models[J]. Journal of Turbomachinery -Transactions of the ASME, 1980 (21):456-461.
    [100]Wu YL, Dai J, Oba R, et al. Turbulent flow simulation through centrifugal pump impeller at design and off-design conditions[C]. Proceedings of the 2nd Internaltional Conference on Pumps and Fans, Beijing, China,1995:155-167.
    [101]陈池,袁寿其,郑铭.低比速离心泵叶轮内三维不可压湍流场计算[J].动力工程,2001, 21(4):1346-1357.
    [102]Kim J H, Choi J H, Husain A, et al. Muti-objective optimization of a centrifugal compressor impeller through evolutionary algorithms [C]. Proceedings of the Institution of Mechanical Enginners, PartA:Journal of power and energy,2010.
    [103]张德胜,吴苏青,施卫东,等.不同湍流模型在轴流泵叶顶泄露涡模拟中的应用与验证[J].农业工程学报,2013,29(13):46-53.
    [104]冯永明,刘顺隆,郑群.多级涡轮三维黏性流场的数值模拟[J].热科学与技术,2003,2(3):255-259.
    [105]Hellsten A. Some improvements in menter's k-co SST turbulence model[J]. American Institute of Aeronautics and Astronautics,1998:1-11.
    [106]Smirnov P E, Menter F R. Sensitization of the SST turbulence model to rotation and curvature by applying the spalart-shur correction term[J]. Journal of Turbomachinery -Transactions of the ASME,2009,131:041010-1-041010-8.
    [107]Bredberg J, Peng S H, Davidson L. An improved k-co turbulence model applied to recirculating flows[J]. International Journal of heat and fluid flow,2002,23:731-743.
    [108]朱旭东.湍流模型的比较、改进和应用[D].南京:南京航空航天大学,2005.
    [109]Zhang W, Ma Z, Yu Y C, et al. Applied new rotation correction k-ω SST model for turbulence simulation of centrifugal impeller in the rotating frame of reference[J]. Journal of Hydrodynamics(supplement),2010,22 (5):404-407.
    [110]吴晓晶,吴玉林,刘树红.改进的SSTk-o模型在旋转机械计算中的应用[C].中国工程热物理学会学术会议论文,流体机械:087006,2008.
    [111]舒敏骅.离心泵内流数值计算的湍流模型研究[D].镇江:江苏大学,2011.
    [112]谭超.可压缩流动中非线性涡粘性模型的研究[D].合肥:中国科学技术大学,2009.
    [113]陈懋章.粘性动力学基础[M].北京:高等教育出版社,2002.
    [114]Lauder B E, Spalding D B. The numerical computation of turbulent flows[J]. Computer Methods in Applied Mechanics and Engineering,1974,3:269-289.
    [115]Rotta J C. Statistische Theorie Nichthomogener[J]. Turbulenz. Z. Phys.,1951,129:547-572.
    [116]林建忠,阮晓东,陈邦国,等.流体力学[M].北京:清华大学出版社,2005.
    [117]吴玉林,刘树红,钱忠东.水力机械计算流体动力学[M].北京:中国水利水电出版社,2007.
    [118]陈景仁.湍流模型及有限分析法[M].上海:上海交通大学出版社,1989.
    [119]王福军.计算流体动力学分析-CFD软件原理与应用[M].北京:清华大学出版社,2004.
    [120]Gerolymos G A, Vallet I. Wall-normal-free reynolds-stress model for rotating flows applied to turbomachinery[J]. AIAAJournal,2002,40 (2):199-208.
    [121]童跃平,张淑佳,李贤华,等.标准k-ε模型与RSM模型在离心泵三维模拟中的比较[J].浙江工业大学学报,2008,36 (6):678-681.
    [122]Rodi W. A new algebraic relation for calculating the Reynolds stresses[J]. Journal of Applied Mathematics and Mechanics,1976,56 (3):219-221.
    [123]Pope S. A more general effective-viscosity hypothesis[J]. Journal of Fluid Mechanics,1975, 72 (2):331-340.
    [124]Gatski T, Speziale C. On explicit algebraic stress models for complex turbulent flows[J]. Journal of Fluid Mechanics,1993,254:59-78.
    [125]Wallin S. Engineering turbulence modelling for CFD with a focus on explicit algebraic Reynolds stress models[D]. Sweden:Royal Institute of Technology,2000.
    [126]Rumsey C L, Gatski T B, Morrison J H, et al. Turbulence model predictions of extra strain rate effects in strongly curved flows[J]. AIAA Journal,1999.
    [127]Hellsten A. New advanced k-co turbulence model for high-lift aerodynamics[J]. AIAA Journal, 2005,43(9):1857-1869.
    [128]张强,杨永,段毅.一种EASM k-ε两方程湍流模型的应用研究[J].西北工业大学学报,2005,23(1):89-92.
    [129]冯鑫,禹耕之,李向阳,等.显式代数应力模型模拟搅拌槽内湍流流动[C].第二届全国搅拌与混合技术会议论文集,2010,上海.
    [130]韩宝玉,熊鹰,叶金铭.湍流模型对三维翼梢涡流场数值模拟的影响[J].航空学报,2010,31(12):2342-2347.
    [131]Altaf A M. Experimental investigation of the flow behaviour inside a centrifugal impeller channel at design and off-design[D]. Canada:University of Waterloo,2007.
    [132]Kearney D, Grimes R, Punch J. An experimental inversitigation of the flow fields within geometrically similar miniature-scale centrifugal pumps[J]. Journal of Fluids Engineering-Transactions of the ASME,2009,131:101101-1-1011101-10.
    [133]栗鸿飞,宋文武.PIV技术在流动测试与研究中的应用[J].西华大学学报(自然科学版),2009,28(5):27-31.
    [134]周正富,陈松山,耿卫明.3叶片离心泵内流场的PIV测量[J].扬州大学学报(自然科学版),2006,9(3):72-75.
    [135]Ren Y, Liu H L, Wang K, et al. Numerical simulation of inner flow in a double blades pump based on OpenFOAM and its PIV verification[C]. Proceedings of Heat transfer, fluids engineerings, & nanochannels, microchannels and minichannels conferences/ FEDSM2012-72037, July 8-12,2012, Rio Grande, Puerto Rico.
    [136]谭磊,曹树良,桂绍波,等.前置导叶离心泵的损失建模及试验[J].水力发电学报,2011,3(4):191-196.
    [137]潘罗平.水轮机压力脉动信号采集方法的研究[J].大电机技术,2004,2:63-66.
    [138]Gonzalez J, Ferna ndez J, Blanco E, et al. Numerical simulation of the dynamic effects due to impeller-volute interaction in a centrifugal pump[J]. Journal of Fluids Engineering-Transactions of the ASME,2002,124 (2):348-355.
    [139]Gulich J F. Centrifugal Pumps[M]. Germany:Springer,2008.
    [140]ISO 10816-1:Mechanical Vibration:Evaluation of Machine Vibration by Measurements on Non-rotating Parts:General Guidelines[S], Geneva, International Organization for Standardization,1995.
    [141]Wallin S, Johansson A V. Modelling streamline curvature effects in explicit algebraic Reynolds stress turbulence models[J]. International Journal of Heat and Fluid Flow,2002,23:721-730.
    [142]Spalart P R, Shur M L. On the sensitization of turbulence models to rotation and curvature[J]. Aerospace Science and Technology,1997,5:297-302.
    [143]Speziale C G. Turbulence modeling in noninertial frames of reference[J]. Theoretical and Computational Fluid Dynamics,1989,1:3-19.
    [144]Gatski T B, Speziale C G. On explicit algebraic stress models for complex turbulent flows[J]. Journal of Fluid Mechanics,1993,254:59-78.
    [145]黄于宁,马晖扬.应用于非惯性系湍流模拟的扩展内禀旋转张量[J].应用数学和力学,2008,29(11):1325-1336.
    [146]黄于宁,马晖扬,徐晶磊.扩展内禀旋转张量在非惯性系湍流模拟中的应用[J].中国科学G辑:物理学力学天文学,2009,39(1):131-141.
    [147]OpenCFD Limited. OpenFOAM User Guide (version 1.5)[M].2008.
    [148]Lippman S B. Essential C++(中文版)[M].武汉:华中科技大学出版社,2001.
    [149]Visscher J, Andersson H I, Barri M, et al. A new set-up for PIV measurements in rotating turbulent duct flows[J]. Flow Measurement and Instrumentation,2011,22:71-80.
    [150]Taylor A M K P, Whitelaw J H, Yianneskis M. Curved ducts with strong secondary motion: velocity measurements of developing laminar and turbulent flow[J]. Journal of Fluids Engineering-Transactions of the ASME,1982,104:350-359.
    [151]樊洪明,李先庭,何钟怡,等.方形截面弯管二次流数值模拟[J].热能与动力工程,2002,17(101):510-513.
    [152]沈天耀.离心叶轮的内流理论基础[M].杭州:浙江大学出版社,1986.
    [153]Jasak H. Error analysis and estimation for the finite volume method with applications to fluid flows[D]. London:Imperial College of Science, Technology and Medicine, University of London,1996.
    [154]Anderson J D.计算流体力学入门(影印版)[M].北京:清华大学出版社,2002.
    [155]郭鹏程.水力机械内部复杂流动的数值研究与性能预测[D].西安:西安理工大学,2006.
    [156]Olivier P. Numerical investigations of incompressible turbomachinery applications using OpenFOAM[D]. Sweden:Chalmers University of Technology,2010.
    [157]刘厚林,谈明高,袁寿其.离心泵圆盘摩擦损失计算[J].农业工程学报,2006,22(12):107-109.
    [158]谈明高,刘厚林,袁寿其.离心泵能量性能预测的对比[J].农业工程学报,2008,24(11):95-98.
    [159]查森.叶片泵原理及水力设计[M].北京:机械工业出版社,1988.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700