用户名: 密码: 验证码:
液体火箭发动机涡轮泵健康监控关键技术及系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从人类发射第一颗人造地球卫星以来,航天技术的发展十分迅速并取得了举世瞩目的成就,但同时也对液体火箭发动机提出了更高的要求,迫切需要提高其可靠性和安全性。涡轮泵是液体火箭发动机的重要组件,由于工作在极端恶劣的物理环境中,一旦出现故障,会迅速扩展演化,严重威胁发动机的安全。涡轮泵健康监控技术及系统的目标是及时发现故障,并结合相应的控制措施,以有效缓解故障劣化,减小故障对发动机乃至整个地面试车台的影响。因此,涡轮泵健康监控关键技术及系统研究对于液体火箭发动机地面综合试车的安全保障具有重要意义。
     本文针对目前液体火箭发动机地面试车中涡轮泵健康监控存在的主要问题,在国家863课题和国家自然科学基金项目的支持下,采用理论与应用相结合的方法,开展涡轮泵健康监控关键技术及系统研究。论文完成的主要工作包括:
     1.详细分析了液体火箭发动机健康监控技术及系统的研究现状,论述了其发展方向,探讨了目前我国液体火箭发动机涡轮泵健康监控需要突破的一些主要关键技术,即启动过程监控技术、稳态工作过程突变故障检测技术、试车后海量数据信息提取技术以及健康监控系统构建技术。
     2.研究并提出涡轮泵启动过程信号特征提取与监控方法
     (1)针对涡轮泵启动过程转速变化造成的振动特征提取困难,研究并实现了基于数字重采样的计算阶比分析方法,有效计算和提取了转速和阶比特征。
     (2)提出了基于转速特征和阶跟踪特征的涡轮泵启动过程信号监控方法,并通过涡轮泵历史试车数据验证了方法的有效性。
     (3)结合支持向量回归技术,提出了基于非线性模型和转速安全带的涡轮泵启动过程故障检测方法,并通过涡轮泵试车数据对方法进行了验证。
     发动机热试车数据验证表明,基于数字重采样的计算阶比分析方法以及基于转速和阶比特征的监控方法可在启动过程有效识别出涡轮泵存在的早期故障,为涡轮泵工作全过程的故障检测提供了一条有效途径。
     3.研究并提出基于多变换域特征的涡轮泵稳态过程突变故障自适应检测算法
     (1)在分析涡轮泵突变故障机理与振动特征的基础上,选择了可有效反映突变故障的多个时域和频域特征,提出了转速波动情况下特征频率的阶域提取方法。
     (2)研究了特征阈值模型和自适应计算理论,根据工程实际,改进与实现了基于多时域特征的突变故障自适应检测算法。
     (3)研究了频域红线算法的原理,实现了特征频率成分的幅值跟踪,提出了基于特征频率的突变故障自适应红线检测算法。
     发动机热试车数据验证表明,阶域提取方法可有效提取稳定的特征频率成分,为解决转速波动造成的特征谱线提取困难提供了一条有效的途径;基于多时域特征的自适应检测算法能避免振动过小引起的误报警,与传统方法相比,更适用于涡轮泵稳态过程的突变故障检测;而基于特征频率的自适应红线检测算法可以有效检测出涡轮泵叶片脱落等突变故障。
     4.研究并提出基于流形学习的涡轮泵试车后健康分析方法
     (1)在深入研究流形学习的数学描述、基本思想和主要方法的基础上,提出了一种从海量试车数据中提取有用信息的新策略。
     (2)描述了数据的流形特征,分析了其用于涡轮泵试车数据异常识别的有效性,提出了一种基于流形特征的海量数据异常识别算法,并通过仿真和涡轮泵试车数据对算法进行了验证。
     研究表明,通过本文算法提取海量数据的流形特征,数据量可大大约简,同时利用特征空间中流形不同区域的差别,可实现涡轮泵正常和异常状态的识别。
     5.研究了涡轮泵健康监控系统构建技术
     (1)针对监控系统的小型化需求,提出了基于数字信号处理器(DSP)的新型嵌入式监控系统解决方案,并进行了软硬件设计,构建了实时健康监控子系统。
     (2)集成了多变换域分析和维数约简方法,构建了涡轮泵试车后健康分析子系统。
     研究表明,基于DSP的原型子系统具备涡轮泵健康状态的实时监控能力,能够实时计算转速、提取振动信号的时域和频域特征,并进行故障检测;试车后健康分析子系统能更深入地分析和进一步确认涡轮泵的运行状态。
     综上所述,本文对液体火箭发动机涡轮泵健康监控关键技术及系统进行了深入的研究工作:针对启动过程信号特征提取的困难,提出了涡轮泵启动过程信号监控方法;在提取稳态过程振动信号多变换域特征的基础上,提出了涡轮泵稳态过程突变故障的自适应检测算法;深入研究流形学习方法,提出了基于流形特征的涡轮泵海量试车数据异常识别算法;设计和构建了涡轮泵健康监控原型系统,并通过了历史试车数据的验证和现场热试车的考核。本文的研究工作,可为开展液体火箭发动机和可重复使用发动机健康监控技术研究及系统研制,提供学术参考和工程借鉴。
Since the first man-made earth satellite revolves round the earth, the space technology is developing rapidly and its achievements have attracted worldwide attention. Meanwhile, it is necessary to enhance the reliability and security of liquid-propellant rocket engine (LRE). Turbopump is the important component of LRE. Because of its execrable working circumstance, its faults evolve very fast and severely endanger the safety of LRE. The goal of health monitoring technology and system for turbopump is to detect faults in time. With various control measures, the system can mitigate faults deterioration and diminish their impact on engine and ground test-bed. Thus, the research on health monitoring technology and system for turbopump is of importance to guarantee the safety of LRE in the synthetic ground test.
     Aiming at the existing principal problem of turbopump health monitoring in LRE ground test, granted by National 863 Project and Natural Science Foundation of China (NSFC), this dissertation carries out the research on health monitoring technology and system for turbopump combining theory with application. The main contents and innovative work can be summarized as follows:
     1. The art of state of LRE health monitoring technology and system is analyzed in detail. Based on this, their developing trend is described and the key techniques that need to be resolved presently for LRE turbopump health monitoring are investigated. These techniques consist of the monitoring technology in start-up process, the abrupt fault detection technology in steady working process, the information extraction technology for post-test mass data and the system construction technology for turbopump health monitoring.
     2. The feature extraction and monitoring methods for turbopump start-up process signal are studied and proposed.
     (1) The variation of rotational speed in turbopump start-up process presents difficulty to vibration feature extraction. For this reason, the computed order analysis method based on digital resample is studied and realized, which can compute the speed and extract order features effectively.
     (2) The turbopump start-up process monitoring methods based on the speed and order features are brought forward. With turbopump historical test data, the validity of the methods is verified.
     (3) Associating with support vector regression, the turbopump start-up process fault detection methods based on nonlinear model and speed safety belt are presented and verified with turbopump test data.
     Validated by LRE firing test data, the computed order analysis method via digital resample and the monitoring methods based on the speed and order features can recognize availably the initial failure in turbopump start-up process, which supplies an effective approach to the fault detection in the entire working process of turbopump.
     3. The adaptive detection algorithms based on multiple domain features are studied and proposed for the turbopump abrupt faults in steady working process.
     (1) After the mechanism and vibration characteristics of turbopump abrupt faults are analyzed, the multiple effective features in time domain and frequency domain are selected. Furthermore, the order domain extraction method of the feature frequency in speed fluctuating condition is put forward.
     (2) The feature threshold model and adaptive computation theory are studied. According to actual requirement, the adaptive detection algorithm based on multiple time domain features for abrupt faults is improved and realized.
     (3) The red-line algorithm in frequency domain is studied and the amplitude tracking of feature frequency components is realized. Then, the adaptive red-line detection algorithm based on feature frequency for abrupt faults is proposed.
     Validated by LRE firing test data, the order domain extraction method can effectively extract the stable feature frequency components, which supplies an effective approach to solve the difficulty of feature extraction as a result of speed fluctuation. The adaptive detection algorithm based on multiple time domain features can avoid the false alarm proceeding from undersized vibration. Compared with traditional methods, it is more applicable to the abrupt fault detection in turbopump steady process. Meanwhile, the adaptive red-line detection algorithm based on feature frequency can detect effectively the abrupt fault of turbopump blade abscission.
     4. The turbopump post-test health analysis method based on manifold learning is studied and proposed.
     (1) After the mathematical description, fundamental conception and primary methods of manifold learning are studied in depth, a new strategy for the useful information extracting from mass test data is presented.
     (2) The manifold features of data are described and the validity of the anomaly recognition for turbopump test data is analyzed. Then, a mass data anomaly recognition algorithm based on manifold features is proposed and verified with simulation and turbopump test data.
     The research shows that the quantity of data can be greatly reduced after the manifold features are extracted from mass data by the presented algorithm. In the meanwhile, the recognition for turbopump normal and abnormal state can be carried out by means of the difference among manifold regions in feature space.
     5. The system construction technology for turbopump health monitoring is studied.
     (1) Aiming at the small-sized requirement for monitoring system, a new solution for the embedded monitoring system based on digital signal processor (DSP) is presented and the soft hardware design is carried out. Then, the real-time health monitoring subsystem is built up.
     (2) The turbopump post-test health analysis subsystem is constructed by integrating multiple domain analysis with dimensionality reduction method.
     The research shows that the subsystem based on DSP has the real-time capability of monitoring turbopump health condition. It is able to compute promptly the speed, extract the vibration features in time domain and frequency domain, and then detect faults. The post-test health analysis subsystem can further analyze and confirm the running state of turbopump.
     In a summary, the key technology and system for LRE turbopump health monitoring are studied thoroughly. Aiming at the difficulty of feature extraction in start-up process, the monitoring methods for turbopump start-up process signal are proposed. The multiple domain features of vibration signal are extracted, and then the adaptive detection algorithms are presented for the turbopump abrupt faults in steady working process. After the manifold learning methods are studied in depth, the anomaly recognition algorithm based on manifold features for turbopump mass test data is brought forward. Finally, the turbopump health monitoring system is designed and built, which is verified with historical test data and LRE firing test data. It is believed that these conclusions can provide academic reference and engineering example for research and development of LRE and reusable engine health monitoring technology and system.
引文
[1]张育林,吴建军等著.液体火箭发动机健康监控技术[M].长沙:国防科技大学出版社.1998.
    [2]总装备部情报研究所.1990~2002年各国运载火箭动力系统故障情况[M].北京:中国国防科技信息中心,2003.
    [3]张振鹏.液体发动机故障检测与诊断中的基础研究问题[J].推进技术,2002,23(5):353-359.
    [4]陈启智.液体火箭发动机故障检测与诊断研究的若干进展[J].宇航学报,2003,24(1):1-10.
    [5]Jue F, Kuck F. Space shuttle main engine (SSME) options for the future shuttle [R]. AIAA-2002-3758,2002.
    [6]杨尔辅,张振鹏,崔定军.液发推力室和涡轮泵故障检测与诊断技术研究[J].北京航空航天大学学报,1999,25(5):619-622.
    [7]Fiorucci T R, Lakin II D R, Reynolds T D. Advanced Engine Health Management Applications of the SSME Real-time Vibration Monitoring System [R]. AIAA-2000-3622,2000.
    [8]谢光军.液体火箭发动机涡轮泵实时故障检测技术及系统研究[D].长沙:国防科学技术大学,2006.
    [9]Hawman M W. Health Monitoring System for the SSME—Program Overview [R].AIAA-90-1987,1990.
    [10]Hawman M W, et al. Framework for a Space Shuttle Main Engine Health Monitoring System [R]. NASA-CR-185224,1990.
    [11]Ruiz C A, Hawman M W, et al. Algorithms for real-time fault detection of the Space Shuttle Main Engine [R]. AIAA 92-3167,1992.
    [12]Norman A M, Coleman J. Rocketdyne safety algorithm—space shuttle main engine fault detection [R]. N95-10147,1994.
    [13]Norman A M, Coleman J, Valentine P, et al. Development of real-time model based safety monitoring algorithm for the SSME [R]. AIAA-92-3165,1992.
    [14]Mason J R, Southwick R D. Large liquid rocket engine transient performance simulation system [R]. N91-24340,1991.
    [15]吴建军,张育林,陈启智.液体火箭发动机启动过程实时在线故障检测算法[J].推进技术,1996,17(6):24-28.
    [16]黄敏超.液体火箭发动机故障的神经网络诊断研究[D].长沙:国防科学技术大学,1998.
    [17]李大鹏,王小军.液体火箭发动机启动过程检测研究[J].导弹与航天运载技术,2005,1:1-5.
    [18]黄强,刘洪刚,谢廷峰,吴建军.某型火箭发动机起动过程实时故障检测算法研究[J].火箭推进,2006,32(6):52-55.
    [19]程谋森.液氢液氧发动机预冷与启动过程模型及PVM仿真研究[D].长沙:国防科学技术大学,2000.
    [20]董文华,于衍华,朱恒伟.液体火箭发动机试验起动过程故障检测算法研究[J].推进技术,1997,1 8(1):58-60.
    [21]朱恒伟,王克昌,陈启智.基于数据统计的液体火箭发动机地面试车故障检测算法[J].推进技术,1997,18(1):43-46,52.
    [22]谭松林,赵万明,毛根旺.液氧煤油火箭发动机起动故障检测[J].航空动力学报,2005,20(4):702-706.
    [23]李应红,尉询楷.基于约简遗传规划的线参数模型及在航空发动机起动建模中的应用[J].中国航空学报,2006,19(4):295-303.
    [24]王艳梅,胡小平,李舟军.利用关联规则检测液体火箭发动机启动关机过程的故障[J].火箭推进,2006,32(1):19-23.
    [25]闻邦椿等主编.高等转子动力学——理论、技术与应用[M].北京:机械工业出版社,1999.
    [26]屈梁生,何正嘉.机械故障诊断学[M].上海:上海科技出版社,1986.
    [27]虞和济,韩庆大,原培新编.振动诊断的工程应用(实例汇集)[M].机械故障诊断丛书,北京:冶金工业出版社,1992.
    [28]温熙森,陈循,唐丙阳.机械系统动态分析理论与应用[M].长沙:国防科技大学出版社,1998.
    [29]Lopatinskaia E, Zhu J, Mathew J. Monitoring Varying Speed Machinery Vibrations—Ⅰ The Use of Non-stationary Recursive Filters [J]. Mechanical Systems and Signal Processing,1995,9(6):635-645.
    [30]Lopatinskaia E, Zhu J, Mathew J. Monitoring Varying Speed Machinery Vibrations—Ⅱ Recursive Filters and Angle Domain [J]. Mechanical Systems and Signal Processing,1995,9(6):647-655.
    [31]张正松,傅尚新,冯冠平等.旋转机械振动监测及故障诊断[M].北京:机械工业出版社,1991.
    [32]韩捷,张瑞林.旋转机械故障机理及诊断技术[M].北京:机械工业出版社,1997.
    [33]盛兆顺,尹琦岭.设备状态监测与故障诊断技术及应用[M].北京:化学工业出版社,2003.
    [34]Blough J R. A Survey of DSP Methods for Rotating Machinery Analysis, What is Needed, What is Available [J]. Journal of Sound and Vibration,2003,262: 707-720.
    [35]Potter R, Gribler M. Computed Order Tracking Obsoletes Older Methods [C]. Proceedings of the Society of Automotive Engineers Noise and Vibration Conference, Traverse City, MI, SAE-891131,1989.
    [36]Potter R. A New Order Tracking Method for Rotating Machinery [J]. Sound and Vibration Magazine,1990,24(9).
    [37]Hewlett Packard. Appendix A—Computed Synchronous Resampling and Order Tracking, Effective Machinery Measurements Using Dynamic Signal Analyzers. Application Note 243-1,1994:64-69.
    [38]Potter R. Tracking and Resampling Method and Apparatus for Monitoring the Performance of Rotating Machines [P]. United States Patent:4912661, March 27, 1990.
    [39]McDonald D, Gribler M. Digital Resampling—a Viable Alternative for Order Domain Measurements of Rotating Machinery [C]. Proceedings of International Modal Analysis Conference, Italy,1991:1270-1275.
    [40]Kirtley N. The Fine Art of Order Tracking. Hewlett Packard Realtime Update, Spring 1994:1-4.
    [41]Hewlett Packard. Realtime Basics:Order Analysis. Hewlett Packard Realtime Update, Fall 1996-Winter 1997:8-9.
    [42]Fyfe K R, Munck E D S. Analysis of Computed Order Tracking [J]. Mechanical Systems and Signal Processing,1997,11(2):187-205.
    [43]Bossley K M, Mckendrick R J, Harris C J, Mercer C. Hybrid Computed Order Tracking [J]. Mechanical Systems and Signal Processing,1999,13(4):627-641.
    [44]Blough J R. Improving the Analysis of Operating Data on Rotating Automotive Components [D]. University of Cincinnati,1998.
    [45]Vold H, Leuridan J. High Resolution Order Tracking at Extreme Slow Rates, Using Kalman Tracking Filters [C]. Proceedings of the SAE Noise and Vibration Conference, Traverse City, MI, SAE-931288,1993.
    [46]Leuridan J, Vold H, Kopp G, Moshrefi N. High Resolution Order Tracking Using Kalman Tracking Filters—Theory and Applications [C]. Proceedings of the Society of Automotive Engineers Noise and Vibration Conference, Traverse City, MI,SAE-951332,1995.
    [47]Vold H, Mains M, Blough J R. Theoretical Foundations for High Performance Order Tracking with the Vold-Kalman Filter [C]. Proceedings of Society of Automotive Engineers Noise and Vibration Conference, SAE-972007,1997.
    [48]Vold H, Deel J. Vold-Kalman Order Tracking:New Methods for Vehicle Sound Quality and Drive Train NVH Applications [C]. Proceedings of Society of Automotive Engineers Noise and Vibration Conference, SAE-972033,1997.
    [49]Vold H, Herlufson H, Mains M, Corwin-Renner D. Multi Axle Order Tracking with the Vold-Kalman Tracking Filter [J]. Sound and Vibration Magazine,1997, 13(5):30-34.
    [50]Gade S, Herlufsen H, Konstantin-Hansen H, Vold H. Characteristics of the Vold-Kalman Order Tracking Filter. Bruel & Kjaer Technical Review,1999.
    [51]Albright M, Qian S. A Comparison of the Newly Proposed Gabor Order Tracking Technique vs. Other Order Tracking Methods [C]. SAE Noise and Vibration Conference,2001.
    [52]朱继梅.非稳态振动信号分析[J].振动与冲击,2000,19(2):87-89,39.
    [53]徐敏强,黄文虎,张嘉钟.旋转机械高速启动过程振动信号分析方法的研究[J].振动工程学报,2000,13(2):216-221.
    [54]吕琛,宋希庚,邹积斌.振动、噪声信号的阶比分析与DSP实现[J].数据采集与处理,2001,16(4):478-482.
    [55]吕琛,宋希庚,邹积斌.基于DSP的振动信号阶比与时域同步平均分析[J].振动与冲击,2002,21(2):53-59.
    [56]郭瑜,秦树人,汤宝平,纪跃波.基十瞬时频率估计的旋转机械阶比跟踪[J].机械工程学报,2003,39(3):32-36.
    [57]郭瑜,秦树人.旋转机械阶比分析中的零相位跟踪滤波法[J].中国机械工程,2003,14(23):2041-2046.
    [58]郭瑜,秦树人,汤宝平.基于分段重叠零相位滤波的阶比跟踪滤波法[J].振动工程学报,2003,16(4):399-403.
    [59]郭瑜,秦树人.基于瞬时频率估计及时频滤波的阶比分量提取[J].中国机械工程,2003,14(17):1506-1510.
    [60]Yang J M, Qin S R, Ji Z, Guo Y. Development of Virtual Instrument in Characteristic Analysis of Rotating Machinery Based on Instantaneous Frequency Estimation [J]. Chinese Journal of Mechanical Engineering,2004,17:490-493.
    [61]杨炯明,秦树人,季忠.旋转机械阶比分析技术中阶比采样实现方式的研究[J].中国机械工程,2005,16(3):249-253.
    [62]Qin S R, Yang J M, Ji Z. The Study for the Implementation of Order Tracking in Order Analysis Technique of Rotating Machinery [C]. Proceedings of the Eleventh International Congress on Sound and Vibration (ICSV11), St. Petersburg, Russia, Jul 5-8,2004, Vol.2:903-910.
    [63]杨树莲,霍亮生.数控机床主轴在线故障诊断新方法的实现[J].机床与液压,2003,5:117-120.
    [64]贾继德,刘志刚,张平等.基于阶比双谱分析的发动机故障特征提取[J].内燃机学报,2004,22(5):462-469.
    [65]李辉,郑海起,唐力伟.基于倒阶次谱分析的齿轮故障诊断研究[J].振动与冲击,2006,25(5):65-68.
    [66]李辉,郑海起,潘宏侠.基于阶次跟踪和角域平均的齿轮裂纹故障诊断[J].中北大学学报,2007,28(1):27-31.
    [67]康海英,栾军英,郑海起等.基于阶次包络谱的轴承故障诊断研究[J].振动与冲击,2006,25(5):166-167,174.
    [68]康海英,祁彦洁,栾军英,郑海起.基于小波包和阶次包络谱的轴承故障诊断[J].轴承,2007,2:37-40.
    [69]康海英,栾军英等.阶次跟踪在齿轮磨损中的应用[J].振动与冲击,2006,25(4):112-113.
    [70]孔庆鹏,宋开臣,陈鹰.发动机变速阶段振动信号时频分析阶比跟踪研究[J].振动工程学报,2005,18(4):448-452.
    [71]孔庆鹏,宋开臣,陈鹰.最小二乘自适应滤波旋转机械阶比跟踪研究[J].浙江大学学报(工学版),2006,40(9):1648-1651.
    [72]Wu J D, Huang C W, Chen J C. An Order-tracking Technique for the Diagnosis in Rotating Machineries Using a Variable Step-size Affine Projection Algorithm [J]. NDT&E International,2005, (38):119-127.
    [73]Luo C F, Whitehead B A, Wu K. Anomaly Detection of Turbopump Vibration in Space Shuttle Main Engine Using Statistics and Neural Networks [R]. AIAA-93-1777,1993.
    [74]O'Reilly D. System for Anomaly and Failure Detection (SAFD) System Development [R]. NASA-CP-193907,1993.
    [75]Biggs R. A Probabilistic Risk Assessment for the Space Shuttle Main Engine with a Turbomachinery Vibration Monitor Cutoff System [R]. AIAA-90-2712, 1990.
    [76]Dvidson M, Stephens J. Advanced Health Management System for the Space Shuttle Main Engine [R]. AIAA-2004-3912,2004.
    [77]王慧.基于振动参量的涡轮泵健康状况判别方法的研究[D].北京:中国航天科技集团公司,2003.
    [78]朱恒伟.液体推进剂火箭发动机地面试车故障检测与诊断研究[D].长沙:国防科学技术大学,1997.
    [79]杨思锋,董文华,朱恒伟.液体火箭发动机地面试验状态监控系统研究.推进技术,1997,18(1):47-52.
    [80]谢光军,胡茑庆,温熙森等.涡轮泵实时故障检测的短数据均值自适应阈值算法.推进技术,2005,26(3):202-205.
    [81]Kanenori K, Akio K, Katsuto K. Data Analysis for Rocket Engine Health Monitoring System [R]. AIAA-95-2348,1995.
    [82]任海峰,胡小平,魏鹏飞等.独立分量分析在液体火箭发动机故障检测中的应用.国防科技大学学报,2004,26(1):13-16.
    [83]杨尔辅,徐用懋,张振鹏.液体火箭发动机动态数据处理的小波分析方法.推进技术,2001,22(2):104-107,121.
    [84]Koutsoukos X, Kurien J, Zhao F. Estimation of Distributed Hybrid Systems Using Particle Filtering Methods [C].//Maler 0 A, Pnueli A (eds.). Hybrid Systems Computation and Control (HSCC'03), Lecture Notes in Computer Science Vol.2623. New York:Springer-Verlag,2000:298-313.
    [85]Yu D R, Wang J B. Leak Fault Detection of Liquid Rocket Engine Based on Strong Tracking Filter [J]. Journal of Propulsion and Power,2002,18(2).
    [86]Ananthasayanam M R. Fascinating Perspectives of State and Parameter Estimation Techniques [R]. AIAA-2000-4319,2000.
    [87]Wetlesen D C, Siegel S G, Cohen K, et al. Sensor Based Proper Orthogonal Decomposition State Estimation in the Presence of Noise [R]. AIAA-2005-298, 2005.
    [88]Siegel S G, Cohen K, Seidel J, et al. Short Time Proper Orthogonal Decomposition for State Estimation of Transient Flow Fields [R]. AIAA-2005-296,2005.
    [89]刘洪刚.液体火箭发动机智能故障诊断理论与策略研究[D].长沙:国防科学技术大学,2002.
    [90]John P B, et al. Rocket Engine Health Monitoring Using a Model-based Approach [R]. AIAA-2001-3764,2001.
    [91]Gangadharan S, Sudermann J, Marlowe A, et al. Parameter Estimation of Spacecraft Fuel Slosh Model [R]. AIAA-2004-1965,2004.
    [92]符文星等.参数估计法在运载火箭动力系统故障诊断中的应用[J].弹箭与制导学报,2007,27(1):181-183.
    [93]王建波.液体火箭发动机泄漏故障机理及检测方法的研究[D].哈尔滨:哈尔滨工业大学,2000.
    [94]张纯良,张振鹏,祝刚.利用改进时序模型提取空间推进系统特征参数[J].推进技术,2002,23(6):457-459,467.
    [95]Duyar A, Eldem V, Merrill W, et al. A Simulated Dynamic Model of the Space Shuttle Main Engine [R]. N91-23340,1991.
    [96]Duyar A, Eldem V, Merrill W, et al. Fault Detection and Diagnosis in Propulsion Systems:a Fault Parameter Estimation Approach [J]. Journal of Guidance, Control, and Dynamics,1994,17(1).
    [97]刘昆.分级燃烧循环液氧/液氢发动机系统分布参数模型与通用仿真研究[D].长沙:国防科学技术大学,1999.
    [98]Kolcio K, Helmicki A J. Propulsion System Modeling for Condition Monitoring and Control Part Ⅱ—Application to the SSME [R]. AIAA-94-3228,1994.
    [99]樊久铭,王秋生等.模态区间在液体火箭发动机故障诊断中的应用[J].哈尔滨工业大学学报,2006,38(9):1406-1409.
    [100]张炜,张玉祥,黄先祥.基于神经网络的涡轮泵多故障诊断[J].推进技术, 2003(1):17-20,39.
    [101]王志武.基于神经网络的液体火箭发动机泄漏检测方法.火箭推进[J],2005,31(1):55-58.
    [102]Wheeler K R, Dhawan A P. SSME Sensor Modeling Using Radial Basis Function Neural Networks [R]. AIAA-94-3299,1994.
    [103]杨尔辅,徐用懋,张振鹏.一种火箭推进系统非线性动态神经网络模型[J].推进技术,2001,22(1):50-53.
    [104]吴建军.液体火箭发动机故障检测与诊断研究[D].长沙:国防科学技术大学,1995.
    [105]邱忠.涡轮泵试车数据分析及健康状态判别方法研究[D].长沙:国防科学技术大学,2005.
    [106]杨尔辅,张振鹏,刘国球等.应用BP-ART混合神经网络的推进系统状态监控系统(英文)[J].推进技术,1999,20(6):10-15.
    [107]胡雷.涡轮泵试车数据分析及新异类状态检测技术研究[D].长沙:国防科学技术大学,2005.
    [108]Guo T H, Merrill W, Duyar A. Real-time Diagnostics for a Reusable Rocket Engine [R]. NASA-TM-105792,1992.
    [109]Modesitt K L. Inductive Knowledge Acquisition Experience with Commercial Tools for Space Shuttle Main Engine Testing [R]. N90-27326,1990.
    [110]Perry S G, et al. An Expert System Approach to Turbopump Health Monitoring [R].A88-48308,1988.
    [111]Engle J, Bogart D, Marinuzzi J. Prelaunch Expert System for Space Shuttle Propulsion System Health Monitoring [R]. AIAA-90-1888,1990.
    [112]Ali M, Cupta U K. An Expert System for Fault Diagnosis in a Space Shuttle Main Engine [R]. AIAA-90-1890,1990.
    [113]Zakrajsek J F. The Development of a Post-test Diagnostic System for Rocket Engines [R]. AIAA-91-2528,1991.
    [114]Bickmore, Bickford R L. Areojet's Titan Health Assessment Expert System [R]. AIAA-92-3330,1992.
    [115]Surko P, Zakrajsek J F. PTDS:Space Shuttle Main Engine Post Test Diagnostic Expert System for Turbopump Condition Monitoring [R]. SAE-922059,1992.
    [116]Guo T H. A SSME Pressure Oxidizer Turbopump Diagnostic System Using G2TM Real-time Expert System [R]. N92-13717,1992.
    [117]Martin O H, et al. Enhancements to the Engine Data Interpretation System (EDIS) [R].NASA-CR-193363,1993.
    [118]刘冰.液体火箭发动机智能化故障诊断与健康评估系统研究[D].长沙:国防科学技术大学,1999.
    [119]张纯良,张振鹏,杨尔辅等.空间推进系统故障诊断专家系统研究[J].航空 动力学报,2004,19(5):718-723.
    [120]Tulpule S, Galinaitis W S. Health Monitoring System for the SSME—Fault Detection Algorithms [R]. AIAA-90-1988,1990.
    [121]Maul W A. Multi-sensor Analysis Techniques for SSME Safety Monitoring [R]. AIAA-90-1990,1990.
    [122]谢涛.基于进化计算的液体火箭发动机故障诊断技术研究[D].长沙:国防科学技术大学,1998.
    [123]谢涛,陈火旺,张育林.演化策略用于高维故障样本集最优统计聚类分析[J].推进技术,2000,21(5):34-37,52.
    [124]刘开第,庞彦军,张永强等.基于遗传聚类的一种故障诊断方法[J].吉林大学学报(工业版),2004,7:230-233.
    [125]Tenenbaum J B, Silva V de, Langford J C. A Global Geometric Framework for Nonlinear Dimensionality Reduction [J]. Science,2000,290:2319-2323.
    [126]Roweis S T, Saul L K. Nonlinear Dimensionality Reduction by Locally Linear Embedding [J]. Science,2000,290:2323-2326.
    [127]Cox T, Cox M. Multidimensional Scaling [M]. London, UK:Chapman & Hall, 1994.
    [128]Belkin M, Niyogi P. Laplacian Eigenmaps for Dimensionality Reduction and Data Representation [J]. Neural Computation,2003,15(6):1373-1396.
    [129]Zhang Z Y, Zha H Y. Principal Manifolds and Nonlinear Dimensionality Reduction via Local Tangent Space Alignment [J]. SIAM Journal of Scientific Computing,2005,26:313-338.
    [130]Coifman R R, Lafon S. Diffusion maps [J]. Applied and Computational Harmonic Analysis,2006,21:5-30.
    [131]Donoho D, Grimes C. Hessian Eigemnaps:New Locally Linear Embedding Techniques for High-dimensional Data [J]. Proceedings of the National Academy of Sciences,2003,100(10):5591-5596.
    [132]Hinton G, Roweis S. Stochastic Neighbor Embedding [C]. Advances in Neural Information Processing Systems 15. Cambridge, MA:MIT Press,2003:833-840.
    [133]Weinberger K Q, Saul L K. Unsupervised Learning of Image Manifolds by Semidefinite Programming [J]. International Journal Computer Vision,2006,70: 77-90.
    [134]Weinberger K Q, Packer B D, Saul L K. Nonlinear Dimensionality Reduction by Semidefinite Programming and Kernel Matrix Factorization [C].10th International Workshop on Artificial Intelligence and Statistics. New Jersey: Society for Artificial Intelligence and Statistics,2005.
    [135]Bregler C, Omohundro S M. Nonlinear Manifold Learning for Visual Speech recognition [C].1st IEEE International Conference on Computer Vision,1995: 494-499.
    [136]Geoffery E H, Peter D, Michael R. Modeling the Manifolds of Images of Handwritten Digits [J]. IEEE Trans. on Neural Networks,1997,8(1):65-74.
    [137]阳建宏,徐金梧,杨德斌等.基于主流形识别的非线性时间序列降噪方法及其在故障诊断中的应用[J].机械工程学报,2006,42(8):154-158.
    [138]Li M, Xu J W, Yang J H, Yang D B, Wang D D. Multiple Manifolds Analysis and its Application to Fault Diagnosis [J]. Mechanical Systems and Signal Processing,2009,23(8):2500-2509.
    [139]蒋全胜,贾民平,胡建中等.基于拉普拉斯特征映射的故障模式识别方法[J].系统仿真学报,2008,20(20):5710-5713.
    [140]Jiang Q S, Jia M P, Hu J Z, Xu F Y. Machinery Fault Diagnosis Using Supervised Manifold Learning [J]. Mechanical Systems and Signal Processing, 2009,23(7):2301-2311.
    [141]张熠卓,徐光华,梁霖.基于非线性流形学习的喘振监测技术研究[J].西安交通大学学报,2009,43(7):44-48.
    [142]梁霖,徐光华,贾茂林等.冲击故障特征提取的非线性流形学习方法[J].西安交通大学学报,2009,43(11):95-99.
    [143]陈启智.液体火箭推进系统健康监控技术的演变[J].推进技术,1997,18(1):1-7.
    [144]Katorgin, Boris I, et al. The RD-170, a Different Approach to Launch Vehicle Propulsion [R]. AIAA-93-2415,1993.
    [145]Matijevic Z. A Pattern-recognition based Expert System:a Prototype for Fault Diagnosis in a Liquid Propellant Rocket Engine [C]. IAF-92-0676. Washington DC,1992.
    [146]Bonnal C, et al. Future Reusable Launch Vehicles in Europe—the FLTP (Future Launchers Technologies Programme) [R]. A99-44825,1999.
    [147]张纯良.空间推进系统故障检测与诊断技术研究[D].北京:北京航空航天大学,2002.
    [148]谢廷峰.液体火箭发动机分布式健康监控系统分析与设计[D].长沙:国防科学技术大学,2003.
    [149]施宇.飞行器远程实时健康监控技术验证实验室方案研究[D].西安:西北工业大学,2004.
    [150]杨尔辅,张振鹏,刘国球等.YF-75发动机状态监控与故障诊断工程应用系统的研制[J].推进技术,1997,18(1):65-72.
    [151]于潇,廖明夫,赵冲冲.液体火箭发动机涡轮泵状态检测与故障诊断系统研究.导弹与航天运载技术,2002,258(4):54-58.
    [152]Venneri S. NASA's Space Launch Initiative [C]. Space and Aeronautics Committee on Science,2002.
    [153]Grey J. NASA's Integrated Space Transportation Plan and Orbital Space Plane Program [C]. Space and Aeronautics Committee on Science,2003.
    [154]Nemeth E. Health Management System for Rocket Engines [R]. NASA-CR-185223,1990.
    [155]Pettit C D, Barkhoudarian S, et al. Reusable Rocket Engine Advanced Health Management System:Architecture and Technology Evaluation Summary [R]. AIAA-99-2527,1999.
    [156]Erichson T J, Sue J J. Post-test Diagnostic System Feature Extraction Applied to Martin Marietta Atlas/Centaur Data [R]. AIAA-94-3224,1994.
    [157]Cost T L, Hofmann M O. Engine Data Interpretation System [R]. N91-20205, 1991.
    [158]Hoyt A W, et al. Automated Propulsion Data Screening Demonstration System [R].NASA-CR-196636,1994.
    [159]Aguilar R, Luu C, Santi L M, et al. Real-time Simulation for Verification and Validation of Diagnostic and Prognostic Algorithms [R]. AIAA-2005-3717, 2005.
    [160]Nemeth E, Anderson R. An Advanced Intelligent Control System Framework [R]. AIAA-92-3162,1992.
    [161]Dill K, Byrd T, Ballard R. NASA MC-1 Engine Development Status [R]. AIAA-2001-355,2001.
    [162]Kevin J M, Shane T S, William A M. Meeting the Challenges of Exploration Systems:Health Management Technologies for Aerospace Systems with Emphasis on Propulsion [R]. NASA/TM-2005-214026,2005.
    [163]Schwabacher M, Samuel J, Brownston L. The NASA Integrated Vehicle Health Management Technology Experiment for X-37 [C]. Proceeding of SPIE AeroSense 2002 Symposium,2002. http://ic.arc.nasa.gov/-schwabac/.
    [164]Baroth E, Powers W T, Fox J, et al. IVHM (Integrated Vehicle Health Management) Techniques for Future Space Vehicles [R]. AIAA-2001-3523, 2001.
    [165]Sanders G R, et al. System Health Management/Vehicle Health Management for Future Manned Space Systems [R]. A98-14141,1998.
    [166]Sanders G R. System Health Management/Vehicle Health Management [R]. AIAA-98-1928,1998.
    [167]Srimal W, et al. Reusable Launch Vehicle System Health Management [R]. AIAA-98-5239,1998.
    [168]William A M, et al. Addressing the Real-World Challenges in the Development of Propulsion IVHM Technology Experiment (PITEX) [R]. AIAA-2004-6361, 2004.
    [169]Paris D E, Watson M D, Trevino L D. An Intelligent Integration Framework for In-space Propulsion Technologies for Integrated Vehicle Health Management [R]. AIAA-2005-3723,2005.
    [170]Zuniga F A, Maclise D C, Romano D J, et al. Integrated Systems Health Management for Exploration Systems [R]. AIAA-2005-2586,2005.
    [171]Figueroa F, Holland R, Schmalzel J, et al. ISHM Implementation for Constellation Systems [R]. AIAA-2006-4410,2006.
    [172]Figueroa F, Morris J, Nickles D, et al. Intelligent Sensors and Components for On-Board ISHM [R]. AIAA-2006-4585,2006.
    [173]Binkley J F, Cheng P G, Smith P L, Tosney W F. From Data Collection to Lessons Learned—Space Failure Information Exploitation at the Aerospace Corporation [C].1st International Forum on Integrated System Health Engineering and Management in Aerospace (ISHEM Forum 2005). Napa, CA, Nov.7-10,2005.
    [174]Waterman R D, Langwost P E, Waterman S J, Zide A. Opportunities for Launch Site Integrated System Health Engineering and Management [C].1st International Forum on Integrated System Health Engineering and Management in Aerospace (ISHEM Forum 2005). Napa, CA, Nov.7-10,2005.
    [175]Patterson-Hine A, Aaseng G, Biswas G, et al. A Review of Diagnostic Techniques for ISHM Applications [C].1st International Forum on Integrated System Health Engineering and Management in Aerospace (ISHEM Forum 2005). Napa, CA, Nov.7-10,2005.
    [176]Roemer M J, Byington C S, Kacprzynski G J, Vachtsevanos G. An Overview of Selected Prognostic Technologies with Reference to an Integrated PHM Architecture [C].1st International Forum on Integrated System Health Engineering and Management in Aerospace (ISHEM Forum 2005). Napa, CA, Nov.7-10,2005.
    [177]胡海峰.液体火箭发动机涡轮泵健康监控系统及数据管理的研究[D].长沙:国防科学技术大学,2004.
    [178]Lorenzo C F, Merrill W C. An Intelligent Control System for Rocket Engines: Need, Vision and Issues [J]. IEEE Control System,1991,11:42-46.
    [179]应桂炉,万隆明.氢涡轮泵转子轴向振动[J].强度与环境,1994(3):16-22,37.
    [180]应桂炉,王梦魁.氢涡轮泵转子非线性振动[J].强度与环境,1994(1):1-7.
    [181]应桂炉.氢涡轮泵试验振动分析[J].导弹与航天运载技术,1995,217(5):40-46.
    [182]秦国军.旋转机械变速过程中的信号处理方法研究[D].长沙:国防科学技术大学,1998.
    [183]张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42.
    [184]朱宁昌主编.液体火箭发动机结构设计(下)[M].北京:宇航出版社,1994.
    [185]张远君主编.液体火箭发动机涡轮泵设计[M].北京:北京航空航天大学出版 社,1995.
    [186]刘树英,宋雪萍,闻邦椿.转子系统故障发展过程的突变[J].东北大学学报(自然科学版),2005,26(3):285-288.
    [187]陈安华,钟掘.故障转子振幅突变机理及其预测[J].湘潭矿业学院学报,1996,11(3):12-16.
    [188]徐敏等主编.设备故障诊断手册——机械设备状态监测和故障诊断[M].西安:西安交通大学出版社,1998.
    [189]盛聚,谢式千,潘承毅.概率论与数理统计(第二版)[M].北京:高等教育出版社,1989.
    [190]张贤达.现代信号处理(第二版)[M].北京:清华大学出版社,2002.
    [191]罗四维,赵连伟.基于谱图理论的流形学习算法[J].计算机研究与发展,2006,43(7):1173-1179.
    [192]Seung H S. The Manifold Ways of Perception [J]. Science,2000,290: 2268-2269.
    [193]王守觉.仿生模式识别(拓扑模式识别)——一种模式识别新模型的理论与应用[J].电子学报,2002,30(10):1417-1420.
    [194]Silva V D, Tenenbaum J B. Global Versus Local Methods in Nonlinear Dimensionality Reduction [C]. Neural Information Proceeding Systems:Natural and Synthetic. Vancouver, Canada,2002.
    [195]Jenkins O, Mataric M. A Spatio-Temporal Extension to Isomap Nonlinear Dimension Reduction [C].21st International Conference on Machine Learning. Banff, Canada,2004.
    [196]Lawrence K, Roweis S. An Introduction to Locally Linear Embedding [R]. Technical Report, Gatsby Computational Neuro-science Unit, UCL,2001.
    [197]Ridder D, Loog M, Reinders M J. Local Fisher Embedding [C].17th International Conference on Pattern Recognition. Cambridge, UK,2004.
    [198]Ridder D, Kouropteva O, Okun O, et al. Supervised Locally Linear Embedding [C]. Lecture Notes in Computer Science 2714, Springer-Verlag,2003:333-341.
    [199]Kouropteva O, Okun O, et al. Supervised Locally Linear Embedding Algorithm for Pattern Recognition [C]. Lecture Notes in Computer Science 2652, Springer-Verlag,2003:386-394.
    [200]Vapnik V N. Statistical Learning Theory [M]. Wiley, Newyork,1998.
    [201]Ustun B, Melssen W J, Buydens L M C. Visualisation and Interpretation of Support Vector Regression Models [J]. Analytica Chimica Acta,2007,595: 299-309.
    [202]Tax D, Duin R. Support Vector Data Description [J]. Machine Learning,2004, 54(1):45-66.
    [203]Zhang J, Sato T, Iai S. Support Vector Regression for On-line Health Monitoring of Large-scale Structures [J]. Structural Safety,2006,28:392-406.
    [204]Liu D J, Lin C T. Fundamental Frequency Estimation Based on the Joint Time-frequency Analysis of Harmonic Spectral Structure [J]. IEEE Transactions on Speech and Audio Processing,2001,9(6):609-621.
    [205]Cohen L. Time-Frequency Analysis [M]. Englewood Cliffs, New Jersey: Prentice-Hall,1995.
    [206]Qian S, Chen D P. Joint Time-frequency Analysis [J]. IEEE Signal Processing Magazine,1999,16(2):52-67.
    [207]Mallat S. A Theory for Multiresolution Signal Decomposition:the Wavelet Representation [J]. IEEE Pattern Anal. and Mathchine Intell.,1989,11(7): 674-693.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700