用户名: 密码: 验证码:
基于V稳定性理论的复杂网络稳定性分析与牵制控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自上世纪九十年代开始,随着互联网技术的迅猛发展,网络与人们之间的联系日益紧密,并逐渐渗透到人类社会生活的各个角落。这些形形色色的网络,大到Internet网络、电力网络、通讯交通网络,小到神经元网络、新陈代谢网络、分子结构网络,甚至是食物链网络、亲友网络、合作网络、引文网络等都在不断影响着人类社会的生产和生活。因此,了解和利用自然界和人类社会中存在的各种关系网络,研究复杂网络模型的动力学传播机理,并实现对网络动态行为的可控,对于促进和提高社会的生产水平和人们的生活质量将起到重要的作用。
     目前,稳定性问题作为复杂网络理论中的研究热点,得到了研究者越来越多的关注和重视。为了更好地研究复杂网络的传播机理及其动力学特性,并解决含有不确定性耦合的复杂网络模型的稳定性问题,基于复杂网络的牵制控制思想和社团结构特征,本文进一步拓展了李亚普诺夫V稳定性理论,在复杂非线性动态网络的同步稳定性方面进行了理论研究,提出了稳定性判据以及牵制控制中的节点选择策略,实现了目标网络的稳定。
     本文的研究工作主要包括:
     1.对复杂网络理论的研究内容和研究现状进行了综述,并具体总结了本文在研究复杂网络理论中涉及的网络同步稳定特性和网络控制方面的应用情况。
     2.拓展了李亚普诺夫V稳定性理论,通过用节点的无源度来描述各节点的自动态对网络整体行为的影响,将复杂网络的同步稳定性问题转化成为判断网络特征矩阵不等式是否成立,从而解决了含不确定性耦合的复杂网络各节点动态轨迹与孤立节点轨迹同步稳定的问题,大大简化了此类复杂网络稳定性问题的分析难度。
     3.根据含不确定性耦合的复杂网络同步判据,针对复杂网络模型设计相应的牵制控制策略,使得受控后的网络特征矩阵不等式成立,从而实现了复杂网络各节点动态轨迹与孤立节点轨迹的同步稳定,解决了牵制控制中受控节点的选择问题。实验仿真验证了牵制控制策略的正确性和有效性。
     4.针对具有典型社团结构特征的复杂网络,在李亚普诺夫V稳定性理论的基础上,分析了聚合网络的稳定性与各子群落稳定性之间的关系。简要介绍了寻找复杂网络社团结构的几种主要算法,提出了一种对大尺度网络先进行社团结构划分,再施加特定牵制控制的新方法。实验仿真验证了当网络社团结构明显时,该方法与原先直接施加特定牵制控制的方法相比能够提高算法的有效性。
     5.研究了复杂网络中的几种典型拓扑模型,通过考察各网络结构的统计特性,将新的牵制控制方法与原有控制策略进行对比,提出了一个策略衡量标准,以便在实际模型的应用中更好地选择牵制控制策略。实验仿真验证了在该衡量标准下实施牵制控制策略,能够减少网络达到稳定所需牵制控制器的个数,并可以避免进行无意义的群落划分,提高了牵制控制算法的有效性。
     最后是全文的总结与展望。
Since the 90's of the last century, the networks have been related to human beings more and more closely as the result of the highly development of Internet technology. These various kinds of networks, such as Internet, power grids, communication networks, neuron networks, metabolic networks, food webs, social networks, collaboration networks and citation networks have greatly infiltrated every corner of our life and affected the production and life of human society constantly. Therefore, comprehending and making use of all these networks exist in nature and human society, studying the epidemic dynamics of these networks, and realizing the controllability of the networks' dynamical behavior play significant role in promoting and enhancing the level of production and the quality of human life.
     Nowadays, stability problem becomes the focus which attracts more and more attention in the study on the theory of complex networks. Based on the pinning control and the community structure, the paper makes a further study on Lyapunov V-Stability theory, presents the stability criterion and the pinning control strategy, and solves the stability problem of the complex nonlinear dynamical network finally.
     The primary results of this thesis are described as follows.
     1. A review is given on the research contents and current status of the theory of complex networks. The studies on networks' stability and the control strategy have also been summarized.
     2. V-Stability theory is extended to the stability analysis of the stabilization of complex networks with the homogeneous orbit of an isolated node. The stability problem of the complex network which has uncertain couplings is simplified and converted into determining if the characteristic matrix of the network is negative semi-definite or not via replacing the influences on collective behavior caused by self-dynamics of the nodes by their passivity degrees.
     3. According to the stability criterion, the pinning control strategy is designed to choose the controlled nodes. Hence the stability problem of uncertain complex network model to a homogeneous orbit of the isolated node is solved. The simulation verifies the results obtained.
     4. Based on the V-stability theory, the stability of the aggregation network is analyzed for the complex networks with typical community structure. The main methods of finding community structure are introduced. Then a new strategy which designs pinning control strategy after dividing the original network into small communities is proposed. Compared to the common method, the efficiency and practicality of the new strategy are improved in the simulation.
     5. Some complex network models with typical topologies are studied to determine under which situation the new strategy should be applied to solve the stability problem. A standard for choosing control strategy is given. The simulation verifies that the new pinning control method with the standard can reduce the number of the controlled nodes, avoid the meaningless partition and improve the effectiveness of the strategy.
     The conclusion and perspective are given at the end of the dissertation.
引文
1.Erd(o|¨)s,P.,A.Renyi,On the evolution of random graphs[J].Publ.Math.Inst.Hung.Acad.Sci.,1960.5:17-60.
    2.Strogatz,S.H.,Exploring complex networks[J].Nature,2001.410(6825):268-276.
    3.Watts,D.J.,The "new" science of networks[J].Annual Review of Sociology,2004.30:243-270.
    4.汪小帆,李翔,陈关荣,复杂网络理论及其应用[M].北京:清华大学出版社,2006.
    5.Strogatz,S.H.,I.Stewart,Coupled oscillators and biological synchronization[J].Scientific American,1993.269(6):102-109.
    6.Gray,C.M.,Synchronous oscillations in neuronal systems:Mechanisms and functions[J].Journal of Computational Neuroscience,1994.1(1):11-38.
    7.Neda,Z.,et al.,Physics of the rhythmic applause[J].Physical Review E,2000.61(6):6987-6992.
    8.Glass,L.,Synchronization and rhythmic processes in physiology[J].Nature,2001.410(6825):277-284.
    9.Belykh,I.,E.de Lange,M.Hasler,Synchronization of Bursting Neurons:What Matters in the Network Topology[J].Physical Review Letters,2005.94(18):188101.
    10.Boccaletti,S.,et al.,The synchronization of chaotic systems[J].Physics Reports,2002.366(1-2):1-101.
    11.Pecora,L.M.,T.L.Carroll,Synchronization in chaotic systems[J].Physical Review Letters,1990.64(8):821.
    12.Rosenblum,M.G.,A.S.Pikovsky,J.Kurths,Phase Synchronization of Chaotic Oscillators [J].Physical Review Letters,1996.76(11):1804.
    13.Rosenblum,M.G.,A.S.Pikovsky,J.Kurths,From Phase to Lag Synchronization in Coupled Chaotic Oscillators[J].Physical Review Letters,1997.78(22):4193.
    14.Rulkov,N.F.,et al.,Generalized synchronization of chaos in directionally coupled chaotic systems[J].Physical Review E,1995.51(2):980.
    15. Boccaletti, S., D.L. Valladares, Characterization of intermittent lag synchronization [J]. Physical Review E, 2000. 62(5): 7497.
    16. Zaks, M.A., et al., Alternating Locking Ratios in Imperfect Phase Synchronization [J]. Physical Review Letters, 1999. 82(21): 4228.
    17. Femat, R., G. Solis-Perales, On the chaos synchronization phenomena [J]. Physics Letters A, 1999.262(1): 50-60.
    18. Pecora, L.M., T.L. Carroll, Master Stability Functions for Synchronized Coupled Systems [J]. Physical Review Letters, 1998.80(10): 2109.
    19. Wu, C.W., L.O. Chua, Synchronization in an Array of Linearly Coupled Dynamical Systems [J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 1995.42(8): 430-447.
    20. Wu, C.W. Synchronization in arrays of coupled nonlinear systems: passivity circle criterion and observer design [C]. in The 2001 IEEE International Symposium on Circuits and Systems (ISCAS), 2001.
    21. Wu, C.W., Perturbation of coupling matrices and its effect on the synchronizability in arrays of coupled chaotic systems [J]. Physics Letters A, 2003.319(5-6): 495-503.
    22. Pecora, L.M., T.L. Carroll, Driving systems with chaotic signals [J]. Physical Review A, 1991.44(4): 2374.
    23. He, R., P.G. Vaidya, Analysis and synthesis of synchronous periodic and chaotic systems [J]. Physical Review A, 1992.46(12): 7387.
    24. Kapitaniak, T., Synchronization of chaos using continuous control [J]. Physical Review E, 1994.50(2): 1642.
    25. Amritkar, R.E., N. Gupte, Synchronization of chaotic orbits: The effect of a finite time step [J]. Physical Review E, 1993.47(6): 3889.
    26. Kocarev, L., U. Parlitz, General Approach for Chaotic Synchronization with Applications to Communication [J]. Physical Review Letters, 1995. 74(25): 5028.
    27. Parlitz, U., et al., Encoding messages using chaotic synchronization [J]. Physical Review E, 1996. 53(5): 4351.
    28. Hale, J., Diffusive coupling, dissipation, and synchronization [J]. Journal of Dynamics and Differential Equations, 1997. 9(1): 1-52.
    29. Ott, E., C. Grebogi, J.A. Yorke, Controlling chaos [J]. Physical Review Letters, 1990. 64(11): 1196-1199.
    30. Chen, G, Controlling Chua's global unfolding circuit family [J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 1993. 40(11): 829-832.
    31. Chen, G, X. Dong, On feedback control of chaotic continuous-time systems [J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 1993. 40(9): 591-601.
    32. Chen, Y.H., M.Y. Chou, Continuous feedback approach for controlling chaos [J]. Physical Review E, 1994. 50(3): 2331.
    33. Huberman, B.A., E. Lumer, Dynamics of adaptive systems [J]. Circuits and Systems, IEEE Transactions on, 1990. 37(4): 547-550.
    34. Krstic, M., P.V. Kokotovic, Control Lyapunov functions for adaptive nonlinear stabilization [J]. Systems and Control Letters, 1995. 26: 17-23.
    35. Fradkov, A.L., A.Y Pogromsky, Speed gradient control of chaotic continuous-time systems [J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 1996. 43(11): 907-913.
    36. Hong, Y, H. Qin, G. Chen, Adaptive synchronization of chaotic systems via state or output feedback control [J]. International Journal of Bifurcation and Chaos 2001.11(4): 1149 -1158.
    37. Wang, C., S.S. Ge, Adaptive synchronization of uncertain chaotic systems via backstepping design [J]. Chaos, Solitons & Fractals, 2001.12(7): 1199-1206.
    38. Zhou, J., J.A. Lu, J.H. Lu, Adaptive synchronization of an uncertain complex dynamical network [J]. IEEE Transactions on Automatic Control, 2006. 51(4): 652-656.
    39. Li, Z., L. Jiao, J.-J. Lee, Robust adaptive global synchronization of complex dynamical networks by adjusting time-varying coupling strength [J]. Physica A: Statistical Mechanics and its Applications, 2008. 387(5-6): 1369-1380.
    40. Lee, H.J., J.B. Park, G. Chen, Robust fuzzy control of nonlinear systems with parametric uncertainties [J]. IEEE Transactions on Fuzzy Systems, 2001. 9(2): 369-379.
    41. Sun, Q., R. Li, P. Zhang, Stable and optimal adaptive fuzzy control of complex systems using fuzzy dynamic model [J]. Fuzzy Sets and Systems, 2003.133(1): 1-17.
    42. Tao, Y, L.O. Chua, Impulsive stabilization for control and synchronization of chaotic systems: theory and application to secure communication [J]. Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on, 1997. 44(10): 976-988.
    43. Yang, T., L.B. Yang, CM. Yang, Impulsive control of Lorenz system [J]. Physica D: Nonlinear Phenomena, 1997.110(1-2): 18-24.
    44. Khadra, A., X. Liu, X. Shen, Application of impulsive synchronization to communication security [J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2003. 50(3): 341-351.
    45. Bin, L., et al., Robust impulsive synchronization of uncertain dynamical networks [J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2005.52(7): 1431-1441.
    46. Liao, T.L., N.S. Huang, An observer-based approach for chaotic synchronization with applications to secure communications [J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 1999.46(9): 1144-1150.
    47. Jiang, GP., W.K.S. Tang, G. Chen, A State-Observer-Based Approach for Synchronization in Complex Dynamical Networks [J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2006.53(12): 2739-2745.
    48. Sandell, N., Jr., et al., Survey of decentralized control methods for large scale systems [J]. IEEE Transactions on Automatic Control, 1978.23(2): 108-128.
    49. Ioannou, P., Decentralized adaptive control of interconnected systems [J]. IEEE Transactions on Automatic Control, 1986.31(4): 291-298.
    50. Duan, Z.S., et al., Stability analysis and decentralized control of a class of complex dynamical networks [J]. Automatica, 2008.44(4): 1028-1035.
    51. Massioni, P., M. Verhaegen, Distributed Control for Identical Dynamically Coupled Systems: A Decomposition Approach [J]. IEEE Transactions on Automatic Control, 2009. 54(1): 124-135.
    52. Wang, X.F., G. Chen, Pinning control of scale-free dynamical networks [J]. Physica A: Statistical Mechanics and its Applications, 2002.310(3-4): 521-531.
    53. Grigoriev, R.O., M.C. Cross, H.G. Schuster, Pinning Control of Spatiotemporal Chaos [J]. Physical Review Letters, 1997. 79(15): 2795-2798.
    54. Parekh, N., S. Parthasarathy, S. Sinha, Global and local control of spatiotemporal chaos in coupled map lattices [J]. Physical Review Letters, 1998. 81(7): 1401-1404.
    55. Li, X., X. Wang, G. Chen, Pinning a complex dynamical network to its equilibrium [J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2004. 51(10): 2074-2087.
    56. Fan, Z., G. Chen. Pinning control of scale-free complex networks [C]. in IEEE International Symposium on Circuits and Systems (ISCAS), 2005.
    57. Wang, Y.W., C.Y. Wen, A Survey on Pinning Control of Complex Dynamical Networks [J]. 2008 10th International Conference on Control Automation Robotics & Vision: Icarv 2008, Vols 1-4, 2008: 64-67, 2343.
    58. Sorrentino, F., et al., Controllability of complex networks via pinning [J]. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2007. 75(4).
    59. Chen, T., X. Liu, W. Lu, Pinning Complex Networks by a Single Controller [J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2007. 54(6): 1317-1326.
    60. Zhou, J., J.A. Lu, J.H. Lu, Pinning adaptive synchronization of a general complex dynamical network [J]. Automatica, 2008. 44(2): 996-1003.
    61. Porfiri, M., F. Fiorilli, Node-to-node pinning control of complex networks [J]. Chaos, 2009. 19(1): 013122.
    62. Wu, C.W. Localization of effective pinning control in complex networks of dynamical systems [C]. in IEEE International Symposium on Circuits and Systems, ISCAS, 2008.
    63. Wu, C.W., On the relationship between pinning control effectiveness and graph topology in complex networks of dynamical systems [J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2008.18(3): 037103-6.
    64. Wu, W., W. Zhou, T. Chen, Cluster Synchronization of Linearly Coupled Complex Networks Under Pinning Control [J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2009. 56(4): 829-839.
    65. Li, Z., GR. Chen, Robust adaptive synchronization of uncertain dynamical networks [J]. Physics Letters A, 2004. 324(2-3): 166-178.
    66. Chen, M., D. Zhou, Synchronization in uncertain complex networks [J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2006.16(1): 013101-8.
    67. Xiang, J., GR. Chen, On the V-stability of complex dynamical networks [J]. Automatica, 2007.43(6): 1049-1057.
    68. Lorenz, E.N., Deterministic non-periodic flow [J]. Journal of the Atmospheric Sciences, 1963.20:130-141.
    69. Ueta, T., G. Chen, Bifurcation Analysis of Chen's Equation [J]. International Journal of Bifurcation and Chaos, 2000.10(8): 1917-1931.
    70. Gibson, D., J. Kleinberg, P. Raghavan. Inferring Web communities from link topology [C]. in Proceedings of the ninth ACM conference on Hypertext and hypermedia : links, objects, time and space-structure in hypermedia systems, 1998.
    71. Flake, GW., et al., Self-organization and identification of Web communities [J]. Computer, 2002.35(3): 66-70.
    72. Adamic, L.A., E. Adar, Friends and neighbors on the Web [J]. Social Networks, 2003.25(3): 211-230.
    73. Girvan, M., M.E.J. Newman. Community structure in social and biological networks [C]. in Proceedings of the National Academy of Sciences of the United States of America, 2002.
    74. Zachary, W.W., An information flow model for conflict and fission in small groups [J]. Journal of Anthropological Research, 1977.33: 452-473.
    75. Garey, M.R., D.S. Johnson, Computers and intractability: A guide to the theory of NP-completeness [M]. SanFrancisco, California: WH Freeman and Company, 1979.
    76. Newman, M.E.J., M. Girvan, Finding and evaluating community structure in networks [J]. Physical Review E, 2004. 69(2): 026113(15).
    77. Fortunato, S., C. Castellano, Community Structure in Graphs [J]. Physics and Society, arXiv:0712.2716,2007.
    78. Li, R., Z.S. Duan, GR. Chen, Cost and effect of pinning control for network synchronization [J]. Chinese Physics B, 2009.18(1): 106-118.
    79. Kernighan, B., S. Lin, An efficient heuristic procedure for partitioning graphs [J]. Bell System Technical Journal, 1970. 49:291-307.
    80. Pothen, A., H.D. Simon, K. Liou, Partitioning sparse matrices with eigenvectors of graphs [J]. SIAM Journal on Metrix Analysis and Applications, 1990.11(3): 430-452.
    81. Donetti, L., M.A. Munoz, Detecting network communities: a new systematic and efficient algorithm [J]. Journal of Statistical Mechanics-Theory and Experiment, 2004.10: 10012.
    82. Capocci, A., et al., Detecting communities in large networks [J]. Physica A: Statistical Mechanics and Its Applications, 2005. 352(2-4): 669-676.
    83. Fiedler, M., Algebraic connectivity of graphs [J]. Czechoslovak Mathematical Journal, 1973. 23(98): 298-305.
    84. Karypis, G, V. Kumar. Parallel multilevel graph partitioning [C]. in The 10th International Parallel Processing Symposium, Proceedings of IPPS '96, 1996.
    85. Kirkpatrick, S., CD. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing [J]. Science, 1983. 220(4598): 671-680.
    86. Bui, T.N., B.R. Moon, Genetic algorithm and graph partitioning [J]. IEEE Transactions on Computers, 1996. 45(7): 841-855.
    87. Miller, G.L., S.H. Teng, S.A. Vavasis. A unified geometric approach to graph separators [C]. in Foundations of Computer Science, 1991. Proceedings., 32nd Annual Symposium on, 1991.
    88. Heath, M.T., P. Raghavan, A Cartesian Parallel Nested Dissection Algorithm [J]. SIAM Journal on Metrix Analysis and Applications, 1995.16(1): 235-253.
    89. Newman, M.E.J., Assortative mixing in networks [J]. Physical Review Letters, 2002. 89(20): 208701(4).
    90. Wilkinson, D., B.A. Huberman. A method for finding communities of related genes [C]. in Proceedings of the National Academy of Sciences- National Acad Sciences, arXiv:cond-mat/0210147vl, 2004.
    91. Radicchi, F., et al. Defining and identifying communities in networks [C]. in Proceedings of the National Academy of Sciences of the United States of America, 2004.
    92. Newman, M.E.J., Fast algorithm for detecting community structure in networks [J]. Physical Review E, 2004. 69(6): 066133(5).
    93. Costa, L.d.F., Hub-Based Community Finding [J]. eprint arXiv:cond-mat/0405022, 2004.
    94. Bagrow, J.P., E.M. Bollt, Local method for detecting communities [J]. Physical Review E, 2005. 72(4): 046108.
    95. Rodrigues, F.A., G. Traviesot, L.D.F. Costa, Fast community identification by hierarchical growth [J]. International Journal of Modern Physics C, 2007.18(6): 937-947.
    96. White, S., P. Smyth, A Spectral Clustering Approach To Finding Communities in Graphs [J]. SIAM Data Mining, 2005.
    97. Newman, M.E.J. Modularity and community structure in networks [C]. in Proceedings of the National Academy of Sciences, 2006.
    98.Ruan,J.,W.Zhang.An Efficient Spectral Algorithm for Network Community Discovery and Its Applications to Biological and Social Networks[C].in Data Mining,IEEE International Conference on,2007.
    99.Ruan,J.H.,W.X.Zhang,Identifying network communities with a high resolution[J].Physical Review E,2008.77(1):016104(12).
    100.Palla,G.,et al.,Uncovering the overlapping community structure of complex networks in nature and society[J].Nature,2005.435(7043):814-818.
    101.Derenyi,I.,G.Palla,T.Vicsek,Clique Percolation in Random Networks[J].Physical Review Letters,2005.94(16):160202.
    102.Li,C.G.,P.K.Maini,An evolving network model with community structure[J].Journal of Physics a-Mathematical and General,2005.38(45):9741-9749.
    103.Watts,D.J.,S.H.Strogatz,Collective dynamics of 'small-world' networks[J].Nature,1998.393(6684):440-442.
    104.Barabasi,A.-L.,R.Albert,Emergence of scaling in random networks[J].Science,1999.286(5439):509-512.
    105.Albert,R.,A.-L.Barabasi,Statistical mechanics of complex networks[J].Reviews of Modern Physics,2002.74(1):47-97.
    106.Newman,M.E.J.,The structure and function of complex networks[J].Siam Review,2003.45(2):167-256.
    107.方锦清,et al.,一门崭新的交叉科学:网络科学(上)[J].物理学进展,2007.27(3):239-343.
    108.Albert,R.,H.Jeong,A.L.Barabasi,Diameter of the world wide web[J].Nature,1999.401:130-131.
    109.Faloutsos,M.,P.Faloutsos,C.Faloutsos.On power-law relationships of the Internet topology[C].in Proceedings of the conference on Applications,technologies,architectures,and protocols for computer communication,1999.
    110.Cohen,R.,S.Havlin,Scale-Free networks are ultrasmall[J].Physical Review Letters,2003.90(5):058701.
    111.Fronczak,A.,P.Fronczak,J.A.Holyst,Mean-field theory for clustering coefficients in Barabasi-Albert networks[J].Physical Review E,2003.68(4):046126.
    112. Dorogovtsev, S.N., J.F.F. Mendes, A.N. Samukhin, Structure of Growing Networks with Preferential Linking [J]. Physical Review Letters, 2000. 85(21): 4633-4636.
    113. Kocarev, L., P. Amato, Synchronization in power-law networks [J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2005.15(2): 024101(6).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700