用户名: 密码: 验证码:
基于声传播模型的信道模拟与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于上下界面的存在,浅海水声信道是强烈的相干多途信道。许多无线电中的信号处理技术移植到水声领域中时,效果都不甚理想。为了改进声纳系统在多途信道中性能,必须要对水声信道进行深入的研究。水声信道模拟技术是在实验室中模拟实际信道特性的一种方法。由于环境参数控制方便,信道模拟对研究信号处理方法在多途信道中的性能具有重要意义。本文从声传播的物理模型入手,对水声信道模拟技术进行深入研究,并将信道的模拟结果应用于声源定位和信号检测中。
     声传播模型是水声信道模拟的数学基础。传统的信道模拟技术通常专注于传播损失这一宏观特性,进一步预报声纳系统的作用距离。本文以射线模型和简正波数值模型为基础,模拟计算信道的冲激响应这一微观特性,以便预报信号处理方法在模拟信道中的性能。按照水声信道的时变特性,可以将信道分为时不变信道、确定时变信道和随机时变信道三类。对于时不变信道,使用虚源法和射线数值模型求解本征声线,即可得到信道的冲激响应。此外,使用简正波数值模型和频率综合快速算法,也能快速计算时不变信道的冲激响应;对于确定时变信道,使用插值算法结合射线模型可以模拟计算声源或水听器运动时的接收信号。当水听器匀速运动时,使用多途在运动方向的投影和多普勒尺度变换可以高速模拟计算接收信号。同时使用ChirpZ变换算法可以大幅减小时间尺度变换时的运算量;对于随机时变信道,利用时变海面下的射线插值算法,可以实现对信道随机特性的模拟。使用时变海面的Kirchhoff近似,将海面散射等效为多个位于海面处的点声源可以大大提高时变信道模拟时的计算速度。
     信道估计是从接收信号中提取信道特性的有效方法。使用凸集投影算法估计时不变信道时,可以获得理想的信道冲激响应估计结果。其分辨率优于传统最大似然估计器–匹配滤波器。将凸集投影算法推广至复数域时,可以正确估计由界面反射引起的相移。相移估计结果可以用于区分水面反射和水底反射。使用发射信号的多普勒频移样本作为凸集投影算法的参考信号,构建凸集投影算法滤波器组,可以实现对信道冲激响应在时延–频移平面上的二维估计。这种估计算法可以用于估计确定时变信道和随机时变信道的时变冲激响应。
     对模拟信道的分析结果表明:时不变信道的冲激响应不随时间变化,没有频率偏移和频谱扩展;确定时变信道的冲激响应随时间发生确定性变化,频率偏移根据时延值规律变化;随机时变信道的冲激响应随时间随机变化,产生随机的频率偏移和频谱扩展。对模拟信道的冲激响应估计结果表明:确定时变信道的多普勒频移与多途反射的阶数成反比,低阶反射的频移接近水听器的运动速度,高阶反射的频移小于水听器的运动速度;随机时变信道的频率偏移和频谱扩展与多途反射阶数成正比,低阶反射几乎没有频率偏移和频谱扩展,高阶反射的频率偏移和频谱扩展则较大。
     在浅海水声信道中,合理利用界面反射,即可使用单个水听器对脉冲声源进行定位。利用凸集投影算法对直达波、水面反射和水底反射的到达时刻进行估计。联合由虚源法得到的定位方程,即可解算得到声源位置。对定位方程的研究结果表明:直达波与水面反射的时延差确定了一条开口向下的双曲线,直达波与水底反射的时延差确定了一条开口向上的双曲线,这两条双曲线的交点就是声源位置。利用Rake接收机对水声信道的匹配特性,即可使用单水听器对脉冲声源进行匹配场定位。匹配场定位的模糊度平面同样具有双曲线形状。在双曲线附近,Rake接收机的输出峰值剧烈震荡。多个多途形成的双曲线相交于声源处。
     对模拟信道中的声源定位结果表明:基于信道估计的定位方法可在一定信噪比条件下对单频脉冲声源进行定位,并且不受海面起伏引起的信道随机时变特性影响。使用Rake接收机的匹配场定位算法可在低信噪比条件下对宽带脉冲声源进行定位,其性能易受信道随机时变特性的影响。对实验数据的处理结果表明:这两种定位方法在实际环境中是可行的,具有结构简单,成本低廉的优点。
     本文对水声信道的模拟结果可以广泛应用于声纳系统中,对信号处理方法和声纳系统进行快速有效的评估和测试。同时,基于信道模型的单水听器的定位方法可以应用于水声通信和水声定位系统中,改进其在多途信道中的性能。
Due to the presence of surface and floor, the shallow water acoustic channel is a strongmultipath channel. When many signal processing techniques of radio communication wereintroduced to underwater acoustics, the results were less than ideal. In order to improve thesonar system performance in the multipath channel, further studies on underwater acousticchannel properties are necessary.
     The underwater acoustic channel simulation technique is a method to simulate the actualchannel characteristics in the laboratory. Because the environmental parameters are easy tocontrol, channel simulation is important to study on the signal processing performance inmultipath channel. In this paper, based on the physical model of sound propagation, theunderwater acoustic channel simulation techniques are studied. And the channel simulationresults are applied to source localization and signal detection.
     The sound propagation model is the mathematical basis of underwater acoustic channelsimulation. The classical channel simulation techniques always focus on the macroscopicproperties such as transmission loss, in order to forecast the sonar detecting range. In this paper,based on ray model and wave model, the microscopic characteristics such as channel impulseresponse simulation techniques are studied. The simulation results are used to forecastperformance of signal processing methods. According to the time‐varying characteristics ofthe underwater acoustic channel, three channel models are defined, namely time invariantchannel, deterministic time variant channel and stochastic time variant channel. For thetime‐invariant channel, the image method and ray model are used to simulate the channelimpulse response. In addition, the fast algorithm based on normal mode model and Fouriersynthesis is discussed to simulate channel impulse response. When the hydrophone is inuniform motion, using the movement velocity component along the multipath arrival angle andtime scale transformation, the received signals can be simulated rapidly. Furthermore, usingChirpZ transform algorithm, the computation cost of time scale transformation can besignificantly reduced. For the stochastic time variant channel, the stochastic characteristic canbe simulated by using the time‐dependent ray interpolation algorithm. Based on Kirchhoffapproximation of time variant sea surface, the surface scatter can be replaced by the pointsources. Then the simulation speed of stochastic time variant channel can be greatly improved.
     The channel estimation is an effective method to obtain channel characteristics from thereceived signal. The ideal channel impulse response can be obtained by using projections onto convex sets algorithm to estimate time invariant channel. Its resolution is better than thetraditional maximum likelihood estimator‐matched filter. The phase shift caused byboundary reflection can be estimated by expanding POCS algorithm to the complex domain.The phase shift estimation results can be used to distinguish between the surface and bottomreflection. Using the different Doppler shifted emitted signal as the reference signal of POCS toestimation array, the channel impulse response can be estimated in the delay‐frequency shiftplane. This estimation method can be used to estimate the impulse response of deterministicand stochastic time variant channel.
     The simulated channel analysis results show that, time invariant channel impulse responsedoes not change over time. And there is no frequency shift or spectrum spread. Thedeterministic time variant channel impulse response changes over time in certainty. And thefrequency shift changes with the multipath time delay. The stochastic time variant channelimpulse response changes randomly. And the frequency shift and spectrum spread also changerandomly. The simulated channel estimated results show that, the Doppler shift is inverselyproportional to the multipath reflection number. The lower numbered paths frequency shift isclosed to hydrophone velocity, while the higher numbered paths frequency shift is smaller thanhydrophone velocity. The frequency shift and spectrum spread of the stochastic time variantchannel are proportional to the multipath reflection number. The lower numbered pathsfrequency shift and spectrum spread can be ignored, while the higher numbered pathsfrequency shift and spectrum spread are obvious.
     In shallow water acoustic channel, the single hydrophone source localization method canbe obtained by using boundary reflection estimated results. Using the POCS algorithmestimated results of direct arrival, surface reflected arrival and bottom reflected arrival, basedon image method localization equation analysis results show that, a hyperbola that opens downis defined by the time delay between direct arrival and surface reflected arrival, while ahyperbola that opens up is defined by the time delay between direct arrival and bottom reflectedarrival. The intersection point of these two hyperbolas is the source location. Based on the Rakereceiver matching characteristics of the underwater acoustic channel, the single hydrophonematched field localization method can be obtained. The ambiguity plane of matched fieldlocalization has the same hyperbolic curves. The Rake receiver output peak changed rapidlynear the hyperbola. The intersection point of hyperbolas is the source location.
     The source localization results in simulated channel show that based on channel estimationlocalization method can be used to locate single frequency impulsive source at a certain SNR.This method will not be affected by channel time‐varying characteristics. Based on Rake receiver, the matched field localization method can be used to locate wide band impulsivesource at a lower SNR. But the performance will be affected by channel time‐varyingcharacteristics. The experimental data processing results show that these two methods arefeasible in a real channel. And they have the advantages of simple structure and low cost.
     The simulation results of the underwater acoustic channel can be widely used in sonarsystems. It can be used to evaluate and test signal processing method and sonar systems. Thelocalization method based on channel model can be used in underwater acousticcommunication and acoustic position systems, in order to improve their performance inmultipath channel.
引文
[1]惠俊英,生雪莉.水下声信道.第2版.国防工业出版社,2007
    [2]汪德昭,尚尔昌.水声学.科学出版社,1981
    [3]李贵斌.声呐基阵设计原理.海洋出版社,1993
    [4] R. N. McDonough, A. D. Whalen. Detection of Signals in Noise. Academic Press,1995
    [5] C. L. Pekeris. Theroy of Propagation of Explosive Sound in Shallow Water. Geol. Soc.Amer. Mem,1948,27:1-117P
    [6] P. C. Etter. Underwater Acoustic Modeling and Simulation.3ed. Spon Press,2003
    [7] P. Jr SMITH. Averaged Impulse Respnse of a Shallow-water Channel. Journal of theAcoustical Society of America,1971,50(1Pt2):332-336P
    [8] R. M. Fitzgerald, A. N. Guthrie, D. A. Nutile, et al. Influence of the Subsurface SoundChannel on Long Range Propagation Paths and Travel Times. Journal of the AcousticalSociety of America,1974,55(1):47-53P
    [9] G. R. Legters, N. L. Weinberg, J. G. Clark. Long-range Atlantic Acoustic MultipathIdentification. Journal of the Acoustical Society of America,1983,73(5):1571-1580P
    [10] L. Freitag, M. Johnson, M. Stojanovic, et al. Survey and Analysis of UnderwaterAcoustic Channels for Coherent Communication in the Medium-frequency Band.Oceans2000. Providence, RI, USA,2000,131-138P
    [11] R. A. Vadov. Long-range Sound Propagation in the Northeastern Atlantic. AcousticalPhysics,2005,51(6):629-637P
    [12] R. P. Porter. Dispersion of Axial Sofar Propagation in the Western Mediterranean. Journalof the Acoustical Society of America,1973,53(1):181-191P
    [13] D. G. Simons, R. McHugh, M. Snellen, et al. Analysis of Shallow-water ExperimentalAcoustic Data Including a Comparison with a Broad-band Normal-mode-propagationModel. IEEE Journal of Oceanic Engineering,2001,26(3):308-323P
    [14] R. F. Henrick, J. R. Brannan, D. B. Warner, et al. Uniform WKB Modal Approach toPulsed and Broadband Propagation. Journal of the Acoustical Society of America,1983,74(5):1464-1473P
    [15] M. Siderius, M. B. Porter, P. Hursky, et al. Measurements and Modeling Comparisons ofUnderwater Communications Performance at Three Shallow-water Sites. Ocean2003.San Diego, CA., United states,2003,1773-1779P
    [16] A. Das, A. Kumar, R. Bahl. Study of Feature Discrimination Effects Due to Time VaryingChannel for Passive Sonar. OCEANS2005. Washington, DC, United states,2005,1-8P
    [17] Y. Tao, X. Xu. Simulation Study of Multi-path Characteristics of Acoustic Propagation inShallow Water Wireless Channel.2007International Conference on WirelessCommunications, Networking and Mobile Computing. Shanghai, China,2007,1068-1070P
    [18] S. Tang, L. Da, J. Xie. Underwater Broadband Signal Waveform Fast Prediction Methodin Shallow Water with a Thermocline.3rd International Conference on MeasuringTechnology and Mechatronics Automation. Shanghai, China,2011,1072-1075P
    [19] M. A. Deaett, P. P. Audi. Interleaver Performance for FSK Transmission on the AcousticFading Channel. Proceedings of the Symposium on Autonomous Underwater VehicleTechnology. Washington, DC, USA,1990,313-317P
    [20] D. B. Kilfoyle, J. C. Preisig, A. B. Baggeroer. Spatial Modulation Experiments in theUnderwater Acoustic Channel. IEEE Journal of Oceanic Engineering,2005,30(2):406-415P
    [21] M. K. Caldera. Multi-frequency Digital Communication Technique for Acoustic Channelwith Multipaths. Oceans87. Halifax, NS, Can,1987,140-145P
    [22] A. Doosti Aref, B. Abbasi Arand. Design and Simulation of a New Model for ShallowWater Multipath Acoustic Channel in the Persian Gulf.5th International Symposium onTelecommunications. Tehran, Iran,2010,882-888P
    [23] H. A. DeFerrari. Time-varying Multipath Interference of Broad-band Signals over a7-nmRange in the Florida Straits. Journal of the Acoustical Society of America,1973,53(1):162-180P
    [24] J. G. Clark, N. L. Weinberg, M. J. Jacobson. Refracted, Bottom-reflected Ray Propagationin a Channel with Time-dependent Linear Stratification. Journal of the AcousticalSociety of America,1973,53(3):802-818P
    [25] J. A. Widtfeldt, M. J. Jacobson. Unified Analysis of Conical Ray Transmissions withApplication to a Time Varying Ocean Channel. Journal of the Acoustical Society ofAmerica,1975,57(1):47-58P
    [26] P. F. Worcester, G. O. Williams, S. M. Flatte. Fluctuations of Resolved AcousticMultipaths at Short Range in the Ocean. Journal of the Acoustical Society of America,1981,70(3):825-840P
    [27] H. S. Dol, F. Gerdes, P. A. VanWalree, et al. Acoustic Channel Characterization in theBaltic Sea and in the North Sea. OCEANS2008. Quebec City, QC, Canada,2008
    [28] W. Jobst, L. Dominijanni. Measurements of the Temporal, Spatial, and FrequencyStability of an Underwater Acoustic Channel. Journal of the Acoustical Society ofAmerica,1979,65(1):62-69P
    [29] M. Badiey, Y. Mu, J. A. Simmen, et al. Signal Variability in Shallow-water SoundChannels. IEEE Journal of Oceanic Engineering,2000,25(4):492-500P
    [30] T. C. Yang. Temporal Fluctuations of Broadband Channel Impulse Functions andUnderwater Acoustic Communications at2-5kHz. Oceans2002. Mississippi, MS,United states,2002,2395-2400P
    [31] B. Tomasi, G. Zappa, K. McCoy, et al. Experimental Study of the Space-time Propertiesof Acoustic Channels for Underwater Communications. OCEANS2010. Sydney, NSW,Australia,2010
    [32] T. J. Hajenko, C. R. Benson. The High Frequency Underwater Acoustic Channel.OCEANS2010. Sydney, NSW, Australia,2010
    [33] S. Ijaz, A. J. Silva, O. C. Rodriguez, et al. Doppler Domain Decomposition of theUnderwater Acoustic Channel Response. OCEANS2011. Santander, Spain,2011
    [34] T. C. Yang. Characteristics of Underwater Acoustic Communication Channels in ShallowWater. OCEANS2011. Santander, Spain,2011
    [35] H. A. Leinhos. Capacity Calculations for Rapidly Fading Communications Channels.IEEE Journal of Oceanic Engineering,1996,21(2):137-142P
    [36] S. M. Kim, S. H. Byun, S. G. Kim, et al. Experimental Analysis of Statistical Properties ofUnderwater Channel in a Very Shallow Water Using Narrow and Broadband Signals.OCEANS2009. Biloxi, MS, United states,2009
    [37] X. Cristol. Narcissus-2005: A Global Model of Fading Channel for Application toAcoustic Communication in Marine Environment. Oceans2005. Brest, France,2005,655-662P
    [38] J. Zhang, J. Cross, Y. R. Zheng. Statistical Channel Modeling of Wireless Shallow WaterAcoustic Communications from Experiment Data.2010IEEE Military CommunicationsConference. San Jose, CA, United states,2010,2412-2416P
    [39] W. B. Yang, T. C. Yang. M-ary Frequency Shift Keying Communications Over anUnderwater Acoustic Channel: Performance Comparison of Data with Models. Journalof the Acoustical Society of America,2006,120(5):2694-2701P
    [40] A. Radosevic, J. G. Proakis, M. Stojanovic. Statistical Characterization and Capacity ofShallow Water Acoustic Channels. OCEANS2009. Bremen, Germany,2009
    [41] C. Choudhuri, U. Mitra. Capacity Bounds and Power Allocation for Underwater AcousticRelay Channels with Isi.4th ACM International Workshop on UnderWater Networks.Berkeley, CA, United states,2009
    [42] B. Borowski. Characterization of a Very Shallow Water Acoustic CommunicationChannel. OCEANS2009. Biloxi, MS, United states,2009
    [43] F. X. Socheleau, C. Laot, J. M. Passerieux. Concise Derivation of Scattering Functionfrom Channel Entropy Maximization. IEEE Transactions on Communications,2010,58(11):3098-3103P
    [44] Y. Isukapalli, H. C. Song, W. S. Hodgkiss. Stochastic Channel Simulator Based on LocalScattering Functions. Journal of the Acoustical Society of America,2011,130(4):EL200-EL205P
    [45] A.V. Babu, S. Joshy. Maximizing the Data Transmission Rate of a Cooperative RelaySystem in an Underwater Acoustic Channel. International Journal of CommunicationSystems,2011
    [46] F. X. Socheleau, C. Laot, J. X. Passerieux. Stochastic Replay of Non-wssus UnderwaterAcoustic Communication Channels Recorded at Sea. IEEE Transactions on SignalProcessing,2011,59(10):4838-4849P
    [47] A. Zielinski, Y. Yoon, L. Wu. Performance Analysis of Digital Acoustic Communicationin a Shallow Water Channel. IEEE Journal of Oceanic Engineering,1995,20(4):293-299P
    [48] M. Chitre, J. Potter, O. S. Heng. Underwater Acoustic Channel Characterisation forMediumrange Shallow Water Communications. Oceans2004. Kobe, Japan,2004,40-45P
    [49] C. Bjerrum Niese, R. Lutzen. Stochastic Simulation of Acoustic Communication inTurbulent Shallow Water. IEEE Journal of Oceanic Engineering,2000,25(4):523-532P
    [50] M. A. M. Gutierrez, P. L. P. Sanchez, J. V. Do Vale Neto. An Eigenpath UnderwaterAcoustic Communication Channel Simulation. OCEANS2005.Washington, DC, Unitedstates,2005
    [51] X. Geng, A. Zielinski. Eigenpath Underwater Acoustic Communication Channel Model.Oceans95. San Diego, CA, USA,1995,1189-1196P
    [52] R. Galvin, R. F. W. Coates. Stochastic Underwater Acoustic Channel Model. Oceans96.Fort Lauderdale, FL, USA,1996,203-210P
    [53] O. Benrhouma, S. Houcke, A. Bouallegue. A Statistical Modelling of the UnderwaterAcoustic Channel.12th IEEE International Conference on Electronics, Circuits andSystems. Gammarth, Tunisia,2005
    [54] R. Galvin, R. F. W. Coates, L. S. Wang, et al. Measured Channel Sounding Characteristicsand Their Relationship with the Performance of a Parametric Communication System.Oceans96. Fort Lauderdale, FL, USA,1996,826-831P
    [55] M. Stojanovic. On the Relationship between Capacity and Distance in an UnderwaterAcoustic Communication Channel. First ACM International Workshop on UnderwaterNetworks. Los Angeles, CA, United states,2006,41-47P
    [56] N. Parrish, S. Roy, W. L. J. Fox, et al. Rate-range for an Fh-fsk Acoustic Modem. SecondWorkshop on Underwater Networks. Montreal, QC, Canada,2007,93-96P
    [57] M. Chitre. A High-frequency Warm Shallow Water Acoustic Communications ChannelModel and Measurements. Journal of the Acoustical Society of America,2007,122(5):2580-2586P
    [58] B. Borowski, D. Duchamp. Measurement-based Underwater Acoustic Physical LayerSimulation. OCEANS2010. Seattle, WA, United states,2010P
    [59] N. Nasri, L. Andrieux, A. Kachouri, et al. Behavioral Modeling and Simulation ofUnderwater Channel. WSEAS Transactions on Communications,2009,8(2):259-268P
    [60] S. H. Byun, S. M. Kim, Y. K. Lim, et al. Time-varying Underwater Acoustic ChannelModeling for Moving Platform. Oceans2007. Vancouver, BC, Canada,2007
    [61] J. Aparicio, F. J. Alvarez, J. Urena, et al. Swell Effect in Shallow Underwater AcousticCommunications.15th IEEE International Conference on Emerging Technologies andFactory Automation. Bilbao, Spain,2010.
    [62] J. Aparicio, F. J. Alvarez, A. Jimenez, et al. Underwater Channel Modeling for a RelativePositioning System. OCEANS2011. Santander, Spain,2011
    [63] N. Jing, W. Bi, Q. Yue. Attack Simulation Model and Channel Statistics in UnderwaterAcoustic Sensor Networks. Tsinghua Science and Technology,2011,16(6):611-621P
    [64]侯自强.在随机时空变信道中检测信号和估计参量.声学学报,1981,6(03):162-171页
    [65]朱埜,陈庚.有源声呐检测的信息原理.声学学报,1983,8(03):168-178页
    [66]徐俊华,陈庚.时变信道相干部分的修正匹配.声学学报,1982,7(06):352-363页
    [67]朱埜.海洋时变声信道的二维Wigner-Ville谱.声学学报,1991,16(04):261-270页
    [68]朱维庆.莱斯和瑞利信道中FSK卷积码的统计特性.声学学报,1991,16(06):401-406页
    [69]朱维庆.多途信道中卷积码的统计特性.声学学报,1992,17(04):278-284页
    [70]张建兰,陈庚,陈岩.水声信道响应函数与散射函数的测量.中国声学学会2001年青年学术会议[CYCA’01]论文集,2001:167-169页
    [71]宫在晓,张仁和,李秀林,等.浅海脉冲声传播及信道匹配实验研究.声学学报,2005,30(02):108-114页
    [72]李轩,王磊,孙长瑜.浅海中低频水声信道仿真研究.声学技术,2010,29(06):565-568页
    [73]梁筠莲,许水源,浦玉斌,等.浅海随机时变声信道的时间平稳性.厦门大学学报(自然科学版),1990,29(04):434-438页
    [74]浦玉斌,梁筠莲.随机时变浅海声信道的匹配方法.厦门大学学报(自然科学版),1991,30(02):218-222页
    [75]梁筠莲,浦玉斌,林麒,等.浅海声信道的时间扩展特性.厦门大学学报(自然科学版),1991,30(06):599-602页
    [76]梁筠莲,许水源,林麒,等.浅海声信道“时域衰落”特性研究.热带海洋,1996,15(03):87-91页
    [77]牛富强,许肖梅.浅海多途水声信道仿真研究.中国声学学会2006年全国声学学术会议论文集,2006:87-88页
    [78]孙博,程恩,欧晓丽.浅海水声信道研究与仿真.无线通信技术,2006,36(03):11-15页
    [79]毛岱山.浅海声信道信号时间相关特性研究.海洋技术,2006,25(02):67-69页
    [80]许肖梅,朱培斌.浅海水声信道下卷积码性能仿真研究.2007年全国水声学学术会议论文集,2007:136-138页
    [81]陶毅,许肖梅,陈东升.台湾海峡近海水声信道传递函数仿真研究.系统仿真学报,2007,19(16):3639-3642页
    [82]魏莉,许芳,孙海信.水声信道的研究与仿真.声学技术,2008,27(01):25-29页
    [83]牛富强,杨燕明,郭长勇,等.时变多径水声信道的仿真研究.台湾海峡,2009,28(04):586-591页
    [84]董阳泽,许肖梅,刘平香,等.浅海声信道建模及其应用研究.系统仿真学报,2010,22(01):47-55页
    [85]韩晶,黄建国,曹海旺.海洋信道仿真软件HJRAY及其在水声通信中的应用.系统仿真学报,2007,19(01):35-37,97页
    [86]梁国龙,林旺生,王燕.水声信道有效声速估计方法及空间特征分析.哈尔滨工程大学学报,2010,31(12):1587-1592页
    [87]董继刚,孙大军.水声通信网络仿真技术.哈尔滨工程大学学报,2010,31(07):982-989页
    [88]陈韵,王逸林,蔡平,等.基于分数阶Fourier变换的远程水声通信技术研究.兵工学报,2011,32(09):1159-1164页
    [89]赵极远,王逸林,杨威.多用户水声通信仿真平台设计.电子技术应用,2011,37(08):13-15页
    [90]杨坤德.水声阵列信号的匹配场处理.西北工业大学出版社,2008
    [91] A. Tolstoy. Matched Field Processing for Underwater Acoustics. World Scientific,1993
    [92] C. S. Clay. Use of Arrays for Acoustic Transmission in a Noisy Ocean. Reviews ofGeophysics,1966,4(4):475-507P
    [93] M. J. Hinich. Maximum-likelihood Signal Processing for a Vertical Array. The Journal ofthe Acoustical Society of America,1973,54(2):499-503P
    [94] H. L. Van Trees. Detection, Estimation, and Modulation Theory, Part I. John Wiley andSons,2001
    [95] M. J. Hinich. Maximum Likelihood Estimation of the Position of a Radiating Source in aWaveguide. The Journal of the Acoustical Society of America,1979,66(2):480-483P
    [96] G. C. Carter. Variance Bounds for Passively Locating an Acoustic Source with aSymmetric Line Array. The Journal of the Acoustical Society of America,1977,62(4):922-926P
    [97] H. P. Bucker. Use of Calculated Sound Fields and Matched-field Detection to LocateSound Sources in Shallow Water. The Journal of the Acoustical Society of America,1976,59(2):368-373P
    [98] R. Klemm. Range and Depth Estimation by Line Arrays in Shallow Water. SignalProcessing,1981,3(4):333-344P
    [99] R. J. Lacoss. Data Adaptive Spectral Analysis Methods. Geophysics,1971,36:661-675P
    [100] J. Makhoul. Linear Prediction: A Tutorial Review. Proceedings of the IEEE,1975,63(4):561-580P
    [101] R. G. Fizell, W. B. Moseley, R. L. U. S. Naval, et al. Full Field Ambiguity FunctionProcessing in a Complex Shallow-water Environment. Naval Research Laboratory,1984
    [102] E. C. Shang. Source Depth Estimation inWaveguides. The Journal of the AcousticalSociety of America,1985,77(4):1413-1418P
    [103] E. C. Shang, C. S. Clay, Y. Y. Wang. Passive Harmonic Source Ranging in Waveguides byUsing Mode Filter. The Journal of the Acoustical Society of America,1985,78(1):172-175P
    [104] F. D. Tappert, L. Nghiem Phu, S. C. Daubin. Source Localization Using the Pe Method.The Journal of the Acoustical Society of America,1985,78(S1):S30-S30P
    [105] Y. A. Kravstov, V. M. Kuz’kin, V. G. Petnikov. Resolvability of Rays and Modes in anIdeal Waveguide. Soviet Physics Acoustics,1988,34(4):387-390P
    [106] V. A. Burov, O. V. Dmitriev, A. V. Sidorov. Optimal Signal Processing inPlaneWaveguides. Soviet Physics Acoustics,1984,30(4):247-249P
    [107] H. L. Van Trees. Detection, Estimation, and Modulation Theory, Part Iii, Radar-sonarSignal Processing and Gaussian Signals in Noise. John Wiley and Sons,2001
    [108] A. M. Kamovskii, L. G. Krasnyi. Directional Properties of Channels for the SpatialProcessing of Signals in Waveguides. Soviet physics Acoustics,1984,30(2):131-134P
    [109] N. V. Zuikova, V. D. Svet. Optical Digital Method for Point Source Field Reconstruction.Soviet Physics Acoustics,1987,33(3)
    [110] N. V. Zuikova, V. D. Svet. Matched-field Processing of Signals in Ocean Waveguides(review). Soviet Physics Acoustics,1993,39(3):203-210P
    [111] R. G. Fizell, S. C.Wales. Source Localization in Range and Depth in an ArcticEnvironment. The Journal of the Acoustical Society of America,1985,78(S1):S57-S58P
    [112] J. Capon. High-resolution Frequency-wavenumber Spectrum Analysis. Proceedings ofthe IEEE,1969,57(8):1408-1418P
    [113] A. M. Richardson, L.W. Nolte. A Posteriori Probability Source Localization in anUncertain Sound Speed, Deep Ocean Environment. The Journal of the AcousticalSociety of America,1991,89(5):2280-2284P
    [114] G. Haralabus, V. Premus, D. Alexandrou, et al. Source Localization in an UncertainAcoustic Scattering Environment. The Journal of the Acoustical Society of America,1993,94(6):3379-3386P
    [115] H. Bucker. Matched-field Tracking in Shallow Water. The Journal of the AcousticalSociety of America,1994,96(6):3809-3811P
    [116] C. S. Clay. Optimum Time Domain Signal Transmission and Source Location in aWaveguide. The Journal of the Acoustical Society of America,1987,81(3):660-664P
    [117] S. Li, C. S. Clay. Optimum Time Domain Signal Transmission and Source Location in aWaveguide: Experiments in an Ideal Wedge Waveguide. The Journal of the AcousticalSociety of America,1987,82(4):1409-1417P
    [118] L. N. Frazer, P. I. Pecholcs. Single-hydrophone Localization. The Journal of theAcoustical Society of America,1990,88(2):995-1002P
    [119] Y. P. Lee. Time-domain Single Hydrophone Localization in a Real Shallow WaterEnvironment. OCEANS98.1998,1074-1077P
    [120] M. B. Porter, Y. Stephan, X. Demoulin, et al. Shallow-water Tracking in the Sea ofNazare.1998International Symposium on Underwater Technology. Tokyo,1998,29-34P
    [121] S. M. Jesus, M. B. Porter, Y. Stephan, et al. Single Sensor Source Localization in aRangedependent Environment. OCEANS2000. Providence,2000,865-868P
    [122] S. M. Jesus, M. B. Porter, Y. Stephan, et al. Single Hydrophone Source Localization.IEEE Journal of Oceanic Engineering,2000,25(3):337-346P
    [123] C. O. Tiemann, A. M. Thode, J. Straley, et al. Three-dimensional Localization of SpermWhales Using a Single Hydrophone. The Journal of the Acoustical Society of America,2006,120(4):2355-2365P
    [124]何怡,张仁和. WKBZ简正波理论应用于匹配场定位.自然科学进展,1994,4(01):120-124页
    [125]周士弘,张仁和,龚敏,等. WKBZ简正波方法在深海匹配场定位中的应用.自然科学进展,1997,7(06):23-29页
    [126]李整林,张仁和,鄢锦,等.大陆斜坡海域宽带声源的匹配场定位.声学学报,2003,28(05):425-428页
    [127]胡长青.浅海单个水听器匹配场定位研究.声学技术,1998,17(01):28-32页
    [128]王学志,涂英,吴克桐,等.应用匹配场实现单矢量水听器的三维定位.声学技术,2012,31(01):72-76页
    [129]崔国平,李志舜,梁红. F湖单水听器宽带匹配场定位的快速实现.船舶工程,2003,25(06):40-42页
    [130]张同伟,杨坤德,马远良,等.浅海中水平线列阵深度对匹配场定位性能的影响.物理学报,2010,59(05):3294-3301页
    [131]刘志坚,孙超,郭国强.自适应空域矩阵滤波在匹配场定位中的应用.声学技术,2010,29(06):573-578页
    [132]王金辉,张效民.基于匹配场的多目标源定位研究.国外电子测量技术,2011,30(11):19-21,26页
    [133]曲少春,王英民,郑琨.基于匹配场和时间反转法的浅海声源定位研究.计算机仿真,2011,28(07):382-385页
    [134]肖专.复杂海洋环境匹配场源定位性能分析.浙江大学博士学位论文,2011
    [135]黄益旺.浅海远距离匹配场声源定位研究.哈尔滨工程大学博士学位论文,2005
    [136]董姝敏,刘洪波,赵博,等.匹配场声源定位的并行计算方法研究.计算机应用研究,2012,29(02):514-517页
    [137]杨士莪.水声传播原理.哈尔滨工程大学出版社,2007
    [138] F. B. Jensen, W. A. Kuperman, M. B. Porter, et al. Computational Ocean Acoustics.2ed.Springer,2011
    [139] M. B. Porter, Y. C. Liu. Finite-element Ray Tracing. L. Ding, H. S. Martin. Proceedingsof the International Conference on Theoretical and Computational Acoustics. Singapore,1994,947-956P
    [140] M. B. Porter. The Kraken Normal Mode Program. SAC-LANTCEN Memo,1991,SM-245P
    [141] J. H. Wilkinson. The Algebraic Eigenvalue Problem. Clarendon Press,1988
    [142] S. K. Mitra, Y.Kuo. Digital Signal Processing: A Computer-based Approach.2ed.McGraw-Hill,2006
    [143] M. J. Buckingham, E. M. Giddens. On the Acoustic Field in a Pekeris Waveguide withAttenuation in the Bottom Half-space. The Journal of the Acoustical Society of America,2006,119(1):123-142P
    [144] M. B. Porter. Acoustics Toolbox. http://oalib.hlsresearch.com/Modes/AcousticsToolbox/
    [145] M. Siderius, M. B. Porter. Modeling Broadband Ocean Acoustic Transmissions withTimevarying Sea Surfaces. The Journal of the Acoustical Society of America,2008,124(1):137-150P
    [146] A. Li, K. Mueller, T. Ernst. Methods for Efficient, High Quality Volume Resampling inthe Frequency Domain. Visualization2004.2004,3-10P
    [147] E. I. Thorsos. The Validity of the Kirchhoff Approximation for Rough Surface ScatteringUsing a Gaussian Roughness Spectrum. The Journal of the Acoustical Society ofAmerica,1988,83(1):78-92P
    [148] P. A. Brodtkorb, P. Johannesson, G. Lindgren, et al. Wafo-a Matlab Toolbox for theAnalysis of Random Waves and Loads.10th International Offshore and PolarEngineering Conference. Seattle, USA,2000,343-350P
    [149] W. J. Zeng, X. Jiang, X. L. Li, et al. Deconvolution of Sparse Underwater AcousticMultipath Channel with a Large Time-delay Spread. The Journal of the AcousticalSociety of America,2010,127(2):909-919P
    [150] X. Jiang, W. J. Zeng, X. L. Li. Time Delay and Doppler Estimation for WidebandAcoustic Signals in Multipath Environments. The Journal of the Acoustical Society ofAmerica,2011,130(2):850-857P
    [151] W. J. Zeng, W. Xu. Fast Estimation of Sparse Doubly Spread Acoustic Channels. TheJournal of the Acoustical Society of America,2012,131(1):303-317P
    [152] H. Trussell, M. Civanlar. The Feasible Solution in Signal Restoration. IEEE Transactionson Acoustics, Speech and Signal Processing,1984,32(2):201-212P
    [153] J. Liu, J. Ye. Efficient Euclidean Projections in Linear Time.26th Annual InternationalConference on Machine Learning. New York, NY, USA,2009,657-664P
    [154]田坦.水下定位与导航技术.国防工业出版社,2007
    [155]付进,梁国龙,张光普.界面反射对定位系统性能影响及应对策略研究.兵工学报,2009,30(1):24-29页
    [156] D. R. Jackson, D. R. Dowling. Phase Conjugation in Underwater Acoustics. The Journalof the Acoustical Society of America,1991,89(1):171-181P
    [157]生雪莉,罗方方,郭咏,等.垂直阵时反聚焦的目标被动定位方法研究.兵工学报,2011,32(3):359-364页
    [158] R. Aubauer, M. O. Lammers, W. W. L. Au. One-hydrophone Method of EstimatingDistance and Depth of Phonating Dolphins in Shallow Water. The Journal of theAcoustical Society of America,2000,107(5):2744-2749P
    [159] P. R. Bevington, D. K. Robinson. Data Reduction and Error Analysis for the PhysicalSciences. McGraw-Hill,2003
    [160] R. Price, P. E. Green. A Communication Technique for Multipath Channel. Proceedingsof the IRE.1958,555-570P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700