用户名: 密码: 验证码:
三个典型基元反应动力学的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分子反应动力学是从原子、分子层次出发研究基元反应微观动态和反应机理的学科。近几十年来,随着实验技术和计算条件的改善,分子反应动力学已经深入到了态—态化学反应过程的研究。而要想认识一个基元化学反应,不仅要研究它们的标量性质,还要研究它们的矢量性质。矢量性质,比如速度和角动量,不但大小直接与平动能和转动能相关,而且还能定义反应过程中的方向。只有把标量和矢量性质结合起来考虑才能给出反应动力学的一个完整图像。本文采用准经典轨线法对D++H2与H++D2反应体系,H'+HBr反应体系及Br+HD反应体系的动力学,特别是立体动力学性质进行了研究。
     计算结果显示D++H2与H++D2反应体系是一个典型的插入反应,由于在势能面上有一个深势阱,产物角分布的显著特征是极端的前向一后向散射趋势,而产物的转动角动量极化效应则比较弱。当碰撞能增加,这种前向-后向散射趋势减弱,而产物的转动角动量极化效应却随之增强。对于夺取反应H'+HBr,我们在高碰撞能时发现了不遵循动力学限制的非直接反应轨线,这些反应轨线集中在后向散射的角分布内,但在低碰撞能时却没有发现类似的非直接反应轨线。在高碰撞能时产物的角分布受直接反应控制,而产物转动角动量排列取向效应、定向效应则对非直接反应非常敏感。反应Br+HD也不遵循动力学限制,反应轨线大多偏离了最小能量反应途径。而且随着碰撞能的增加,反应轨线偏离最小能量反应途径的程度也随之增加。因此该反应体系在高碰撞能时已经不是一个传统的线型夺取反应。势能面上远离共线型构型的区域特征对此反应的动力学有着较大的影响。对于反应D++H2, H++D2, H'+HBr和Br+HD反应体系计算表明同位素效应在立体动力学中扮演着重要角色,并且不同位置原子的同位素取代对立体动力学性质的影响有着显著的差别。反应H++D2(H2)的质量因子变化对于产物的转动角动量的取向效应几乎没有影响。然而,当较重的D+取代了反应H++D2中较轻的H+,由于H+(D+)+H2体系中攻击离子的质量增加使得产物转动角动量呈现出各向异性分布。而H'+HBr反应体系中应物分子中的H原子取代位置的质量增加会减弱产物转动角动量的取向效应;而体系中攻击原子的质量增加增强了产物转动角动量的取向效应。
Molecular reaction dynamics is a science of studying microcopic feature and mechanism of chemical reaction in molecular and atomic level. With the development of theory and experiment, great achievements have been made in this area and have gotten to a new stage which is state-to-state chemical dynamics. In order to understand the dynamics of an elementary reaction fully, it is important to study not only its scalar properties, but also its vector properties. Vector properties, such as velocities and angular momentum, possess not only magnitudes that can be directly related to translational and rotational energies, but also to well defined directions. Only by understanding scalar properties together with the vector properties, can the fullest picture of the scattering dynamics be obtained. In the thesis, theoretical study of dynamics for several typical reactions including reactions D++H2, H++D2, H'+HBr and Br+HD, especially the stereodynamics, have been investigated by the qusicalssical trajectory method.
     The calculated results indicate that the reactions D++H2 and H++D2 are prototypical ion-molecular reactions. The H3+system features the presence of a deep well in the ground potential energy surface. Thus the long-time complex is formed in the process of reaction, which leads to a extremely backwark-forward angular distributions and a weak product rotational alignment effect. The increasing collision energy weakens the angular distributions in backwark-forward directions and enhances the effect on the product rotational alignment. For the abstraction reaction H'+HBr, we observed the indirect reactions at high collision energy with backward angular distributions which did not obey the "kinematically constrained", while these indirect reactions are absence at low collision energy. And these indirect trajactories are scarce, most rection trajactories still follow the minimum energy reaction path. The angular distributions are mainly governed by the direct reactions that do follow the minimum energy path, at both low and high collision energies. While the effect on the product rotational aglignment and orientation is sensitive to the indirect reactions. The abstraction reaction Br+HD does not obey the "kinematically constrained", and most rection trajactories violate the minimum energy reaction path. The violation degree from the minimum energy reaction path increases with the increasing collision energy. Therefor, the reaction is not controlded by the traditional abstraction mechanism at the high collision energy. The characteristics of the potential energy surface in the region far away from the collinear geometry have a large influence on the title reaction dynamics. The calculations for reactions systems D++H2, H++D2 and H'+HBr show that the isotope effect plays an important role in the dynamical stereochemistry. And the position of the substituted atom is different, the similar isotopic substituent results in contrary behaviour. The effect of the mass factor on the product rotational alignment varies with the reaction isotopically substituted location at attacking atom or reagent molecule. An increase of mass factor for the reaction H++H2(D2) almost has no significant influence on the alignment of j', while an increase of attacking ion mass enhances the anisotropic distribution of j'. Therefore, the effect of mass factor on the product rotational alignment is sensitive to the mass of the attacking ion, but not sensitive to the mass of the isotopically substituted diatomic. But for H'+HBr abstraction reaction system, an increase of hydrogen mass in reaget molecule weakens the product rotational alignment; while an increase of attacking atom mass enhances the product rotational alignment.
引文
[1]Levine, R. D.; Bernstein, R. B. Molecular Reaction Dynamics. [M] Oxford:Oxford Univ.Press,1974.
    [2]Bergsma, J. P.; Reimers, J. R.; Wilson, K. R.et al. Molecular dynamics of the A+BC reaction in rare gas solution. [J] J. Chem. Phys.,1986,85(10):5625-5643.
    [3]金家骏.分子反应动态学.[M]上海交通大学出版社,1987.
    [4]何国钟.分子反应动力学现状及发展趋势.[J]中国科学院院刊,1996,4:251-258.
    [5]Fernandez-Ramos, A.; Miller, J. A.; Klippenstein, S. J.et al. Modeling the kinetics of bimolecular reactions. [J] Chem. Rev.,2006,106(11):4518-4584.
    [6]Frischkorn, C.; Wolf, M. Femtochemistry at metal surfaces:Nonadiabatic reaction dynamics. [J] Chem. Rev.,2006,106 (10):4207-4233.
    [7]Teslja, A.; Valentini, J. J. State-to-state reaction dynamics:A selective review. [J] J. Chem. Phys.,2006, 125(132304):1-22.
    [8]Srivastava, A.; Picconatto, C. A.; Valentini, J. J. State-to-state dynamics of H+c-RH→ H2(v', j')+c-R reactions:the influence of reactant stereochemistry. [J] Chem. Phys. Lett.,2002,354(1-2):25-30.
    [9]戴东旭;杨学明.基元化学反应态态动力学研究.[J]化学进展,2007,19(11):1633-645.
    [10]韩克利;何国钟;楼南泉.立体化学反应动态学.[J]化学物理学报,1998,11(6):525-529.
    [11]Bernstein, R. B.; Truhlar, D. R.; Levine, R. D. Dynamics aspects of stereodchemistry. [J] J. Chem. Phys.,1987.
    [12]Hou, H.; Guiding, S. J.; Rettner, C. T.et al. The stereodynamics of a gas-surface reaction. [J] Science, 1997,277(5322):80-82.
    [13]Orrell, K. G.; Sik, V.; Stephenson, D. Quantitative investigations of molecular stereodynamics by 1D and 2D NMR methods. [J] Progr. Nucl. Magn. Reson. Spectrosc.,1990,22:141-208.
    [14]de Miranda, M. P.; Clary, D. C.; Castillo, J. F.et al. Using quantum rotational polarization moments to describe the stereodynamics of the H+D2(v=0,j=0)→ HD(v',j')+D reaction. [J] J. Chem. Phys.,1998, 108(8):3142-3153.
    [15]de Miranda, M. P.; Aoiz, F. J.; Banares, L.et al. A unified quantal and classical description of the stereodynamics of elementary chemical reactions:State-resolved k-k'-j' vector correlation for the H+D2(v=0, j=0) reaction. [J] J. Chem. Phys.,1999,111(12):5368-5383.
    [16]Alexander, A. J.; Brouard, M.; Kalogerakis, K. S.et al. Chemistry with a sense of direction-the stereodynamics of bimolecular reactions. [J] Chem. Soc. Rev.,1998,27,(6):405-415.
    [17]Chen, M. D.; Han, K. L.; Lou, N. Q. Vector correlation in the H+D2 reaction and its isotopic variants: isotope effect on stereodynamics. [J] Chem. Phys. Lett.,2002,357(5-6):483-490.
    [18]Case, D. A.; Herschbach, D. R. Statistical theory of angular momentum polarization in chemical reactions. [J] Mol. Phys.,1975,5:1537-1567.
    [19]Fano, U.; Macek, H. H. Impact excitation and polarization of the emitted light. [J] Rev. Mod. Phys., 1973,45:553-573.
    [20]Han, K. L.; He, G. Z.; Lou, N. Q. Stereodynamics-QCT program.[J] Chem. Phys. Lett.,1991, 178:525-533.
    [21]Orr-Ewing, A. J.; Zare, R. N. orientation and alignment of reaction products. [J] Annu. Rev. Phys. Chem.,1994,45:315-342.
    [22]Wang, M. L.; Han, K. L.; He, G. Z. Product rotational polarization in photo-initiated bimolecular reactions A+BC:Dependence on the character of the potential energy surface for different mass combinations. [J] J. Phys. Chem.A,1998,102(50):10204-10210.
    [23]Chen, M. D.; Han, K. L.; Lou, N. Q. Theoretical study of stereodynamics for the reactions C1+H2/HD/D2. [J] J. Chem. Phys.,2003,118(10):4463-4470.
    [24]Wang, M. L.; Han, K. L.; He, G. Z. Product rotational polarization in the photoinitiated bimolecular reaction A+BC → AB+C on attractive, mixed and repulsive surfaces. [J] J. Chem. Phys.,1998, 109(13):5446-5454.
    [25]Gonzalez, M.; Sierra, J. D.; Francia, R.et al. Quasiclassical trajectory study of molecular alignment effects on the dynamics of the reactions of Cl, Br and I with H2. [J] J. Phys. Chem.A,1997,101(41): 7513-7521.
    [26]Chen, M. D.; Tang, B. Y.; Han, K. L.et al. Accurate quantum mechanical calculation for the N+OH reaction. [J] J. Chem. Phys.,2003,118,(15):6852-6857.
    [27]Costen, M. L.; Marinakis, S.; McKendrick, K. G. Do vectors point the way to understanding energy transfer in molecular collisions? [J] Chem. Soc. Rev.,2008,37 (4):732-743.
    [28]Case, D. A.;Herschbach, D. R. Statistical theory of angular momentum polarization in chemical reactions. [J] Mol. Phys,1975,30(5):1537-1564.
    [29]de Miranda, M. P.; Aoiz, F. J. Interpretation of quantum and classical angular momentum polarization moments. [J] Phys. Rev. Lett.,2004,93 (8) 083201:1-4.
    [30]McClelland, G. M.; Saenger, K. L.; Valentini, J. J.et al. Vibrational and rotational relaxation of iodine in seeded supersonic beams. [J] J. Phys. Chem.,1979,83(8):947-959.
    [31]Barnwell, J. D.; Loeser, J. G.; Herschbach, D. R. Angular Correlations in Chemical Reactions. Statistical Theory for Four-Vector Correlations. [J] J. Phys. Chem.,1983,876:2781-2787.
    [32]Dongxu Dai; Chia; Chen Wanget al. State-to-state dynamics of high-n Rydberg H-atom scattering with D2. [J] Phys. Rev. Lett.,2005,954.
    [33]Song, H.; Dai, D. X.; Wu, G. R.et al. Chemical reaction dynamics of Rydberg atoms with neutral molecules:A comparison of molecular-beam and classical trajectory results for the H(n)+D2 → HD+D(n') reaction. [J] J. Chem. Phys.,2005,123,074314:1-10.
    [34]Casavecchia, P. Chemical reaction dynamics with molecular beams. [J] Rep. Prog. Phys.,2000,63(3): 355-414.
    [35]Becker, C. H.; Casavecchia, P.; Tiedemann, P. W.et al. Study of the reaction dynamics of Li+HF, HC1 by the crossed molecular beams method. [J] J. Chem. Phys.,1980,73(6):2833-2850.
    [36]Neumark, D. M.; Wodtke, A. M.; Robinson, G. N.et al. Molecular beam studies of the F+H2 reaction. [J] J. Chem. Phys.,1985,82(7):3045-3066.
    [37]Leone, S. R. "Infrared fluorescence studies of state-selected energy transfer and isotopic chemistry"; [C] Proceedings of the Society of Photo-Optical Instrumentation Engineers, vol.82. Unconventional spectroscopy,1976, San Diego, CA, USA.
    [38]Takahashi, K.; Iwasaki, E.; Matsumi, Y. Vacuum UV laser-induced fluorescence study of the collisional removal of Br(2P1/2) atoms by small molecules. [J] Chem. Phys. Lett.,2008,463(1-3): 50-53.
    [39]Zhang, W.; Wu, G.; Pan, H.et al. Product Vibrational State-to-State Correlation in the F+SiH4→ HF(WHF)+SiH3 (0W20) Reaction:A Crossed Molecular Beam Ion-Imaging Study. [J] J. Phys. Chem.A 2009,113(16):1-5.
    [40]Zhang, W.; Kawamata, H.; Liu, G. CH Stretching Excitation in the Early Barrier F+CHD3 Reaction Inhibits CH Bond Cleavage. [J] Science,2009,325:303-306.
    [41]Wang, X.; Dong, W.; Xiao, C.et al. The Extent of Non-Born-Oppenheimer Coupling in the Reaction of Cl(2P) with para-H2. [J]Science,2008,322(5901):573-576.
    [42]Eyring, H.; Polanyi, M. Z. Eyring equation. [J] Phys. Chem. B,1931,12,279.
    [43]Althorpe, S. C.; Fernandez-Alonso, F.; Bean, B. D.et al. Observation and interpretation of a time-delayed mechanism in the hydrogen exchange reaction. [J]Nature,2002,416(6876):67-70.
    [44]Fernandez-Alonso, F.; Zare, R. N. Scattering resonances in the simplest chemical reaction. [J]Ann. Rev. Phys. Chem.,2002,53:67-99.
    [45]Juanes-Marcos, J. C.; Althorpe, S. C.; Wrede, E. Theoretical study of geometric phase effects in the hydrogen-exchange reaction. [J]Science,2005,309(5738):1227-1230.
    [46]Alexander, M. H.; Capecchi, G.; Werner, H. J. Theoretical study of the validity of the Born-Oppenheimer approximation in the Cl+H2→ HCl+H reaction. [J]Science,2002,296,(5568): 715-718.
    [47]Garand, E.; Zhou, J.; Manolopoulos, D. E.et al. Nonadiabatic interactions in the Cl+H-2 reaction probed by CIH2 and CID2 photoelectron imaging. [J]Science,2008,319(5859):72-75.
    [48]Manolopoulos, D. E. The dynamics of the F+H2 reaction. [J]J. Chem. Soc.-Faraday Transactions,1997, 93(5):673-683.
    [49]Qiu, M. H.; Ren, Z. F.; Che, L.et al. Observation of Feshbach resonances in the F+H2→ HF+H reaction. [J] Science,2006,311 (5766):1440-1443.
    [50]Thornton, S. T.; Marion, J. B. Classical Dynamics of Particles and Systems. [M] Thomson Learning, 2005.
    [51]Brooks, B. R.; Brooks, C. L.; Mackerell, A. D.et al. CHARMM:The Biomolecular Simulation Program. [J] J.Comp. Chem.,2009,30(10):1545-1614.
    [52]Kim, M. S.; Moon, J. H. Development of classical trajectory methodology for the study of dissociation dynamics of polyatomic ions. [J] Inter. J. Mass Spectr.,2003,225(3):191-212.
    [53]Tironi, I. G.; Sperb, R.; Smith, P. E.et al. A generalized reaction field method for molecular-dynamics simulations. [J] J. Chem. Phys.,1995,102(13):5451-5459.
    [54]Barnwell, J. D.; Loeser, J. G.; Herschbach, D. R. Angular correlations in chemical reactions. Statistical theory for four-vector correlations. [J] J. Phys. Chem.,1983,876:2781-2787.
    [55]Truhlar, D. G.; Garrett, B. C.; Klippenstein, S. J. Current status of transition-state theory. [J] J. Phys. Chem.,1996,100(31):12771-12800.
    [56]Beck, M. H.; Jackie, A.; Worth, G. A.et al. The multiconfiguration time-dependent Hartree (MCTDH) method:a highly efficient algorithm for propagating wavepackets. [J] Phys. Rep.-Review Section of Physics Letters,2000,324(1):1-105.
    [57]Lopreore, C. L.; Wyatt, R. E. Quantum wave packet dynamics with trajectories. [J] Phys. Rev. Lett., 1999,82,(26):5190-5193.
    [58]Truhlar, D. G.; Muckerman, J. T. Atom-Molecule Collision Theory. [C] Plenum, New York,1979.
    [59]Porter, R. N.; Raff, L. M. Dynamics of Molecular Collisions. [C] Part B, Plenum, New York,1976.
    [60]Mandy, M.E.; Martin, P.G.; Keogh, W.J. Why quasiclassical cross sections can be rotationally and vibrationally hot. [J] J. Chem. Phys.,1993,100(4):2671-2678.
    [61]张志红,几个典型微观反应体系的准经典轨线计算.[D]大连:大连理工大学博士论文,2006.
    [62]Chu, T. S.; Han, K. L. Nonadiabatic time-dependent wave packet study of the D++H2 reaction system. [J] J. Phys. Chem.A,2005,109(10):2050-2056.
    [63]Sun, Z. G.; Lin, X.; Lee, S. Y.et al. A Reactant-Coordinate-Based Time-Dependent Wave Packet Method for Triatomic State-to-State Reaction Dynamics:Application to the H+O2 Reaction. [J] J. Phys. Chem. A,2009,113 (16):4145.
    [64]Yao, L.; Han, K. L.; Song, H. S.et al. Close-coupling time-dependent quantum dynamics study of the H+HCl reaction. [J] J. Phys. Chem.A,2003,107(16):2781-2786.
    [65]赵成大化学反应量子理论-分子反应动力学基础.[M]沈阳:东北师范大学出版社,1990.
    [66]韩克利;孙本繁.势能面与分子碰撞理论.[M]吉林大学出版社,2008.
    [67]Martin-Gondre, L.; Crespos, C; Larregaray, P.et al. Is the LEPS potential accurate enough to investigate the dissociation of diatomic molecules on surfaces? [J] Chem. Phys. Lett.,2009,471(1-3): 136-142.
    [68]Tishchenko, O.; Truhlar, D. G. Efficient global representations of potential energy functions: Trajectory calculations of bimolecular gas-phase reactions by multiconfiguration molecular mechanics. [J] J. Chem. Phys.,2009,024105:1-15.
    [69]Collins, M. A. Molecular potential-energy surfaces for chemical reaction dynamics. [J] Theor.Chem. Acc.,2002,108(6):313-324.
    [70]R.D.列文;R.B.伯恩斯坦.分子反应动力学.[M]科学出版社,1986.
    [71]Haire, R. G.; Haschcke, J. M. Plutonium oxide systems and related corrosion produets. [J] Mater. Res. Soc.,2001,26:1-9.
    [72]Murrel, J. N.; Varandas, A. J. C. [J] Mol. Phys.,1975,30223.
    [73]Monks, P.D.D.; Connor,J.N.L.; Althorpe,S.C.. Nearside-farside and local angular momentum analyses of time-independent scattering amplitudes for the H+D2(vi=0,ji=0)→HD(Vf=3,jf=0)+D reaction. [J] J. Phys. Chem.A,2007,11110.
    [74]Koszinowski, K.; Goldberg, N.T.; Zhang, J.et al. Differential cross section for the H+D2→HD(v-1,j'=2,6,10)+D reaction as a function of collision energy. [J] J. Chem. Phys.,2007, 127(12315):1-10.
    [75]Greaves, S. J.; Murdock, D.; Wrede, E. A quasiclassical trajectory study of the time-delayed forward scattering in the hydrogen exchange reaction. [J] J. Chem. Phys.,2008,128(164307):1-8.
    [76]Aoiz, F. J.; Banares, L.; Herrero, V. J. Dynamics of Insertion Reactions of H2 Molecules with Excited Atoms. [J] J. Phys. Chem.A,2006,110:12546-12553.
    [77]Aoiz, F. J.; Rabanos, V. S.; Gonzalez-Lezana, T.et al. A statistical quasiclassical trajectory model for atom-diatom insertion reactions. [J] J. Chem. Phys.,2007,126(16):161101:1-5.
    [78]Chu, T. S.; Y. Zhang; Han, K. L. The time-dependent quantum wave packet approach to the electronically nonadiabatic processes in chemical reactions. [J] Int. Rev. Phys. Chem.,2006,25(1-2): 201-235.
    [79]Gonzalez-Lezana, T.; Aguado, A.; Paniagua, M.et al. Quantum approaches for the insertion dynamics of the H++D2 and D++H2 reactive collisions. [J] J. Chem. Phys.,2005,123(194309):1-7.
    [80]McCall, B. J.; Geballe, T. R.; Hinkle, K. H.et al. Detection of H3+in the Diffuse Interstellar Medium Toward Cygnus OB2 No.12. [J] Science,1998,279(5358):1910-1913.
    [81]McCall, B. J.; Huneycutt, A. J.; Saykally, R. J.et al. An enhanced cosmic-ray flux towards ζ Persei inferred from a laboratory study of the H3+-e- recombination rate. [J] Nature,2003,422(6931): 500-502.
    [82]Ichihara, A.; Iwamoto, O.; Janev, R. K. Cross sections for the reaction H++H2 (v= 0-14) → H+H2+ at low collision energies, [J] J. Phys. B:Atomic, Molecular and Optical Physics,2000,33(21): 4747-4758.
    [83]Schlier, C.; Nowotny, U.; Teloy, E. Proton-Hydrogen collisions. [J] Chem. Phys.,1987,111(3): 401-408.
    [84]Trafton, L. M.; Geballe, T. R.; Miller, S.et al. Detection of H3+from Uranus. [J] Astrophys. J.,1993, 405:761-785.
    [85]Wrede, E.; Schnieder, L.; Seekamp-Schnieder, K.et al. Reactive scattering of Rydberg atoms:H*+D2 → HD+D*.[J] Phys. Chem. Chem. Phys.,2005,7(7):1577-1582.
    [86]Neumark, D. M.; Wodtke, A. M.; Robinson, G. N.et al. [J] Phys. Rev. Lett.,1984,54:229-234.
    [87]Castillo, J. F.; Manolopoulos, D. E.; Stark, K.et al. Quantum mechanical angular distributions for the F+H2 reaction. [J] J. Chem. Phys.,1996,104(17):6531-6546.
    [88]Peterson, K. A.; Dunning, T. H. Benchmark calculations with correlated molecular wave functions.11. Energetics of the elementary reactions F+H2, O+H2, and H'+HCl. [J] J. Phys. Chem.A,1997,101(35): 6280-6292.
    [89]Yang, B. H.; Tang, B. Y.; Yin, H. M.et al. Quantum dynamics study of the Cl+D2 reaction: Time-dependent wave packet calculations. [J] J. Chem. Phys.,2000,113(17):7182.
    [90]Xie, T. X.; Zhang, Y.; Zhao, M. Y.et al. Calculations of the F+HD reaction on three potential energy surfaces. [J] Phys. Chem. Chem. Phys.,2003,5(10):203-207.
    [91]Picconatto, C. A.; Srivastava, A.; Valentini, J. J. Reactions at suprathreshold energy:Evidence of a kinematic limit to the internal energy of the products. [J] J. Chem. Phys.,2001,114(4):1663-1671.
    [92]Pomerantz, A. E.; Camden, J. P.; Chiou, A. S.et al. Reaction products with internal energy beyond the kinematic limit result from trajectories far from the minimum energy path:An example from H+HBr → H2+Br. [J] J. Am. Chem. Soc.,2005,127(47):16368-16369.
    [93]郑锡光.几个典型反应体系的准经典轨线计算.[D]大连:中国科学院大连化学物理研究所硕士论文.1991.
    [94]Clary, D. C. Theoretical studies on bimolecular reaction dynamics. [J] Proc. Nat. Acad. Sci. U.S.A., 2008,105(35):12649-12653.
    [95]陈茂笃,几个典型反应的立体反应动力学理论研究.[D]大连:大连化学物理研究所,2002.
    [96]Han, K. L.; He, G. Z.; Lou, N. Q. Effect of location of energy barrier on the product alignment of reaction A+BC. [J] J. Chem. Phys.,1996,105(19):8699-8704.
    [97]Chen, M.D.; Han, K.L.; Lou, N.Q. Vector correlation in the H+D2 reaction and its isotopic variants: isotope effect on stereodynamics. [J] Chem. Phys. Lett.,2002,357(5-6):483-490.
    [98]Aoiz, F. J.; Brouard, M.; Enriquez, P. A. Proudct rotational polarization in photon-initiated bimolecular reactions. [J] J. Chem. Phys.,1996,105(12):4964-4982.
    [99]Shafer, N. E.; Orr-Ewing, A. J.; Zare, R. N. Beyond State-to-State Differential Cross Sections: Determination of Product Polarization in Photoinitiated Bimolecular Reactions. [J] J. Phys. Chem., 1995,99(19):7591-7603.
    [100]Orr-Ewing, A. J.; Simpson, W. R.; Rakitzis, T. P.et al. Scattering-angle resolved product rotational alignment for the reaction of Cl with vibrationally excited methane. [J] J. Chem. Phys.,1997,106(14): 5961.
    [101]Aldegunde, J.; Alvarino, J.M.; Kendricket, B.K. et al. Analysis of the H+D2 reaction mechanism through consideration of the intrinsic reactant polarisation. [J] Phys. Chem. Chem. Phys.,2006, 8:4881-4896.
    [102]Brouard, M.; Lambert, H. M.; Rayner, S. P.et al. Product state resolved stereodynamics of the reaction H(2S)+CO2→OH(X2∏3/2); nu=0, N=5)+CO((1∑+).[J] Mol. Phys.,1996,89(2):403-423.
    [103]Aoiz, F. J.; Brouard, M.; Herrero, V. J.et al. Product rotational polarization. The stereodynamics of the F+H2 reaction. [J] Chem. Phys. Lett.,1997,264 (5):487-494.
    [104]de Miranda, M. P.; F.J.Aoiz; V.Saez-Rabanoset al. Spatial distributions of angular momenta in quantum and quasiclassical stereodynamics. [J] J. Chem. Phys.,2004,121(20):13.
    [105]Aoiz, F. J.; Gonzalez-Lezana, T.; Saez Rabanos, V. Stringent test of the statistical quasiclassical trajectory model for the H3+exchange reaction:a comparison with rigorous statistical quantum mechanical results. [J] J Chem Phys,2007,127 (17):174-189.
    [106]Ochs, G.; Teloy, E. Integral cross sections for reactions of H+with D2:New measurements. [J] J. Chem. Phys.,1974,61(11):4930-4931.
    [107]Wrede, E.; Schnieder, L.; Seekamp-Schnieder, K.et al. Reactive scattering of Rydberg atoms:H*+D2 → HD+D*. [J] Phys. Chem. Chem. Phys.,2005,7 (7):1577-1582.
    [108]Lu, R. F.; Chu, T. S.; Han, K. L. Quantum wave packet study of the H+plus D-2 reaction on diabatic potential energy surfaces. [J] J. Phys. Chem.A,2005,109(30):6683-6688.
    [109]Chu, T. S.; Varandas, A. J. C.; Han, K. L. Nonadiabatic effects in D++H2 and H++D2. [J] Chem. Phys. Lett.,2009,471(4-6):222-231.
    [110]Chu, T. S.; Han, K. L. Effect of Coriolis coupling in chemical reaction dynamics. [J] Phys. Chem. Chem. Phys.,2008,10(18):2431-2442.
    [111]Li, B.; Han, K. L. The three-dimensional nonadiabatic dynamics calculation of DH2+and HD2+ systems by using the trajectory surface hopping method based on the Zhu-Nakamura theory. [J] J. Chem. Phys.,2008,128(11):1-7.
    [112]Gonzalez-Lezana, T.; Aguado, A.; Paniagua, M.et al. Quantum approaches for the insertion dynamics of the H++D2 and D++H2 reactive collisions. [J] J. Chem. Phys.,2005,123(19):1-13.
    [113]Gonzalez-Lezana, T.; Roncero,O.; Honvault, P.et al. A detailed quantum mechanical and quasiclassical trajectory study on the dynamics of the H++H2 → H2+H+ exchange reaction. [J] J. Chem. Phys.,2006,125,094314:1-13.
    [114]Kamisaka, H.; Bian, W.; Nobusada, K.et al. Accurate quantum dynamics of electronically nonadiabatic chemical reactions in the DH2+system. [J] J. Chem. Phys.,2002,116(2):654-665.
    [115]Song, H.; Wang, X.; Rex.T, S.et al. Quasi-classical trajectory study on the H++H2 reaction. [J] Chin. J. Chem. Phys.,2006,19 (5) 375:1-4.
    [116]Lin, S. Y.; Guo, H. Adiabatic and Nonadiabatic State-to-State Quantum Dynamics for O(1D)+H2(X 1∑g+, v(i)= j(i)=0)→ OH(X2∏, vf, jf)+H(2S) Reaction. [J] J. Phys. Chem. A,2009,113 (16): 4285-4293.
    [117]Banares, L.; Aoiz, F. J.; Honvault, P.et al. Dynamics of the S('D)+H2 insertion reaction:a combined quantum mechanical and quasiclassical trajectory study. [J] J. Phys. Chem. A,2004,108:1616-1629.
    [118]Lin, S. Y.; Banares, L.; Guo, H. Differential and integral cross sections of the N(2D)+H2→ NH+H reaction from exact quantum and quasi-classical trajectory calculations. [J] J. Phys. Chem.A,2007, 111(12):2376-2384.
    [119]Aoiz, F.J.; Gonzale-Lezana, T.; Rabanos, V. S. A comparison of quantum and quasiclassical statistical models for reactions of electronically excited atoms with molecular hydrogen. [J] J. Chem. Phys.,2008,129(094305):1-12.
    [120]Chu, T. S.; Duan, Y. B.; Yuan, S. P.et al. Accurate quantum wave packet study of the N(D-2)+D-2 reaction. [J] Chem. Phys. Lett.,2007,444 (4-6):351-354.
    [121]Zhang, C.; Zhang, W.; Chen, M. Theoretical Studies of Stereodynamics for the H++H2 (v=0-3, j=0) → H2+H+Reaction. [J] J. Theor. Comp. Chem.,2009,8 (2):1-5.
    [122]张翠华.两个典型微观反应体系的准经典轨线计算.[D]大连:大连理工大学硕士毕业论文,2009.
    [123]Fu, B.; Zhou, Y.; Zhang, D. H. A STATE-TO-STATE QUANTUM DYNAMICAL STUDY OF THE H plus HBr REACTION. [J] J, Theor. Comp. Chem.,2008,7(4):777-791.
    [124]Hiberty, P. C.; Megret, C.; Song, L. C.et al. Barriers of hydrogen abstraction vs halogen exchange: An experimental manifestation of charge-shift bonding. [J] J. Am. Chem. Soc.,2006,128(9):2836-2843.
    [125]Mitchell, T. J.; Gonzalez, A. C.; Benson, S. W. VERY-LOW PRESSURE REACTOR STUDY OF THE H+HBR-REVERSIBLE-ARROW-H-2+BR REACTION. [J] J. Phys. Chem.,1995,99(46): 16960-16966.
    [126]Umemoto, H.; Wada, Y.; Tsunashima, S.et al. The reaction of H+HBr and its isotopic variants. [J] Chem. Phys.,1990,143(2):333-338.
    [127]Seakins, P. W.; Pilling, M. J. Thime-resolved study H+HBr→Br+H2 and reanalysis of rata for the H2+Br2 reaction over the temperature range 214-1700 K. [J] J. Phys. Chem,1991,95:9878-9881.
    [128]Eyring, H.; Polanyi, M. On simple gas reactions. In Quantum chemistry. [C] Classic scientific papers, 2000:423-51.
    [129]Tino, J.; Urban, J.; Klimo, V. Effect of vibrational excitation of HBr on the H+HBr abstraction and exchange reactions. [J] Theor. Chim. Act.,1988,74(4):311-322.
    [130]Yan, S.; Wu, Y.; Liu, K. Tracking the energy flow along the reaction path. [J] Proceed. Nat. Acad. Sci.2008,105(35):1-5.
    [131]Townsend, D.; Lahankar, S. A.; Lee, S. K.et al. The roaming atom:Straying from the reaction path in formaldehyde decomposition. [J] Science,2004,306(5699):1158-1161.
    [132]Zhang, J. M.; Camden, J. P.; Brunsvold, A. L.et al. Unusual mechanisms can dominate reactions at hyperthermal energies:An example from O(3P)+HC1→ C1O+H. [J] J. Am. Chem. Soc.,2008, 130(28):8896-8897.
    [133]Aker, P. M.; Germann, G. J.; Valentini, J. J. State-to-state dynamics of H+HX collisions. Ⅰ. The H+HX rarr H/sub 2/+X (X=Cl,Br,I) abstraction reactions at 1.6 eV collision energy. [J] J. Chem. Phys., 1989,90(9):4795-4806.
    [134]Hiberty, P. C.; Megret, C.; Song, L.et al. Barriers of hydrogen abstraction vs halogen exchange:an experimental manifestation of charge-shift bonding. [J] J.Am.Chem.Soc.,2006,128(9):2836-2843.
    [135]Valero, R.; Truhlar, D. G.; Jasper, A. W. Adiabatic states derived from a spin-coupled diabatic transformation:Semiclassical trajectory study of photodissociation of HBr and the construction of potential curves for LiBr+. [J] J. Phys. Chem. A,2008,112 (25):5756-5769.
    [136]Chichinin, A. I. Chemical properties of electronically excited halogen atoms X(2P1/2) (X=F,Cl,Br,I). [M] Journal of Physical and Chemical Reference Data,2006,35(2):869-928.
    [137]Klos, J.; Chalasinski, G.; Szczesniak, M. M. Ab initio calculations and modeling of three-dimensional adiabatic and diabatic potential energy surfaces of Br(2P)center dot center dot center dot H2(1∑+) pre-reactive complex. [J] J. Phys. Chem. A,2002,106(32):7362-7368.
    [138]Klos, J.; Szczesniak, M. M.; Chalasinski, G. Paradigm pre-reactive van der Waals complexes:X-HX and X-H2 (X= F, Cl, Br). [J] Intern. Rev. Phys.l Chem.,2004,23(4):541-571.
    [139]Lynch, G. C.; Truhlar, D. G.; Brown, F. B.et al. A new potential-energy surface for H2Br and its use to calculate branching ratios and kinetic isotope effects for the H+HBr reaction. [J] J. Phys. Chem., 1995,99:207-225.
    [140]Kurosaki, Y.; Takayanagi, T. Global ab initio potential energy surfaces for the lowest three doublet states (12A',22A', and 12A") of the BrH2 system. [J] J. Chem. Phys.,2003,119(15):7838-7856.
    [141]Kurosaki, Y.; Takayanagi, T. A modified version of the analytical potential function for the global ab initio ground-state potential energy surface of the BrH2 system. [J] Chem. Phys. Lett.,2005,406(1-3): 121-126.
    [142]Kurosaki, Y.; Takayanagi, T. private communication.
    [143]Quan, W. L.; Song, Q.; Tang, B. Y. The effects of the rotational excitation on the Br+H2 reaction and its dependence on the potential energy surfaces. [J] Chem. Phys. Lett.,2007,442(4-6):228-232.
    [144]Quan, W. L.; Song, Q.; Tang, B. Y. Quantum scattering calculation for Br+H2 reaction on a new ab initio potential energy surface. [J] Chem. Phys. Lett.,2007,437(4-6):165-169.
    [145]Quan, W. L.; Tang, P. Y.; Tang, B. Y. Quantum scattering calculation for reaction Br+H2 on two potential energy surfaces. [J] Intern. J. Quant. Chem.,2007,107(3):657-664.
    [146]Shuman, N. S.; Mihok, M.; Fistik, M.et al. Quasiclassical trajectory calculations to evaluate a kinematic constraint on internal energy in suprathreshold collision energy abstraction reactions. [J] J. Chem. Phys.,2005,123,074312:1-10.
    [147]Valentini, J. J. Mapping reaction dynamics via state-to-state measurements:Rotations tell the tale. [J] J. Phys. Chem.A,2002,106(24):5745-5759.
    [148]Fu, B.; Zhang, D. H. A time-dependent quantum dynamical study of the H+HBr reaction. [J] J. Phys. Chem.A,2007,111:9516-9521.
    [149]Varandas, A. J. C. Accurate global ab initio potentials at low-cost by correlation scaling and extrapolation to the one-electron basis set limit. [J] Chem. Phys. Lett.,2007(3-4):398-407
    [150]Brownsword, R. A.; Kappel, C.; Schmiechen, P.et al. Dynamics of the H+HCl gas-phase reaction, absolute reactive cross-section for Cl(2P3/2) atom formation. [J]Chem. Phys. Lett.,1998,289(3-4): 241-246.
    [151]Chao, D. S.; Harich, S. A.; Dai, D. X.et al. A fully state-and angle-resolved study of the H+HD rarr D+H/sub 2/reaction:Comparison of a molecular beam experiment to ab initio quantum reaction dynamics. [J] J. Chem. Phys.,2002,117(18):8341-8361.
    [152]Panda, A. N.; Althorpe, S. C. Quantum wave packet study of the H+HBr→H2+Br reaction. [J] Chem. Phys. Lett.,2007,439(1-3):50-54.
    [153]Tino, J.; Urban, J.; Klimo, V. QCT study of isotopic effects in H+HBr abstraction and exchange reactions. [J] Intern. J. Quant. Chem.,1990,38(2):321-327.
    [154]Alexander, M. H.; Manolopoulos, D. E.; Werner, H.-J. An investigation of the F+H2 reaction based on a full ab initio description of the open-shell character of the F(2P) atom. [J] J. Chem. Phys.,2000, 113(24):11084.
    [155]Mielke, S. L.; Allison, T. C.; Truhlar, D. G.et al. Quantum Mechanical Rate Coefficients for the Cl+ H2 Reaction. [J] J. Phys. Chem.,1996,100(32):13588.
    [156]Yang, B.-H.; Tang, B.-Y.; Yin, H.-M.et al. Quantum dynamics study of the Cl+D2 reaction: Time-dependent wave packet calculations. [J] J. Chem. Phys.,2000,113(17):7182.
    [157]Mielke, S. L.; Truhlar, D. G.; Schwenke, D. W. Quantum photochemistry-The competition between electronically nonadiabatic reaction and electronic to vibrational, rotational, translational energy-transfer in Br-asterisk collisions with H2. [J] J. Phys. Chem.,1995,99(44):16210-16216.
    [158]Wang, X. G.; Dong, W. R.; Xiao, C. L.et al. The extent of non-Born-Oppenheimer coupling in the reaction of C1(2P) with para-H2. [J] Science,2008,322(5901):573.
    [159]Ghosal, S.; Mahapatra, S. A quantum wave packet dynamical study of the electronic and spin-orbit coupling effects on the resonances in Cl(2p)+H2 scattering. [J] J. Phys. Chem.A,2005,109(8):1530.
    [160]Wang, M. H.; Bian, W. S. Theoretical study of rate constants and kinetic isotope effects for reactions in the C1H2 system using variational transition state theory. [J] Chem. Phys. Lett.,2004,391(4-6):354.
    [161]Werner, H. J.; Kallay, M.; Gauss, J. The barrier height of the F+H2 reaction revisited: Coupled-cluster and multireference configuration-interaction benchmark calculations. [J] J. Chem. Phys.,2008,128(3):8.
    [162]De Fazio, D.; Aquilanti, V.; Cavalli, S.et al. Exact state-to-state quantum dynamics of the F+HD→ HF(v'=2)+D reaction on model potential energy surfaces. [J] J. Chem. Phys.,2008,129(6):8.
    [163]Takayanagi, T.; Kurosaki, Y. Quantum scattering calculations for the electronically nonadiabatic Br(2P1/2)+H2→ HBr+H reaction. [J] J. Chem. Phys.,2000,113(17):7158-7164.
    [164]Sims, L. B.; Dosser, L. R.; Wilson, P. S. Vibrational rate enhancement in the X(=C1, Br)+H2→HX +H reactions. [J] Chem. Phys. Lett.,1975,32(1):150-173.
    [165]Himmer, U.; Dilger, H.; Roduner, E.et al. Kinetic isotope effect in the gas-phase reaction of muonium with molecular oxygen. [J] J. Phys. Chem.A,1999,103(13):2076-2087.
    [166]Villa, J.; Corchado, J. C.; Gonzalez-Lafont, A.et al. Explanation of deuterium and muonium kinetic isotope effects for hydrogen atom addition to an olefin. [J] J. Am. Chem. Soc.,1998,120(46): 12141-12142.
    [167]Panda, A. N. Quantum dynamics of Br plus HD reaction. [J] J. Phys. Chem.A,2008,112(24): 5327-5331.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700