用户名: 密码: 验证码:
矩阵变换器若干关键问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矩阵变换器因其在结构和功能上的诸多优点,是一种极具发展潜力的电力变换装置,是近年来的研究热点。尽管关于矩阵变换器的研究成果很多,但依然存在一些重要问题未能十分满意地解决,因此限制了矩阵变换器大规模工业应用的步伐。这些问题包括调制策略复杂、系统成本高、稳定性问题、非线性问题和无功功率问题等共性问题以及具体应用问题。本文针对调制策略,非线性补偿,系统稳定性,衍生拓扑——四脚矩阵变换器的调制与控制,以及矩阵变换器在风力发电领域中的低成本应用等方面进行了研究,并取得了系列进展。论文的研究工作包括:
     在调制策略方面。一方面,将矩阵变换器的两类典型的调制策略——双电压合成调制和空间矢量调制策略统一起来,从数学的角度证明了它们的一致性,并从开关序列安排、原点开关的基本概念、功率因数控制、共模电压、输入电压不平衡抑制等方面揭示了两种调制策略的一致性,使得这两类调制策略中研究成果可以互为借鉴,相互促进;另一方面,针对现有的调制策略中算法复杂等问题,提出了一种简单通用的基于数学构造的矩阵变换器调制策略,其核心在于调制矩阵的求解。根据虚拟整流、逆变过程,可初步得到一组满足输入输出功能的过渡调制矩阵,然后在过渡调制矩阵的基础上通过叠加偏置信号逐步构造出既满足输入输出关系又满足物理约束的调制矩阵。该调制方法简单实用、电压传输比高,通用性强,其通用性体现在偏置信号的选择上,不同偏置信号的选择对应不同性能的调制策略。
     针对双级矩阵变换器的非线性问题。论文首先深入分析了其非线性根源,发现窄脉冲、器件电压降、滤波电容电压纹波以及死区等均是影响系统非线性的重要原因,而且它们与调制策略、拓扑结构和运行状态密切相关。尤为重要的是,分析发现现有经典算法在理论上必然导致窄脉冲问题的出现,而窄脉冲对系统的安全运行构成隐患,同时还会引起输入输出波形畸变。为保证系统可靠运行和补偿非线性所带来的负面影响,本文提出了一种修正调制算法,克服了已有调制算法在实现上的固有缺陷,有效地避免了窄脉冲问题的出现。并提出保证脉冲局部对称性的死区补偿策略,提高了输入输出波形质量。
     矩阵变换器稳定性问题是该系统的一个根本问题。在恒功率负载的情况下,矩阵变换器闭环调制可能会导致系统出现不稳定现象。受阻抗比判据的启发,本文提出了一种基于构造的矩阵变换器稳定化方法,即构造适当的修正项以提高矩阵变换器的输入阻抗进而改善系统稳定性,论文给出了构造的依据和基本原则,并介绍了几种不同类型的构造示例。本文还揭示了前期研究人员对相关问题所提方法的本质,并将本文的方法和它们进行了对比分析,发现基于构造的方法具有足够的自由度,能进一步扩大系统的稳定域,且具有通用性。
     针对矩阵变换器驱动不平衡负载时零、负序负载扰动电流对输出电压的影响问题,本文提出一种基于载波调制的双级四脚矩阵变换器解决方案。在调制策略层面,为了提高功率变换系统的综合性能,提出了一种基于最优马尔可夫链的随机载波四脚矩阵变换器调制策略。该调制策略是一种以随机过渡矩阵为优化变量,以开关次数和输出电压波形质量为综合优化目标的优化调制策略,同时能一定程度地减轻电磁干扰问题。在控制策略层面,通常的办法是将系统分解为正序、负序以及零序部分,然后在各个同步旋转坐标系下分别采用PI调节器。显然系统有多个控制器需要调节,而且坐标变换繁杂。本文提出一种基于鲁棒自适应——反步控制法的控制方案,这是一种基于李亚普诺夫函数的递推控制,可以严格保证系统的稳定性,算法简单,易于实现。
     关于矩阵变换器在风力发电中的应用问题,本文提出了两种新颖的低成本发电系统方案。第一种方案为基于超级疏松矩阵变换器的永磁同步发电机的风力发电系统。其特征是能量从矩阵变换器的整流级流向电网。为了取得良好的控制效果,采用了反馈线性化、奇异扰动原理以及H∞等控制方法设计了该发电系统的控制器。第二种方案为基于逆—疏松矩阵变换器的永磁同步发电机的风力发电系统。其基本特征是能量从矩阵变换器的逆变器往整流器传输,通过逆变器可以直接控制永磁同步发电机,因而控制简单有效。仿真验证了两种方案的正确性和可行性。
Matrix converter has attracted more and more attention recently due to many advantageous features such as bidirectional power flow, controllable input power factor, sinusoidal input and output currents, and compactness in structure;it is a potential power converter. Due to much effort of researchers, lots of achievements have been made up to now. However, there are still many hard problems which include the complexity of modulation strategy, the high cost, nonlinearity, reactive power and its applications involving matrix converter. In this paper, the issues on modulation strategy, nonlinearity compensation, stability, the modulation and control of four-leg matrix converter and the research for matrix converter used in wind energy conversation system (WECS) will be studied in detail.
     Based on the in-depth analysis of the basic principles of the double line-to-line syntheses and the space vector modulation (SVM), the consistency of duty ratio calculation of the two modulation strategies have been proved from the mathematical point of view. Then, the consistency is revealed from the issues of switching sequence, the concepts of the'origin switch', power factor and common mode voltage and the ability to suppress the effect to output voltage due to unbalanced grid.
     Inspired by fictitious rectifier and inverter process of matrix converter, a matrix converter modulation strategy based on mathematical construction is proposed. The core of this method consists in solving the modulation matrix converter. Based on the rectifier and inverter process, it is easy to get a transient modulation matrix, but the physical constraints could not meet here. Then the offsets are added into each row of modulation matrix to satisfy the physical requirements. The offset is a degree of freedom, different offsets lead to different modulations, so the proposed method is a general modulation.
     Aim to solve the nonlinearity of matrix converter, the nonlinearity sources and features of two-stage matrix converter (TSMC) output voltage are analyzed in details, it is found that the nonlinearity of TSMC has many special features such as narrow pulse, device voltage drops and ripples of filter capacitor which is concerned with modulation strategy, operating mechanism and topologies. To meet the end of reliable operation and compensate the negative affects of nonlinearity, revised modulation strategy and nonlinearity compensation algorithms are proposed. It is found that the classic modulation will lead to narrow pulse which may pose threaten to matrix converter, an improved modulation strategy is proposed by using one time varying distribution factor to overcome the constraints from real practice, and the minimum narrow pulse restriction could be met without special handling. As a result, the waveform quality of TSMC both in output and input is improved greatly. And a dead time compensation method which could keep the local symmetry of pulse is proposed. The experimental results verify the propose method.
     Stability is a basic requirement of matrix converter, Inspired by the impedance ratio criterion, a general constructive method is proposed, improving the stabilization regions of matrix converter. Based on analysis, it is found that, by using constructive method to modify the output reference voltage and rectifier modulation vector could change the input impedance (or admittance) of matrix converter on D-axis and Q-axis, respectively. As a result, the instability, caused by negative impedance, is eliminated. Plus, stabilization regions are enlarged. Furthermore, the underlying principles of constructive method are stated in detail and several instructive examples which comply with these principles are demonstrated. The essence of some existing methods which are presented to improve the stability of matrix converter is unveiled, and difference and similarity between existing methods and the proposed ones are discussed.
     In order to reject the zero sequence and negative sequence disturbance due to unbalanced load, a solution using two-stage four-leg matrix converter based on carrier modulation strategy was proposed. In order to improve the comprehensive performance of power converter system, a randomized carried modulation strategy based on Markov chain for four-leg matrix converter was proposed. This modulation is an optimal randomized carried modulation strategy taking the random transient matrix as variables, and taking the output voltage waveform quality and switching times as optimized objectives. And it could reduce the EMI problem of matrix converter.
     The unbalanced and distorted load currents pose more challenges to four-leg matrix converter's operation. From the perspective of control, this is a servo control problem with external disturbance. To solve the problem, the most commonly used method is to transform AC system in stationary frame coordinate into DC system in synchronous frame coordinate. Then, the classic proportional integral (PI) controller based on cascaded control will work well; however, this scheme is too complicated A new method using robust adaptive back-stepping control is presented for indirect four-leg matrix converter. It is robust against uncertain loads and control input disturbance due to the interaction between input filter and matrix converter.
     About the application of matrix converter in WECS (wind energy conversation system), two kinds of WECS based on supper sparse matrix converter (SSMC) and permanent magnetic synchronous generator (PMSG) are proposed. For the first scheme, the key feature is that the energy is transferred from rectifier to inverter of super sparse matrix converter. To design a global stable and robust controller, Feedback Linearization theory and H-infinity control are used. The other WECS is composed of PMSG and a very sparse matrix converter (VSMC). In this application, its distinct feature is that the energy generated by PMSG is transferred from inverter to rectifier of VSMC. The PMSG could be controlled directly, so it is easy to control. Because VSMC has only 12 active power switches, this WECS is low cost and reliable.
引文
[1]Liserre Marco, Sauter Thilo and Hung John Y. Future energy systems:Integrating renewable energy sources into the smart power grid through industrial electronics. IEEE Industrial Electronics Magazine, vol 4, no 1, pp.18-37, March.2010.
    [2]Carrasco, J.M., Franquelo, L.G., Bialasiewicz, J.T., Galvan, E., Guisado, R.C.P., Prats, Ma.A.M., Leon, J.I. and Moreno-Alfonso, N.,Power-electronic systems for the grid integration of renewable energy sources:A survey, IEEE Transactions on Industrial Electronics, vol 53, no 4, pp 1002-16, June.2006.
    [3]Saidur, R., A review on electrical motors energy use and energy savings, Renewable and Sustainable Energy Reviews, vol 14, no 3, pp 877-898, April. 2010.
    [4]J. C. Smith, Wind power:Present realities and future possibilities, Proc. IEEE, vol.97, no.2, pp.195-197, Feb.2009.
    [5]Guerrero Josep, Blaabjerg Frede, Zhelev Toshko, Hemmes Kas, Monmasson Eric, Jemei Samir, Distributed generation:Toward a new energy paradigm, IEEE Industrial Electronics Magazine, vol 4, no 1, pp.52-64, March.2010.
    [6]Lu B., Energy usage evaluation and condition monitoring for electric machines using wireless sensor networks, PhD thesis, Georgia Institute of Technology, USA. 2006.
    [7]Chicco Gianfranco and Mancarella Pierluigi. Distributed multi-generation:A comprehensive view. Renewable and Sustainable Energy Reviews, vol 13, no 3, pp535-551, April.2009.
    [8]Gyugyi,L., Generalized Theory of Static Power Frequency changers, PhD thesis, University of Salford.1970.
    [9]M. Venturini, A new sine wave in sine wave out, conversion technique which eliminates reactive elements, Proc. POWERCON 7, pp.E3_1-E3_15.1980.
    [10]Wheeler P.W., Rodriguez J., Clare J.C., Empringham L. and Weinstein, A. Matrix converters:a technology review, IEEE Transactions on Industrial Electronics, vol. 49, no 2, pp276-88, April.2002.
    [11]Alesina and M. G. B. Venturini, Analysis and design of optimum -amplitude nine-switch direct AC-AC converters, IEEE Trans. Power Electron, vol.4, no.1, pp.101-112, Jan.1989.
    [12]L. Huber, and D. Borojevic, Space vector modulated three-phase to three-phase matrix converter with input power factor correction, IEEE Trans. Ind. Appl., vol. 31, no.6, pp.1234-1246,1995.
    [13]Ishiguro A, Furuhashi T., Okuma S. A novel control method for forced commutated cycloconverters using instantaneous values of input line-to-line voltages, IEEE Transactions on Industrial Electronics, vol 38, no 3, pp166-72, June.1991.
    [14]陈希有,丛树久,陈学允.双电压合成矩阵变换器特性与电压扇区的关系分析[J].中国电机工程学报,2001,21(9):63—67
    [15]穆新华,庄心复,陈怀亚.双电压控制的矩阵变换器的开关状态与仿真分析[J].电工技术学报,1998,13(1):46—50,54
    [16]粟梅,孙尧,陈睿,桂卫华.双电压合成调制和空间矢量调制的一致性[J].中国电机工程学报,2009(21):21-26
    [17]Casadei D., Serra G., Tani A., Zarri, L. Matrix converter modulation strategies:a new general approach based on space-vector representation of the switch state, IEEE Transactions on Industrial Electronics, vol 49, no 2, pp370-81, April.2002.
    [18]S. Muller, U. Ammann and S. Rees, New time-discrete modulation scheme for matrix converters, IEEE Transactions on Industrial Electronics, vol.52, no.6, pp. 1607-1615, Dec.2005.
    [19]P. Correa, J. Rodriguez, M. Rivera, J. R. Espinoza and J. W. Kolar, Predictive control of an indirect matrix converter, IEEE Transactions on Industrial Electronics, vol.56, no.6, pp.1847-1853, Jun.2009.
    [20]R. Vargas, U. Ammann, J. Rodriguez, and J. Pontt, Predictive strategy to control common-mode voltage in loads fed by matrix converters, IEEE Trans. Ind. Electron., vol.55, no.12, pp.4372-4380, Dec.2008.
    [21]Ortega, C., Arias, A., Espina, J. Predictive vector selector for direct torque control of matrix converter fed induction motors, IECON 2009-35th Annual Conference of IEEE Industrial Electronics (IECON 2009), pp 1240-5,2009.
    [22]Vargas R., Ammann U., Hudoffsky B., Rodriguez J., Wheeler, P. Predictive Torque Control of an Induction Machine Fed by a Matrix Converter With Reactive Input Power Control, IEEE Transactions on Power Electronics, vol 25, no 6, po 1426-38, June.2010.
    [23]Rivera M., Correa P., Rodriguez J., Lizama I., Espinoza J., Rojas, C. Predictive control with active damping in a direct matrix converter, Proceedings of the 2009 IEEE Energy Conversion Congress and Exposition. ECCE 2009, pp 3057-62, 2009.
    [24]R. Vargas, J. Rodriguez, U. Ammann and P. W. Wheeler, Predictive current control of an induction machine fed by a matrix converter with reactive power control, IEEE Transactions on Industrial Electronics, vol.55, no.12, pp.4362-4371, Dec 2008.
    [25]J. H. Youm and B. H. Kwon, Switching technique for current controlled ac-to-ac converters, IEEE Transactions on Industrial Electronics, vol.46, no.2, pp.309-318, Apr.1999.
    [26]A Generalized Technique of Modeling, Analysis and Control of a Matrix Converter Using SVD, inpress.
    [27]Y. D. Yoon and S. K. Sul, Carrier-based modulation technique for matrix converter, IEEE Transactions on Power Electronics, vol.21, no.6, pp.1691-1703, Nov.2006.
    [28]粟梅,孙尧,余岳,桂卫华.基于数学构造的矩阵变换器调制策略[J].电工技术学报,2008,23(10):64-68
    [29]Wheeler P., Grant D., Optimised input filter design and low-loss switching techniques for a practical matrix converter, IEE Proceedings Electric Power Applications, vol 144, no 1, pp 53-60, Jan.1997.
    [30]Friedli T., Kolar J.W., Comprehensive Comparison Of Three-phase AC-AC Matrix Converter And Voltage DC-link Back-to-back Converter Systems,2010 International Power Electronics Conference (IPEC-Sapporo), pp 2789-98,2010.
    [31]Sangshin Kwak, Toliyat H.A., An approach for matrix converter based induction motor drive with unity power factor and minimum switching losses, IECON'03. 29th Annual Conference of the IEEE Industrial Electronics Society, pp 2939-44 Vol.3,2003.
    [32]Vargas R., Ammann U., Rodriguez, J., Predictive approach to increase efficiency and reduce switching losses on matrix converters, IEEE Transactions on Power Electronics, vol 24, no 4, pp 894-902, April.2009.
    [33]F. Bradaschia, M.C. Cavalcanti, F. Neves, H. de Souza, A Modulation Technique to Reduce Switching Losses in Matrix Converters, IEEE Trans. Industrial Electronics, Vol.56, Nr.4, pp.1186-1195, April.2009.
    [34]Yang X.J, Cai W, Ye P.S, Gong Y.M. Research on Power Characteristics of Matrix Rectifier. Industrial Electronics and Applications,2006 1ST IEEE Conference on, Singapore,2006:1-6.
    [35]Schafmeister. F, Kolar. J.W. Novel modulation schemes for conventional and sparse matrix converters facilitating reactive power transfer independent of active power flow.2004 IEEE 35th Annual Power Electronics Specialists Conference, Aachen, Germany,2004,4:2917-2923.
    [36]Daning Zhou, Kai Sun, Lipei Huang. Evaluation of matrix converter operation in abnormal conditions. Proceedings of the Sixth International Conference on Electrical Machines and Systems, Beijing, China,2003,1:402-406.
    [37]Yang Mei, Kai Sun, Daning Zhou, Lipei Huang. Analysis and compensation of matrix converter operation under abnormal input voltage conditions. Conference Proceedings IPEMC 2004. The 4th International Power Electronics and Motion Control Conference, Xi'an, China,2004,3:1311-1315.
    [38]Wei L, Matsushita Y, Lipo T.A. Investigation of dual-bridge matrix converter operating under unbalanced source voltages. PESC 2003-Power Electronics Specialist Conference, Acapulco, Mexico,2003,3:1293-1298.
    [39]Lixiang Wei, Matsushita Y, Lipo T.A. A compensation method for dual-bridge matrix converters operating under distorted source voltages. IECON'03.29th Annual Conference of the IEEE Industrial Electronics Society, Roanoke, VA, USA,2003,3:2078-2084.
    [40]Ilja Galkin, Alvis Sokolovs. Possible design of bus bar construction for matrix converter.2007 9th International Conference on Electrical Power Quality and Utilisation, EPQU, Barcelona, Spain,2007:1-5.
    [41]Burany Nandor. Safe control of four-quadrant switches. Conference Record of the 1989 IEEE Industry Applications Society Annual Meeting-Presented at the 24th IAS Annual Meeting. Part I, San Diego, CA, USA,1989:1190-1194.
    [42]Empringham.L, Wheeler. P.W, Clare. J.C. Matrix converter bi-directional switch commutation using intelligent gate drives. Proceedings of the 1998 7th International Conference on Power Electronics and Variable Speed Drives, London, UK,1998:626-631.
    [43]M. Ziegler, W. Hofmann. Implementation of a two steps commutated matrix converter. IEEE PESC, Charleston, USA,1999:175-180.
    [44]J. Mahlein, J. Igney, J. Weigold, M. Braun, O. Simon. Matrix converter commutation strategies with and without explicit input voltage sign measurement. IEEE Trans. Ind. Electron, Apr.2002,49(2):407-414.
    [45]张晓锋,何必,林桦,魏文新.矩阵变换器的一种安全换流策略.中国电机工程学报,2008,28(18):12-17
    [46]马星河,谭国俊,方永丽,汪旭东,袁世鹰.矩阵变换器变步长换流策略.电工技术学报,2007,22(9):93-98
    [47]王兴伟,林桦,佘宏武,何必.矩阵变换器电压型两步换流策略及实现.电工技术学报,2010,(4):103-108
    [48]K. Sun, D. Zhou, L. Huang, K. Matsuse, K. Sasagawa. A novel commutation method of matrix converter fed induction motor drive using RB-IGBT. IEEE Trans. Ind. Appl,2007,43(3):777-786.
    [49]J.W. Kolar, F. Schafmeister, S. D. Round, H. Ertl. Novel three-phase AC-AC sparse matrix converters. IEEE Trans. Power Electron, Sep.2007,22(5): 1649-1661.
    [50]L. Wei, T. A. Lipo, H. Chan. Matrix converter topologies with reduced number of switches. Power Electronics Specialists Conference,2002. pesc 02.2002 IEEE 33rd Annual,2002,1:57-63.
    [51]C. Klumpner, F. Blaabjerg. Modulation method for a multiple drive system based on a two-stage direct power conversion topology with reduced input current ripple. IEEE Transactions on Industrial Electronics,2005,20(4):922-929.
    [52]Klumpner.C, Blaabjerg.F. A new generalized two-stage direct power conversion topology to independently supply multiple AC loads from multiple power grids with adjustable power loading.2004 IEEE 35th Annual Power Electronics Specialists Conference, Aachen, Germany,2004,1:2855-2861.
    [53]A.Klumpner, T. Wijekoon, P. Wheeler. A new class of hybridac/ac direct power converters. Proc. IEEE Industry Applications Society Conf.,2005,4:2374-2381.
    [54]Wijekoon.T, Klumpner.C, Zanchetta.P, Wheeler.P.W. Implementation of a Hybrid AC-AC Direct Power Converter With Unity Voltage Transfer. IEEE Transactions on Power Electronics,2008,23(4):1918-1926
    [55]朱建林,岳舟,张小平,柳莎莎,刘魏宏.具有高电压传输比的BMC和BBMC矩阵变换器研究.中国电机工程学报,2007,27(16):85-91
    [56]张小平,唐华平,朱建林,等.矩阵变换器的电压传输特性.机械工程学报,2007,43(6):194-199.
    [57]张小平,朱建林,唐华平,等.一种新型Buck-Boost矩阵变换器.信息与控制,2008,37(1):40-45
    [58]K. P. You, M. F. Rahman. A Matrix-Z-Source Converter With AC-DC Bidirectional Power Flow for an Integrated Starter Alternator System. IEEE Transactions on Industry Applications, Jan-Feb 2009,45(1):239-248.
    [59]Shao Zhang, King-Jet Tseng, D. Mahinda Vilathgamuwa, Trong Duy Nguyen. Design of a Robust Grid Interface System for PMSG-based Wind Turbine Generators, IEEE Transactions on Industrial Electronics,2010:1-11.
    [60]Yue Fan, P.W.Wheeler, N.Mason, L.Empringham, J.C.Clare. A new Control Method of Single-Stage 4-leg Matrix Converter. Proceeding of the European Conference on Power Electronics and Applications, Sept.2007, pp.3472-3481.
    [61]P.W. Wheeler, P. Zanchetta, J.C.Clare, L. Empringham, M. Bland, D. Katsis. A Utility Power Supply Based on a Four-Output Leg Matrix Converter, IEEE Trans, on Industry Applications, Vol.44, Nr.1, Feb.2008, pp.174-186.
    [62]Sun Yao, Su Mei, Xia Lixun, Gui Weihua, Randomized Carrier Modulation for Four-Leg Matrix Converter Based on Optimal Markov Chain, Proceedings of IEEE International Conference on Industrial Technology,April 21-24,2008:1-6.
    [63]. Richard W. G. Bucknall, Konrad M.Ciaramella. On the Conceptual Design and Performance of a Matrix Converter for Marine Electric Propulsion.IEEE Transactions on Power Electronics, VOL.25, NO.6, JUNE 2010, pp.1497-1508.
    [64]Poh Chiang Loh, Blaabjerg.F, Feng Gao, Baby.A, Tan.D.A.C. Pulsewidth Modulation of Neutral-Point-Clamped Indirect Matrix Converter. IEEE Transactions on Industry Applications, VOL.44, NO.6, Nov-Dec.2008, pp.1805-1814.
    [65]M. Y. Lee, P. Wheeler, and C. Klumpner. A new modulation method for the three-level-output-stage matrix converter. IEEE PCC,2007, pp.776-783.
    [66]Meng Yeong Lee, Patrick Wheeler, and Christian Klumpner.Space-Vector Modulated Multilevel Matrix Converter. IEEE Transactions on Industrial Electronics, VOL.57, NO.10, OCTOBER 2010, pp.3385-3394.
    [67]Hongwu She, Hua Lin, Xingwei Wang, Limin Yue Damped Input Filter Design of Matrix Converter.International Conference on Power Electronics and Drive Systems,2009,pp.672-677.
    [68]R.W. Erickson. Optimal single resistor damping of input filters. IEEE Applied Power Electronics Conference and Exposition-APEC, vol.2, Mar.1999,pp. 1073-1079.
    [69]D. Casadei, G. Serra, A. Tani and L. Zarri. Effects of input voltage measurement on stability of matrix converter drive system. IEEE Proceedings-Electric Power Applications, vol.151, no.4, Jul 2004, pp.487-497.
    [70]D. Casadei, G. Serra, A. Tani, A. Trentin and L. Zarri. Theoretical and experimental investigation on the stability of matrix converters. IEEE Trans. Ind. Electron., vol.52, no.5, Oct 2005, pp.1409-1419.
    [71]D. Casadei, J. Clare, L. Empringham, G. Serra, A. Tani, A. Trentin,P. Wheeler, and L. Zarri. Large-signal model for the stability analysis of matrix converters. IEEE Trans. Ind. Electron., vol.54, no.2, Apr.2007, pp.939-950.
    [72]F. R. Liu, C. Klumpner and F. Blaabjerg. Stability analysis and experimental evaluation of a matrix converter drive system. Iecon'03:The 29th Annual Conference of the Ieee Industrial Electronics Society, Vol.3,2003, pp.2059-2065.
    [73]C. A. J. Ruse, J. C. Clare and C. Klumpner. Numerical approach for guaranteeing stable design of practical matrix converter drives systems. Iecon 2006-32nd Annual Conference on IEEE Industrial Electronics,2006, pp.2630-2635.
    [74]R. Cardenas, R. Pena, G. Tobar, J. Clare, P. Wheeler, and G. Asher. Stability analysis of a wind energy conversion system based on a doubly fed induction generator fed by a matrix converter. IEEE Trans. Ind. Electron.,vol.56, no.10, Oct.2009, pp.4194-4206.
    [75]Sato.I, Itoh.J, Ohquchi.H, Odaka.A, Mine.H. An Improvement Method of Matrix Converter Drives under Input Voltage Disturbances. IEEE Transactions on Power Electronics, vol.22, no.1, Jan.2007, pp.132-138.
    [76]J. Haruna and J.-I. Itoh. Behavior of a Matrix Converter with a Feed Back Control in an Input Side. IPEC, pp.1202-1207, June.2010.
    [77]I. Sato, J. Itoh, H. Ohguchi, A. Odaka and H. Mine. An improvement method of matrix converter drives under input voltage disturbances. IEEE Trans. Power Electron, vol.22, no.1, pp.132-138, Jan 2007.
    [78]粟梅,孙尧,覃恒思,张泰山.一种改善矩阵变换器系统动态性能和稳定性的控制方法。电工技术学报,2005,20(12):18-23
    [79]粟梅,覃恒思,孙尧,王妍,张泰山.矩阵变换器系统的稳定性分析。 中国电机工程学报,2005,25(8):62-69
    [80]D. Casadei, G. Serra, A. Tani, and L. Zarri. Optimal use of zero vectors for minimizing the output current distortion in matrix converters. IEEE Trans. Ind. Electron., vol.56, no.2, Feb.2009, pp.326-336.
    [81]王勇,吕征宇,陈威,汪槱生.一种基于空间矢量调制的矩阵变换器死区补偿方法,中国电机工程学报2005,25(11):42-45
    [82]Kyo-Beum Lee, Blaabjerq.F. A Nonlinearity Compensation Method for a Matrix Converter Drive. IEEE Power Electronics Letters, vol.3, no.1, March.2005, pp.19-23.
    [83]Kyo-Beum Lee, Blaabjerq.F. An Improved DTC-SVM Method for Sensorless Matrix Converter Drives Using an Overmodulation Strategy and a Simple Nonlinearity Compensation. IEEE Transactions on Industrial Electronics, vol.54, no.6, Dec.2007, pp.3155-3166.
    [84]Kyo-Beum, Blaabjerq.F. Improved Sensorless Vector Control for Induction Motor Drives Fed by a Matrix Converter Using Nonlinear Modeling and Disturbance Observer. IEEE Transactions on Energy Conversion, vol.21, no.1, March 2006, pp.52-59.
    [85]Kyo-Beum Lee, Blaabjerq.F. Simple Power Control for Sensorless Induction Motor Drives Fed by a Matrix Converter.IEEE Transactions on Energy Conversion, vol.23, no.3, Sept.2008, pp.781-788.
    [86]Arias.A, Empringham.l, Asher.G.M, Wheeler.P.W, Bland.M, Apap. M.Sumner.M, Clare.J.C. Elimination of Waveform Distortions in Matrix Converters Using a New Dual Compensation Method. IEEE Transactions on Industrial Electronics, vol.54, no.4, Aug.2007, pp.2079-2087.
    [87]孙尧,粟梅,王辉,桂卫华.双级矩阵变换器的非线性分析及其补偿策略.中国电机工程学报,2010,30(0):20-27
    [88]S. Bouchiker, G.-A. Capolino and M. Poloujadoff. Vector Control of a Permanent-Magnet Synchronous Motor Using AC-AC Matrix Converter. IEEE Trans. Power Electron, vol.13, no.6, pp.1089-1099, Nov 1998.
    [89]T.-H. Liu, D.-F. chen and C.-K Hung. Nonlinear controller design and implementation for a matrix-converter-based PMSM drive system. IEE Proc. Electr. Power Appl, vol.152, no.5, pp.1037-1048, Setp 2005.
    [90]A. Arias, C.A. Silva, G.M. Asher, J.C. Clare and P.W. Wheeler. Use of a Matrix Converter to Enhance the Sensorless Control of a Surface-Mount Permanent-Magnet AC Motor at Zero and Low Frequency. IEEE Trans.on Industry Electronics, vol.53, no.2, pp.440-449, April 2006.
    [91]C. Ortega, A. Arias, C. Caruana, J. Balcell and G.M. Asher. Improved Waveform Quality in the Direct Torque Control of Matrix-Converter-Fed PMSM Drives. IEEE Trans. on Industry Electronics, vol.57, no.6, pp.2101-2110, June 2010.
    [92]D. Casadei, G. Serra and A. Tani. The Use of Matrix Converters in Direct Torque Control of Induction Machines. IEEE Trans. on Industry Electronics, vol.48, no.6, pp.1057-1064, Dec 2001.
    [93]T.F. Podlesak, D.C. Katsis, P.W. Wheeler, J.C. Clare, L. Empringham and M. Bland. A 150-kVA Vector-Controlled Matrix Converter Induction Motor Drive. IEEE Trans. on Industry Electronics, vol.41, no.3, pp.841-847, May-June 2005.
    [94]葛红娟,苏国庆,刘伯华,杨冬冬.基于输入电流空间矢量调制-输出滞环电流控制的MC-PMSM矢量控制系统.电工技术学报,2008,23(4):39-43
    [95]姜田贵.用于驱动无刷直流电机的矩阵变换器闭环调制.中国电机工程学报,2009(36),88-95
    [96]孙凯,黄立培,梅杨.矩阵式变换器驱动异步电机调速系统的非线性自抗扰控制.电工技术学报,2007,22(12):39-45
    [97]粟梅.矩阵变换器—异步电动机高性能调速系统控制策略研究:[博士学位论文].湖南:中南大学,2005
    [98]L. Zhang and C. Watthanasam. A matrix converter excited doubly-Fed induction machine as a wind power generator.7th International Conference on Power Electronics and Variable Speed Drives, pp.532-537, Sep 1998.
    [99]L. Zhang, C. Watthanasarn and W. Shepherd. Application of a matrix converter for the power control of variable speed wind turbine driving doubly-fed induction generator.IECON97,23rd International Conference on Industry Electronics, Control and Instrumentation, vol.2, pp.906-911, Nov 1997.
    [100]K. Ghedamsi, D. Aouzellag and M. Berkouk. Application of matrix converter for variable speed wind turbine driving a doubly fed induction generator. International Symposium on Power Electronics, Electrical Drives, Automation and Motion, pp.1201-1205, May 2006.
    [101]A.K. Dalal, Prasid Syam and A.K. Chattopadhyay. Use of matrix converter as slip power regulator in doubly-fed induction motor drive for improvement of power quality. IEEE Power India Conference, pp.6,2006.
    [102]E. Chekhet, V. Mikhalsky, S. Peresada, I. Shapoval and V. Sobolev. Application of the matrix converter for vector controlled doubly-fed induction machine. EPE-PEMC 2004 11th International Power Electronics and Motion Control Conference, pp.1/69-77, Vol.1,2004.
    [103]Zhang Hua-qiang, Wang Xin-sheng and Xu Dian-guo. Research of variable-speed constant-frequency wind-power based on matrix converter. Chinese Journal of Electron Devices, vol.29, no.3, pp.859-63, Sept.2006.
    [104]R. Cardenas, R. Pena, J. Clare and P. Wheeler. Control of the Reactive Power Supplied by a Matrix Converter. IEEE Transactions on Energy Conversion, vol.24, no.1, pp.301-303, March.2009.
    [105]R. Cardenas, R. Pena, P. Wheeler, J. Clare and G. Asher. Control of the Reactive Power Supplied by a WECS Based on an Induction Generator Fed by a Matrix Converter. IEEE Transactions on Industrial Electronics, vol.56, no.2, pp. 429-438, Feb.2009.
    [106]R. Pena, R. Cardenas, E. Reyes, J. Clare and P. Wheeler, A Topology for Multiple Generation System With Doubly Fed Induction Machines and Indirect Matrix Converter. IEEE Transactions on Industrial Electronics, vol.56, no.10, pp. 4181-4193, Oct.2009.
    [107]Fang Gao and MR. Iravani. Dynamic Model of a Space Vector Modulated Matrix Converter. IEEE Transactions on Power Delivery, vol.22, no.3, pp. 1696-1705, July 2007.
    [108]H. Nikkhajoei and M.R. Iravani. A Matrix Converter Based Micro-Turbine Distributed Generation System. IEEE Transactions on Power Delivery, vol.20, no. 3, pp.2182-2192, July 2005.
    [109]V. Kumar, V. Choudhary, R.R. Joshi and R.C. Bansal. Intelligent optimal control of matrix converter based new WECS for performance enhancement & efficiency optimization. IPEC 2007, pp.251-256 Dec.2007.
    [110]S.M. Barakati, M. Kazerani and J.D. Aplevich. Maximum Power Tracking Control for a Wind Turbine System Including a Matrix Converter. IEEE Transactions on Energy Conversion, vol.24, no.3, pp.705-713, Sept.2009.
    [111]黄科元,贺益康.矩阵式变换器励磁的双馈风力发电机系统.太阳能学报,2002,23(6):732-737
    [112]黄科元,贺益康,卞松江.矩阵式变换器交流励磁的变速恒频风力发电系统研究.中国电机工程学报,2002,22(11):100-105
    [113]肖刚,杨顺昌,廖勇,姚骏.矩阵式变换器励磁的双馈发电机系统建模与仿真.重庆大学学报,2003,26(3):89-94
    [114]张华强,王新生,徐殿国.矩阵变换器在变速恒频风力发电中的应用研究.电子器件,2006,29(3):859-863
    [115]方永丽,谭国俊,冯宇.矩阵变换器励磁双馈调速系统的建模与仿真.电机与控制应用,2006,33(9):30-33
    [116]Boon-Teck Ooi and M. Kazerani. Unified Power Flow Controller Based on Matrix Converter. PESC'96 Record,27th Annual IEEE, vol.1, pp.502-507, Jun 1996.
    [117]B. Geethalakshmi, G. Devanathan and P. Dananjayan. A Novel Structure of UPFC with Matrix Converter. ICPS'09, pp.1-6, Dec.2009.
    [118]A. R. Marami Iranaq, M. Tarafdar Haque and E. Babaei. A UPFC Based on Matrix Converter. Power Electronic & Drive Systems & Technologies Conference (PEDSTC),2010 1st, pp.95-100, Feb.2010.
    [119]Monteiro.J, Silva.J.F, Pinto.S.F, Palma.J. Direct Power Control of Matrix Converter Based Unified Power Flow Controllers. IECON 2009-35th Annual Conference of IEEE Industrial Electronics (IECON 2009), Porto, Portugal,2009: 1525-1530
    [120]粟梅,马进,孙尧.基于双级矩阵变换器的线间潮流控制器.电力系统及其自动化学报,2008,20(6):17-21
    [121]Wang Bingsen and G. Venkataramanan. Dynamic Voltage Restorer Utilizing a Matrix Converter and Flywheel Energy Storage.42nd IAS Annual Meeting. Conference Record of the 2007 IEEE, pp.208-215, Sept.2007.
    [122]P. Zanchetta, J.C.Clare, P.W.Wheeler, D. Katsis, M. Bland, and L. Empringham. Control design of a three-phase matrix converter mobile AC power supply using genetic algorithms. IEEE 36th Power Electronics Specialists Conference,2005, pp.2370-2375.
    [123]Saul Lopez Arevalo, Pericle Zanchetta. Control and Implementation of a Matrix-Converter-Based AC Ground Power-Supply Unit for Aircraft Servicing, IEEE Transactions on Industrial Electronics, VOL.57, NO.6, JUNE 2010, pp.2076-2084.
    [124]P. W. Wheeler, P. Zanchetta, J. C. Clare, L. Empringham, M. Bland, and D. Katsis.A utility power supply based on a four-output leg matrix converter. IEEE Trans. Ind. Appl., vol.44, no.1, Jan-Feb.2008, pp.174-186.
    [125]A. Alesina, M. Venturini. Analysis and Design of Optimum-Amplitude Nine-Switch Direct AC-AC Converters, IEEE Transaction on Power Electronic. 1989,4(1):101-112.
    [126]L. Huber, D. Borojevic. Space vector modulator for forced commutated cycloconverters. Conference Record IEEE-IAS Annul Meeting.1989.871-876.
    [127]Akio Ishiguro, Takeshi Furuhashi, Shigeru Okuma. A novel control method for forced commutated cycloconverters using instantaneous values of input line-to-line voltages. IEEE Trans on industrial electronics,1991,38(3):166-172.
    [128]陈希有,陈学允.双电压合成矩阵变换器无功功率的控制与输入电流消谐.电气传动,2001,(1):11—15
    [129]刘洪臣,陈希有,冯勇等.双电压合成矩阵变换器共模电压的研究.中国电机工程学报,2004,24(12):182—186
    [130]Wei, L., T.A. Lipo, A Novel Matrix Converter Topology with Simple Commutation. IEEE IAS Annual Meeting Conference Record, Chicago, IL, Oct. 2001, vol.3, pp.1749-1754.
    [131]Alfredo R. Mu noz, and Thomas A. Lipo, On Line Dead Time Compensation Technique for Open-Loop PWM-VSI Drives. IEEE Transactions on Power Electronics, v 14, n 4, July 1999, p 683-9.
    [132]Juan Manuel Guerrero, Michael Leetmaa, Fernando Briz, Antonio Zamarron, Inverter Nonlinearity Effects in High Frequency Signal Injection Based Sensorless Control Methods. IEEE Transactions on Industry Applications, v 41, n 2, March-April 2005, p 618-26.
    [133]Jong-Woo Choi, Seung-Ki Sul, A New compensation Strategy Reducing VoltageKurrent Distortion in PWM VSI Systems Operating with Low Output Voltages. IEEE Transactions on Industry Applications, v 31, n 5, p 1001-8, Sept.-Oct.1995.
    [134]王高林,于泳,杨荣峰,徐殿国,感应电机空间矢量PWM控制逆变器死区效应补偿,中国电机工程学报2008,28(15):79-83
    [135]Lazhar BenBrahim, On the Compensation of Dead Time and Zero Current Crossing for a PWM Inverter Controlled AC Servo Drive. EEE Transactions on Industrial Electronics, v 51, n 5, October 2004, p 1113-1117.
    [136]Hyun Soo Kim, Hyung Tae Moon, Myung-Joong Youn, On Line Dead Time Compensation Method Using Disturbance Observer. IEEE Transactions on Power Electronics, v 18, n 6, Nov.2003, p 1336-45.
    [137]Chan-Hee Choi,, Kyung-Rae Cho, and Jul-Ki Seok, Inverter Nonlinearity Compensation in the Presence of Current Measurement Errors and Switching Device Parameter Uncertainties. IEEE Transactions on Power Electronics, v 22, n 2, March 2007, p 576-83.
    [138]Russel J. Kerkman, David Leggate, David W. Schlegel, Effects of Parasitic on the Control of Voltage Source Inverters, IEEE Transactions on Power Electronics, v 18, n 1, Jan.2003, p 140-50.
    [139]吴茂刚,赵荣祥,汤新舟.正弦和空间矢量PWM逆变器死区效应分析与补偿. 中国电机工程学报,2006,26(12): 101-105
    [140]薄保中,刘卫国,苏彦民三电平逆变器PWM控制窄脉冲补偿技术的研究.中国电机工程学报,2005,25(10):60-64
    [141]孙尧,粟梅,夏立勋,基于最优马尔可夫链的双级四脚矩阵变换器随机载波调制策略,中国电机工程学报,2009,29(6):8-14
    [142]Lars Helle, Kim B. Larsen, Allan Holm Jorgensen, Stig Munk-Nielsen, and Frede Blaabjerg, valuation of Modulation Schemes for Three-Phase to Three-Phase Matrix Converters. IEEE Transactions on Industrial Electronics, v 51, n 1, Feb.2004, p 158-71.
    [143]Stankovic A M, Verghese G C, Perreault D J. Randomized modulation of power converters via Markov chains. IEEE Transactions on Control Systems Technology,1997,5(1):61-73.
    [144]Jie Chang; Anhua Wang, Experimental development and evaluations of VF-input high-frequency AC-AC converter supporting distributed power generation, IEEE Transactions on Power Electronics, v 19, n 5, Sept.2004, p 1214-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700