用户名: 密码: 验证码:
自发性高血压大鼠阻力血管节律性舒缩的特征及其对降压药的反应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景和目的
     血管舒缩活动(vasomotion)指的是血管组织张力及内径的周期性、节律性收缩与舒张现象,具有一定的频率与振幅,小阻力血管及大弹力血管均可在体内、体外自发产生或是在管腔内压改变、受机械力牵张、血管收缩激动剂等刺激下发生。部分研究认为不同血管组织节律性舒缩活动的产生与电压依赖性钙通道、胞膜电位及由IP3受体介导的胞内钙离子振荡性变化、磷脂酶C及磷脂酶A2通路等密切相关,而在高血压病理状态下,如自发性高血压大鼠肠系膜动脉及先兆子痫患者网膜动脉等阻力血管的节律性舒缩活动振幅均较血压正常者显著升高,研究显示可能与高血压状态下血管平滑肌细胞间缝隙连接增多、内皮一氧化氮(NO)功能不足等相关,但具体机制尚待进一步明确,此外,高血压时血管平滑肌细胞钙内流显著增加也可能与节律性舒缩幅度的增强有关。
     近年研究发现瞬时型感受器电位通道(transient receptor potential channels, TRPC)家族可介导血管平滑肌细胞钙离子内流,该非选择性阳离子通道可分为TRPC1、2、3、4、5、6、7等几个亚型,在高血压状态下,大鼠单核细胞TRPC3及动脉平滑肌细胞TRPC6蛋白表达和介导的钙离子内流显著增加。钙池操纵钙离子通道(store-operated calcium entry channels, SOCE)是一类由胞内内质网储存钙耗竭而激活的钙离子内流通道,有研究显示SOC的分子组成即是TRPC中的1、3和5亚型,而现已明确节律性舒缩的形成与肌浆网储存钙的周期性释放、再摄取形成的胞内钙离子振荡性变化密切相关,另有研究表明,TRPC通道在ATP诱导的人类脐带平滑肌细胞钙离子振荡中起作用,故TRPC可能在肌浆网的周期性耗竭、再充盈过程中被激活及失活关闭,由此介导的钙离子周期性内流也可能在节律性舒缩中起部分作用。
     血管紧张素Ⅱ1型受体拮抗剂(ARB)及钙离子拮抗剂(CCB)作为临床上广泛应用的降压药,不仅可有效降低血压,还可改善心血管内皮功能、逆转高血压所致心血管重构损害,有研究显示,长期应用ARB对SHR大鼠进行干预后其主动脉TRPC3通道蛋白表达下降,采用RNA干扰的方法抑制TRPC3在血管平滑肌细胞上的表达后AngⅡ介导的钙离子内流显著减少,但该二种降压药对高血压病理状态下异常的阻力血管节律性舒缩是否有影响尚不清楚,本实验将重点研究应用坎地沙坦、替米沙坦及氨氯地平对SHR大鼠长期干预后对其阻力血管节律性舒缩的影响,并对发生影响的可能机制进行初步探讨。
     对象与方法
     一、动物分组:
     体重250-260g健康3月龄雄性SHR大鼠40只,随机分为4组,每组10只,分别为SHR对照组、替米沙坦干预组(5mg/kg/d)、坎地沙坦干预组(4mg/kg/day)及氨氯地平干预组(10mg/kg/day);健康3月龄雄性WKY大鼠10只为血压正常对照组,干预组均将药物混于少量蒸馏水中灌胃给药,共干预16周,对照组给予等量蒸馏水灌胃。
     二、血压测量:
     测定各组大鼠清醒状态下尾动脉收缩压,分别在干预开始时和干预后每4周测定,动态观察各组血压变化。
     三、血管环实验:
     干预结束后采用小血管张力测量仪测定各组大鼠肠系膜动脉节律性舒缩振幅,并观察TRPC通道阻断剂对节律性舒缩的影响。
     四、免疫荧光染色:
     将SHR大鼠肠系膜动脉外周脂肪结缔组织仔细分离后免疫荧光染色证实TRPC通道蛋白在平滑肌细胞上的表达。
     五、蛋白表达检测:
     提取各组大鼠肠系膜动脉蛋白,应用Western blot方法分析各组大鼠肠系膜动脉TRPC1、TRPC3、TRPC4、TRPC5及TRPC6的蛋白表达情况。
     结果
     1.与血压正常WKY大鼠相比,SHR大鼠肠系膜动脉节律性舒缩幅度显著增强(65.5±7.1% vs. 2.2±0.5%; n=6, p<0.01);
     2.与血压正常WKY大鼠相比,SHR大鼠肠系膜动脉TRPC1、TRPC3及TRPC5的蛋白表达显著增加(TRPC1表达:WKY 1.00±0.13 vs. SHR 1.60±0.10; p<0.01; TRPC3表达:WKY 1.00±0.18 vs. SHR 1.70±0.26; p<0.05; TRPC5表达:WKY 1.00±0.13 vs. SHR 1.41±0.10; p<0.05; each n=6);
     3.TRPC通道阻断剂可部分抑制SHR大鼠肠系膜动脉显著增强的节律性舒缩振幅,使其舒缩节律发生紊乱(Gd3+:从107.3±10.7%降至63.1±10.6%;2-APB:从105.2±13.9%降至30.3±2.5%;SKF96365:从109.9±15%降至23.5±9.6%,n=6,p<0.05);
     4.坎地沙坦、替米沙坦及氨氯地平干预组SHR大鼠血压均显著下降(SHR对照组:222±7mmHg;坎地沙坦组:123±7mmHg;替米沙坦组:115±6mmHg;氨氯地平组:122±5 mmHg;p<0.01;n=10),但坎地沙坦及替米沙坦组SHR大鼠肠系膜动脉节律性舒缩幅度显著减小,而氨氯地平干预组无明显改变(SHR对照组:66±7%;坎地沙坦组:14±3%;替米沙坦组:8±2%;氨氯地平组:57±7%,p<0.01;n=10);同时,坎地沙坦、替米沙坦干预组肠系膜动脉TRPC1、TRPC3及TRPC5蛋白表达显著下降(p<0.05;n=5),而氨氯地平干预组无明显改变(p>0.05;n=5)。
     结论
     1.SHR大鼠肠系膜动脉TRPC1、TRPC3及TRPC5通道蛋白表达显著增强,可能与其节律性舒缩幅度的显著增加有关;
     2.坎地沙坦、替米沙坦及氨氯地平均可显著降低SHR大鼠血压,但只有坎地沙坦、替米沙坦可降低SHR大鼠肠系膜动脉TRPC1、TRPC3及TRPC5通道蛋白表达及节律性舒缩幅度;
Background and Objective: Vasomotion refers to the phenomenon of cyclical, rhythmical change of diameter and contractions with a certain frequency and amplitude in vascular tissue. Vasomotion occurs in small resistance vessels as well as in larger arteries both in vivo and in vitro either spontaneously or in response to pressure, stretch or application of vasoconstrictor agonists. Part of the studies have described a critical role for the voltage-dependent calcium channels, membrane potential, the IP3 receptor-mediated oscillatory change of intracellular calcium, phospholipase C and phospholipase A2 pathway on the vasomotion in different vessels. In pathological conditions of hypertension, such as in mesenteric artery from spontaneously hypertensive rat or from patients with pre-eclampsia, the amplitude of vasomotion in resistance artery increased significantly as compared with those of normal blood pressure. According to some studies, such phenomenon may be related to the increased gap junctions among vascular smooth muscle cells or the nitric oxide (NO) deficiency in endothelium, but the exact mechanism remains to be further defined. In addition, the significantly increased calcium influx in the vascular smooth muscle cells may also contribute to the enhanced vasomotion under the condition of hypertension.
     Recent studies found that the calcium influx in vascular smooth muscle cell can be mediated by transient receptor potential channels (TRPC) family, which can be divided into TRPC1, 2, 3, 4, 5, 6, 7 subtypes. In the hypertensive state, the expressions of TRPC3 channel in mononuclear cells and TRPC6 channel in artery smooth muscle cells as well as TRPC channel mediated calcium influx were increased significantly as compared with those of normal blood pressure. Studies have showed that the molecular composition of the store-operated calcium entry channels (SOCE), in which the emptying of intracellular calcium stores activates calcium influx, are TRPC1, TRPC3 and TRPC5. Now it is clear that the oscillatory change of intracellular calcium which result from the cyclical release and refilling of the intracellular calcium stores is associated with the formation of vasomotion, so it is possible that such a process can activate the TRPC channels rhythmically, which mediated calcium influx may be take part in the forming of enhanced vasomotion and recent study has showed that TRPC channels play an important role in the forming of calcium oscillations induced by ATP in human umbilical cord smooth muscle cells. This study will investigate the relationship between the enhanced vasomotion and the TRPC channels in resistance artery.
     At present, angiotensinⅡreceptor (type 1) blocker (ARB) and calcium channel blocker (CCB) are two widely used antihypertensive agents in clinic, not only can effectively lower the blood pressure but also can improve the vascular endothelial function and reverse the cardiovascular remodeling induced by hypertension. Studies have shown that long-term application of ARB on the SHR, the expression of TRPC3 was significantly reduced in aorta and the inhibition of TRPC3 channel by using RNA interference in vascular smooth muscle cells could significantly reduce the AngⅡ-mediated calcium influx. But, it is still largely unknown about the impact of ARB and CCB on the abnormal enhanced vasomotion in resistance artery from SHR. One of the important aims of the current study is to identify the impact of long-term application of candesartan, telmisartan and amlodipine on the abnormal vasomotion in resistance artery from SHR, and make a preliminary study on the possible mechanism.
     Methods:
     1. Animal grouping and treatment.
     In this study, three-month-old spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats weighing 250-260g were used. SHR were randomly divided into four groups: control group received distilled water (n=10), 5mg/kg/day telmisartan (n=10), 4mg/kg/day candesartan (n=10) and 10mg/kg/day amlodipine (n=10) by oral garage for 16 weeks. WKY were used as normotensive control group (n=10).
     2. Blood pressure measurement:
     Systolic blood pressure was measured monthly in conscious and restrained rats by the tail-cuff method.
     3. Vascular ring experiments:
     At the end of treatment, the magnitude of vasomotion in mesenteric artery from each group was measured and the effect of TRPC channel blocker on the vasomotion was also observed.
     4. Immunofluorescent staining:
     In order to show the expression of TRPC channel in mesenteric artery from SHR, the immunofluorescent staining was performed.
     5. Detection of protein expression of mesenteric artery from each group:
     Proteins of mesenteric artery from each group were extracted and western blotting was taken out to detect protein expression of TRPC1, TRPC3, TRPC4, TRPC5 and TRPC6.
     Results:
     1. Compared with WKY normotensive rat, the magnitude of vasomotion was significantly higher in mesenteric arteries from SHR (65.5±7.0% vs. 2.2±0.5%; each n=6, p<0.01);
     2. Compared with WKY normotensive rat, the expression of TRPC1, TRPC3 and TRPC5 channels were significantly higher in mesenteric arteries from SHR (TRPC1 expression for WKY 1.00±0.13 vs. 1.60±0.10 for SHR; p<0.01; TRPC3 expression for WKY 1.00±0.18 vs. 1.70±0.26 for SHR; p<0.05; TRPC5 expression for WKY 1.00±0.13 vs. 1.41±0.10 for SHR; p<0.05; each n=6);
     3. The blockers of TRPC channel can partially inhibit the markedly enhanced vasomotion in mesenteric artery from SHR and make the rhythm became derangement (gadolinium, from 107.3±10.7% to 63.1±10.6%; 2-APB, from 105.2±13.9% to 30.3±2.5%; SKF96365, from 109.9±15% to 23.5±9.6%; each n=6; p<0.05);
     4. Both candesartan, telmisartan and amlodipine can significantly reduce the blood pressure of SHR (placebo, 222±7mmHg; candesartan, 123±7mmHg; telmisartan 115±6mmHg; amlodipine, 122±5 mmHg; p<0.01; each n=10;), but only candesartan and telmisartan can significantly improve the abnormal enhanced vasomotion and amlodipine showed no effect on vasomotion (placebo control group, 66±7%; candesartan treated group, 14±3%; telmisartan treated group, 8±2%; amlodipine treated group, 57±7%; p<0.01, each n=10). At the same time, the expression of TRPC1, TRPC3 and TRPC5 were significantly reduced in mesenteric arteries from candesartan and telmisartan treated group compared to placebo-treated SHR as control group (p<0.05; n=5), while the expression of TRPC1, TRPC3 and TRPC5 showed no significantly change in mesenteric arteries from amlodipine treated group (p>0.05; n=5);
     Conclusions:
     1. The markedly increased expression of TRPC1, TRPC3 and TRPC5 in mesenteric artery from SHR may be related to the abnormal enhanced vasomotion;
     2. Candesartan, telmisartan and amlodipine can significantly reduce blood pressure in SHR, but only candesartan and telmisartan can reduce the expression of TRPC1, TRPC3 and TRPC5 in mesenteric artery from SHR and reduce the abnormal enhanced vasomotion;
引文
1. Haddock RE, Hill CE. Rhythmicity in arterial smooth muscle. J Physiol 2005;566:645-656.
    2. Nilsson H, Aalkjaer C. Vasomotion: mechanisms and physiological importance. Mol Interv 2003;3:79-89, 51.
    3. Seppey D, Sauser R, Koenigsberger M, Beny JL, Meister JJ. Does the endothelium abolish or promote arterial vasomotion in rat mesenteric arteries? Explanations for the seemingly contradictory effects. J Vasc Res 2008;45:416-426.
    4. Lefer DJ, Lynch CD, Lapinski KC, Hutchins PM. Enhanced vasomotion of cerebral arterioles in spontaneously hypertensive rats. Microvasc Res 1990;39:129-139.
    5. Osol G, Halpern W. Spontaneous vasomotion in pressurized cerebral arteries from genetically hypertensive rats. Am J Physiol 1988;254:H28-33.
    6. Zhang J, Fu S, Liu S, Mao T, Xiu R. The therapeutic effect of Ginkgo biloba extract in SHR rats and its possible mechanisms based on cerebral microvascular flow and vasomotion. Clin Hemorheol Microcirc 2000;23:133-138.
    7. Pascoal IF, Lindheimer MD, Nalbantian-Brandt C, Umans JG. Preeclampsia selectively impairs endothelium-dependent relaxation and leads to oscillatory activity in small omental arteries. J Clin Invest 1998;101:464-470.
    8. Watts SW, Webb RC. Vascular gap junctional communication is increased in mineralocorticoid-salt hypertension. Hypertension 1996;28:888-893.
    9. Veerareddy S, Cooke CL, Baker PN, Davidge ST. Gender differences in myogenic tone in superoxide dismutase knockout mouse: animal model of oxidative stress. Am J Physiol Heart Circ Physiol 2004;287:H40-45.
    10. Peng H, Matchkov V, Ivarsen A, Aalkjaer C, Nilsson H. Hypothesis for the initiation of vasomotion. Circ Res 2001;88:810-815.
    11. Rahman A, Matchkov V, Nilsson H, Aalkjaer C. Effects of cGMP on coordination of vascular smooth muscle cells of rat mesenteric small arteries. J Vasc Res 2005;42:301-311.
    12. Nilius B, Owsianik G, Voets T, Peters JA. Transient receptor potential cation channelsin disease. Physiol Rev 2007;87:165-217.
    13. Liu DY, Scholze A, Kreutz R, Wehland-von-Trebra M, Zidek W, Zhu ZM, et al. Monocytes from spontaneously hypertensive rats show increased store-operated and second messenger-operated calcium influx mediated by transient receptor potential canonical Type 3 channels. Am J Hypertens 2007;20:1111-1118.
    14. Liu D, Yang D, He H, Chen X, Cao T, Feng X, et al. Increased transient receptor potential canonical type 3 channels in vasculature from hypertensive rats. Hypertension 2009;53:70-76.
    15. Dietrich A, Mederos YSM, Gollasch M, Gross V, Storch U, Dubrovska G, et al. Increased vascular smooth muscle contractility in TRPC6-/- mice. Mol Cell Biol 2005;25:6980-6989.
    16. Meng F, To W, Kirkman-Brown J, Kumar P, Gu Y. Calcium oscillations induced by ATP in human umbilical cord smooth muscle cells. J Cell Physiol 2007;213:79-87.
    17. Welsh DG, Morielli AD, Nelson MT, Brayden JE. Transient receptor potential channels regulate myogenic tone of resistance arteries. Circ Res 2002;90:248-250.
    18. Aalkaer C, Nilsson H. Vasomotion: cellular background for the oscillator and for the synchronization of smooth muscle cells. Br J Pharmacol 2005;144:605-616.
    19. Omote M, Mizusawa H. The role of sarcoplasmic reticulum in endothelium-dependent and endothelium-independent rhythmic contractions in the rabbit mesenteric artery. Acta Physiol Scand 1993;149:15-21.
    20. van Helden DF, Imtiaz MS, Nurgaliyeva K, von der Weid P, Dosen PJ. Role of calcium stores and membrane voltage in the generation of slow wave action potentials in guinea-pig gastric pylorus. J Physiol 2000;524 Pt 1:245-265.
    21. van Helden DF, Imtiaz MS. Ca2+ phase waves: a basis for cellular pacemaking and long-range synchronicity in the guinea-pig gastric pylorus. J Physiol 2003;548:271-296.
    22. Bakhramov A, Hartley SA, Salter KJ, Kozlowski RZ. Contractile agonists preferentially activate CL- over K+ currents in arterial myocytes. Biochem Biophys Res Commun 1996;227:168-175.
    23. Liu X, Farley JM. Acetylcholine-induced Ca++-dependent chloride current oscillations are mediated by inositol 1,4,5-trisphosphate in tracheal myocytes. J Pharmacol ExpTher 1996;277:796-804.
    24. Liu X, Farley JM. Acetylcholine-induced chloride current oscillations in swine tracheal smooth muscle cells. J Pharmacol Exp Ther 1996;276:178-186.
    25. Hyvelin JM, Guibert C, Marthan R, Savineau JP. Cellular mechanisms and role of endothelin-1-induced calcium oscillations in pulmonary arterial myocytes. Am J Physiol 1998;275:L269-282.
    26. Haddock RE, Hill CE. Differential activation of ion channels by inositol 1,4,5-trisphosphate (IP3)- and ryanodine-sensitive calcium stores in rat basilar artery vasomotion. J Physiol 2002;545:615-627.
    27. Sell M, Boldt W, Markwardt F. Desynchronising effect of the endothelium on intracellular Ca2+ concentration dynamics in vascular smooth muscle cells of rat mesenteric arteries. Cell Calcium 2002;32:105-120.
    28. Matchkov VV, Rahman A, Peng H, Nilsson H, Aalkjaer C. Junctional and nonjunctional effects of heptanol and glycyrrhetinic acid derivates in rat mesenteric small arteries. Br J Pharmacol 2004;142:961-972.
    29. Okazaki K, Seki S, Kanaya N, Hattori J, Tohse N, Namiki A. Role of endothelium-derived hyperpolarizing factor in phenylephrine-induced oscillatory vasomotion in rat small mesenteric artery. Anesthesiology 2003;98:1164-1171.
    30. Haddock RE, Grayson TH, Brackenbury TD, Meaney KR, Neylon CB, Sandow SL, et al. Endothelial coordination of cerebral vasomotion via myoendothelial gap junctions containing connexins 37 and 40. Am J Physiol Heart Circ Physiol 2006;291:H2047-2056.
    31. Tostes RC, Storm DS, Chi DH, Webb RC. Intracellular calcium stores and oscillatory contractions in arteries from genetically hypertensive rats. Hypertens Res 1996;19:103-111.
    32. Webb RC, Schreur KD, Papadopoulos SM. Oscillatory contractions in vertebral arteries from hypertensive subjects. Clin Physiol 1992;12:69-77.
    33. Lamb FS, Webb RC. Regenerative electrical activity and arterial contraction in hypertensive rats. Hypertension 1989;13:70-76.
    34. Lamb FS, Webb RC. Potassium conductance and oscillatory contractions in tail arteries from genetically hypertensive rats. J Hypertens 1989;7:457-463.
    35. Bruner CA, Webb RC. Effect of felodipine on blood pressure and vascular reactivity in stroke-prone spontaneously hypertensive rats. J Hypertens 1989;7:31-35.
    36. Lamb FS, Myers JH, Hamlin MN, Webb RC. Oscillatory contractions in tail arteries from genetically hypertensive rats. Hypertension 1985;7:I25-30.
    37. Boegehold MA. Enhanced arteriolar vasomotion in rats with chronic salt-induced hypertension. Microvasc Res 1993;45:83-94.
    38. Ohno Y, Matsuo K, Suzuki H, Tanase H, Ikeshima H, Takano T, et al. Genotypes of sarco(endo)plasmic reticulum Ca(2+)-dependent ATPase II gene in substrains of spontaneously hypertensive rats. J Hypertens 1996;14:287-291.
    39. Cosens DJ, Manning A. Abnormal electroretinogram from a Drosophila mutant. Nature 1969;224:285-287.
    40. Flockerzi V. An introduction on TRP channels. Handb Exp Pharmacol 2007:1-19.
    41. Bae YM, Kim A, Lee YJ, Lim W, Noh YH, Kim EJ, et al. Enhancement of receptor-operated cation current and TRPC6 expression in arterial smooth muscle cells of deoxycorticosterone acetate-salt hypertensive rats. J Hypertens 2007;25:809-817.
    42. Parekh AB, Penner R. Store depletion and calcium influx. Physiol Rev 1997;77:901-930.
    43. Xu SZ, Beech DJ. TrpC1 is a membrane-spanning subunit of store-operated Ca(2+) channels in native vascular smooth muscle cells. Circ Res 2001;88:84-87.
    44. Xu SZ, Boulay G, Flemming R, Beech DJ. E3-targeted anti-TRPC5 antibody inhibits store-operated calcium entry in freshly isolated pial arterioles. Am J Physiol Heart Circ Physiol 2006;291:H2653-2659.
    45. Kiselyov K, Xu X, Mozhayeva G, Kuo T, Pessah I, Mignery G, et al. Functional interaction between InsP3 receptors and store-operated Htrp3 channels. Nature 1998;396:478-482.
    46. Rose RA, Hatano N, Ohya S, Imaizumi Y, Giles WR. C-type natriuretic peptide activates a non-selective cation current in acutely isolated rat cardiac fibroblasts via natriuretic peptide C receptor-mediated signalling. J Physiol 2007;580:255-274.
    47. Baba A, Yasui T, Fujisawa S, Yamada RX, Yamada MK, Nishiyama N, et al. Activity-evoked capacitative Ca2+ entry: implications in synaptic plasticity. J Neurosci 2003;23:7737-7741.
    48. Zhu X, Jiang M, Birnbaumer L. Receptor-activated Ca2+ influx via human Trp3 stably expressed in human embryonic kidney (HEK)293 cells. Evidence for a non-capacitative Ca2+ entry. J Biol Chem 1998;273:133-142.
    49. Hajduczok G, Chapleau MW, Ferlic RJ, Mao HZ, Abboud FM. Gadolinium inhibits mechanoelectrical transduction in rabbit carotid baroreceptors. Implication of stretch-activated channels. J Clin Invest 1994;94:2392-2396.
    50. Hofmann T, Obukhov AG, Schaefer M, Harteneck C, Gudermann T, Schultz G. Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 1999;397:259-263.
    51. Lee YM, Kim BJ, Kim HJ, Yang DK, Zhu MH, Lee KP, et al. TRPC5 as a candidate for the nonselective cation channel activated by muscarinic stimulation in murine stomach. Am J Physiol Gastrointest Liver Physiol 2003;284:G604-616.
    52. Liu X, Bandyopadhyay BC, Singh BB, Groschner K, Ambudkar IS. Molecular analysis of a store-operated and 2-acetyl-sn-glycerol-sensitive non-selective cation channel. Heteromeric assembly of TRPC1-TRPC3. J Biol Chem 2005;280:21600-21606.
    53. Trebak M, Bird GS, McKay RR, Putney JW, Jr. Comparison of human TRPC3 channels in receptor-activated and store-operated modes. Differential sensitivity to channel blockers suggests fundamental differences in channel composition. J Biol Chem 2002;277:21617-21623.
    54. Zagranichnaya TK, Wu X, Villereal ML. Endogenous TRPC1, TRPC3, and TRPC7 proteins combine to form native store-operated channels in HEK-293 cells. J Biol Chem 2005;280:29559-29569.
    55. Yoshida J, Ishibashi T, Imaizumi N, Takegami T, Nishio M. Capacitative Ca2+ entries and mRNA expression for TRPC1 and TRPC5 channels in human epidermoid carcinoma A431 cells. Eur J Pharmacol 2005;510:217-222.
    56. Rahman A, Hughes A, Matchkov V, Nilsson H, Aalkjaer C. Antiphase oscillations of endothelium and smooth muscle [Ca2+]i in vasomotion of rat mesenteric small arteries. Cell Calcium 2007;42:536-547.
    57. Iino M, Kasai H, Yamazawa T. Visualization of neural control of intracellular Ca2+ concentration in single vascular smooth muscle cells in situ. EMBO J 1994;13:5026-5031.
    58. Ruehlmann DO, Lee CH, Poburko D, van Breemen C. Asynchronous Ca(2+) waves in intact venous smooth muscle. Circ Res 2000;86:E72-79.
    59. Lee CH, Poburko D, Sahota P, Sandhu J, Ruehlmann DO, van Breemen C. The mechanism of phenylephrine-mediated [Ca(2+)](i) oscillations underlying tonic contraction in the rabbit inferior vena cava. J Physiol 2001;534:641-650.
    60. Kagota S, Tada Y, Kubota Y, Nejime N, Yamaguchi Y, Nakamura K, et al. Peroxynitrite is Involved in the dysfunction of vasorelaxation in SHR/NDmcr-cp rats, spontaneously hypertensive obese rats. J Cardiovasc Pharmacol 2007;50:677-685.
    61. Candido R, Allen TJ, Lassila M, Cao Z, Thallas V, Cooper ME, et al. Irbesartan but not amlodipine suppresses diabetes-associated atherosclerosis. Circulation 2004;109:1536-1542.
    62. Takai S, Jin D, Sakaguchi M, Muramatsu M, Ishii K, Kirimura K, et al. Comparative effects of candesartan and amlodipine in a monkey atherosclerotic model. Hypertens Res 2004;27:517-522.
    63. Funk W, Endrich B, Messmer K, Intaglietta M. Spontaneous arteriolar vasomotion as a determinant of peripheral vascular resistance. Int J Microcirc Clin Exp 1983;2:11-25.
    64. Meyer C, de Vries G, Davidge ST, Mayes DC. Reassessing the mathematical modeling of the contribution of vasomotion to vascular resistance. J Appl Physiol 2002;92:888-889.
    65. Gratton RJ, Gandley RE, McCarthy JF, Michaluk WK, Slinker BK, McLaughlin MK. Contribution of vasomotion to vascular resistance: a comparison of arteries from virgin and pregnant rats. J Appl Physiol 1998;85:2255-2260.
    1. Hayashida N, Okui K, Fukuda Y. Mechanism of spontaneous rhythmic contraction in isolated rat large artery. Jpn J Physiol 1986;36:783-794.
    2. Gustafsson H. Vasomotion and underlying mechanisms in small arteries. An in vitro study of rat blood vessels. Acta Physiol Scand Suppl 1993;614:1-44.
    3. Katusic ZS, Shepherd JT, Vanhoutte PM. Potassium-induced endothelium-dependent rhythmic activity in the canine basilar artery. J Cardiovasc Pharmacol 1988;12:37-41.
    4. Chemtob S, Inayatulla A, Varma DR. Eicosanoid-dependent and endothelium-independent oscillations of rat aorta. J Vasc Res 1992;29:270-280.
    5. Porret CA, Stergiopulos N, Hayoz D, Brunner HR, Meister JJ. Simultaneous ipsilateral and contralateral measurements of vasomotion in conduit arteries of human upper limbs. Am J Physiol 1995;269:H1852-1858.
    6. Eddinger TJ, Ratz PH. Alpha-adrenoceptor activation induces rhythmic contractile activity in carotid arteries from young, not adult, rats. Acta Physiol Scand 1997;159:123-129.
    7. Hill CE, Eade J, Sandow SL. Mechanisms underlying spontaneous rhythmical contractions in irideal arterioles of the rat. J Physiol 1999;521 Pt 2:507-516.
    8. Colantuoni A, Bertuglia S, Intaglietta M. Quantitation of rhythmic diameter changes in arterial microcirculation. Am J Physiol 1984;246:H508-517.
    9. Burt RP. Phasic contractions of the rat portal vein depend on intracellular Ca2+ release stimulated by depolarization. Am J Physiol Heart Circ Physiol 2003;284:H1808-1817.
    10. Haddock RE, Hill CE. Differential activation of ion channels by inositol 1,4,5-trisphosphate (IP3)- and ryanodine-sensitive calcium stores in rat basilar artery vasomotion. J Physiol 2002;545:615-627.
    11. Peng H, Matchkov V, Ivarsen A, Aalkjaer C, Nilsson H. Hypothesis for the initiation of vasomotion. Circ Res 2001;88:810-815.
    12. Lamboley M, Schuster A, Beny JL, Meister JJ. Recruitment of smooth muscle cells and arterial vasomotion. Am J Physiol Heart Circ Physiol 2003;285:H562-569.
    13. Lamont C, Wier WG. Different roles of ryanodine receptors and inositol (1,4,5)-trisphosphate receptors in adrenergically stimulated contractions of small arteries. Am J Physiol Heart Circ Physiol 2004;287:H617-625.
    14. Haddock RE, Hirst GD, Hill CE. Voltage independence of vasomotion in isolated irideal arterioles of the rat. J Physiol 2002;540:219-229.
    15. Miriel VA, Mauban JR, Blaustein MP, Wier WG. Local and cellular Ca2+ transients in smooth muscle of pressurized rat resistance arteries during myogenic and agonist stimulation. J Physiol 1999;518 ( Pt 3):815-824.
    16. Porter VA, Bonev AD, Knot HJ, Heppner TJ, Stevenson AS, Kleppisch T, et al. Frequency modulation of Ca2+ sparks is involved in regulation of arterial diameter by cyclic nucleotides. Am J Physiol 1998;274:C1346-1355.
    17. Nelson MT, Cheng H, Rubart M, Santana LF, Bonev AD, Knot HJ, et al. Relaxation of arterial smooth muscle by calcium sparks. Science 1995;270:633-637.
    18. Zhuge R, Fogarty KE, Tuft RA, Walsh JV, Jr. Spontaneous transient outward currents arise from microdomains where BK channels are exposed to a mean Ca(2+) concentration on the order of 10 microM during a Ca(2+) spark. J Gen Physiol 2002;120:15-27.
    19. Pabelick CM, Sieck GC, Prakash YS. Invited review: significance of spatial and temporal heterogeneity of calcium transients in smooth muscle. J Appl Physiol 2001;91:488-496.
    20. Kamishima T, Quayle JM. Ca2+-induced Ca2+ release in cardiac and smooth muscle cells. Biochem Soc Trans 2003;31:943-946.
    21. Haak LL, Song LS, Molinski TF, Pessah IN, Cheng H, Russell JT. Sparks and puffs in oligodendrocyte progenitors: cross talk between ryanodine receptors and inositol trisphosphate receptors. J Neurosci 2001;21:3860-3870.
    22. Mayer EA, Kodner A, Sun XP, Wilkes J, Scott D, Sachs G. Spatial and temporal patterns of intracellular calcium in colonic smooth muscle. J Membr Biol 1992;125:107-118.
    23. McCarron JG, Bradley KN, MacMillan D, Chalmers S, Muir TC. The sarcoplasmic reticulum, Ca2+ trapping, and wave mechanisms in smooth muscle. News Physiol Sci 2004;19:138-147.
    24. Haddock RE, Hill CE. Rhythmicity in arterial smooth muscle. J Physiol 2005;566:645-656.
    25. Shuai JW, Jung P. Stochastic properties of Ca(2+) release of inositol 1,4,5-trisphosphate receptor clusters. Biophys J 2002;83:87-97.
    26. Mauban JR, Lamont C, Balke CW, Wier WG. Adrenergic stimulation of rat resistance arteries affects Ca(2+) sparks, Ca(2+) waves, and Ca(2+) oscillations. Am J Physiol Heart Circ Physiol 2001;280:H2399-2405.
    27. Sell M, Boldt W, Markwardt F. Desynchronising effect of the endothelium on intracellular Ca2+ concentration dynamics in vascular smooth muscle cells of rat mesenteric arteries. Cell Calcium 2002;32:105-120.
    28. Shaw L, O'Neill S, Jones CJ, Austin C, Taggart MJ. Comparison of U46619-, endothelin-1- or phenylephrine-induced changes in cellular Ca2+ profiles and Ca2+ sensitisation of constriction of pressurised rat resistance arteries. Br J Pharmacol 2004;141:678-688.
    29. Koenigsberger M, Sauser R, Lamboley M, Beny JL, Meister JJ. Ca2+ dynamics in a population of smooth muscle cells: modeling the recruitment and synchronization. Biophys J 2004;87:92-104.
    30. Jacobsen JC, Aalkjaer C, Nilsson H, Matchkov VV, Freiberg J, Holstein Rathlou NH. Activation of a cGMP-sensitive calcium-dependent chloride channel may cause transition from calcium waves to whole cell oscillations in smooth muscle cells. Am J Physiol Heart Circ Physiol 2007;293:H215-228.
    31. Garcia-Huidobro DN, Garcia-Huidobro MT, Huidobro-Toro JP. Vasomotion in human umbilical and placental veins: role of gap junctions and intracellular calcium reservoirs in their synchronous propagation. Placenta 2007;28:328-338.
    32. Zhang WM, Yip KP, Lin MJ, Shimoda LA, Li WH, Sham JS. ET-1 activates Ca2+ sparks in PASMC: local Ca2+ signaling between inositol trisphosphate and ryanodine receptors. Am J Physiol Lung Cell Mol Physiol 2003;285:L680-690.
    33. Gustafsson H, Bulow A, Nilsson H. Rhythmic contractions of isolated, pressurized small arteries from rat. Acta Physiol Scand 1994;152:145-152.
    34. Bootman MD, Collins TJ, Peppiatt CM, Prothero LS, MacKenzie L, De Smet P, et al. Calcium signalling--an overview. Semin Cell Dev Biol 2001;12:3-10.
    35. Oishi H, Schuster A, Lamboley M, Stergiopulos N, Meister JJ, Beny JL. Role of membrane potential in vasomotion of isolated pressurized rat arteries. Life Sci 2002;71:2239-2248.
    36. Jacobsen JC, Aalkjaer C, Nilsson H, Matchkov VV, Freiberg J, Holstein-Rathlou NH. A model of smooth muscle cell synchronization in the arterial wall. Am J Physiol Heart Circ Physiol 2007;293:H229-237.
    37. Imtiaz MS, Katnik CP, Smith DW, van Helden DF. Role of voltage-dependent modulation of store Ca2+ release in synchronization of Ca2+ oscillations. Biophys J 2006;90:1-23.
    38. Sakurada M, Shichiri M, Imamura M, Azuma H, Hirata Y. Nitric oxide upregulates dimethylarginine dimethylaminohydrolase-2 via cyclic GMP induction in endothelial cells. Hypertension 2008;52:903-909.
    39. Piper AS, Large WA. Single cGMP-activated Ca(+)-dependent Cl(-) channels in rat mesenteric artery smooth muscle cells. J Physiol 2004;555:397-408.
    40. Harris D, Martin PE, Evans WH, Kendall DA, Griffith TM, Randall MD. Role of gap junctions in endothelium-derived hyperpolarizing factor responses and mechanisms of K(+)-relaxation. Eur J Pharmacol 2000;402:119-128.
    41. Welsh DG, Morielli AD, Nelson MT, Brayden JE. Transient receptor potential channels regulate myogenic tone of resistance arteries. Circ Res 2002;90:248-250.
    42. Earley S, Waldron BJ, Brayden JE. Critical role for transient receptor potential channel TRPM4 in myogenic constriction of cerebral arteries. Circ Res 2004;95:922-929.
    43. Meng F, To W, Kirkman-Brown J, Kumar P, Gu Y. Calcium oscillations induced by ATP in human umbilical cord smooth muscle cells. J Cell Physiol 2007;213:79-87.
    44. Bae YM, Kim A, Lee YJ, Lim W, Noh YH, Kim EJ, et al. Enhancement of receptor-operated cation current and TRPC6 expression in arterial smooth muscle cells of deoxycorticosterone acetate-salt hypertensive rats. J Hypertens 2007;25:809-817.
    45. Mauban JR, Wier WG. Essential role of EDHF in the initiation and maintenance of adrenergic vasomotion in rat mesenteric arteries. Am J Physiol Heart Circ Physiol 2004;287:H608-616.
    46. Okazaki K, Seki S, Kanaya N, Hattori J, Tohse N, Namiki A. Role of endothelium-derived hyperpolarizing factor in phenylephrine-induced oscillatoryvasomotion in rat small mesenteric artery. Anesthesiology 2003;98:1164-1171.
    47. Baranowska M, Kozlowska H, Korbut A, Malinowska B. [Potassium channels in blood vessels: their role in health and disease]. Postepy Hig Med Dosw (Online) 2007;61:596-605.
    48. Isakson BE, Duling BR. Heterocellular contact at the myoendothelial junction influences gap junction organization. Circ Res 2005;97:44-51.
    49. Ming J, Li T, Zhang Y, Xu J, Yang G, Liu L. Regulatory effects of myoendothelial gap junction on vascular reactivity after hemorrhagic shock in rats. Shock 2009;31:80-86.
    50. Brisset AC, Isakson BE, Kwak BR. Connexins in vascular physiology and pathology. Antioxid Redox Signal 2009;11:267-282.
    51. Rummery NM, Hill CE. Vascular gap junctions and implications for hypertension. Clin Exp Pharmacol Physiol 2004;31:659-667.
    52. Haddock RE, Grayson TH, Brackenbury TD, Meaney KR, Neylon CB, Sandow SL, et al. Endothelial coordination of cerebral vasomotion via myoendothelial gap junctions containing connexins 37 and 40. Am J Physiol Heart Circ Physiol 2006;291:H2047-2056.
    53. Pascoal IF, Lindheimer MD, Nalbantian-Brandt C, Umans JG. Preeclampsia selectively impairs endothelium-dependent relaxation and leads to oscillatory activity in small omental arteries. J Clin Invest 1998;101:464-470.
    54. Tostes RC, Storm DS, Chi DH, Webb RC. Intracellular calcium stores and oscillatory contractions in arteries from genetically hypertensive rats. Hypertens Res 1996;19:103-111.
    55. Webb RC, Schreur KD, Papadopoulos SM. Oscillatory contractions in vertebral arteries from hypertensive subjects. Clin Physiol 1992;12:69-77.
    56. Lamb FS, Webb RC. Regenerative electrical activity and arterial contraction in hypertensive rats. Hypertension 1989;13:70-76.
    57. Lamb FS, Webb RC. Potassium conductance and oscillatory contractions in tail arteries from genetically hypertensive rats. J Hypertens 1989;7:457-463.
    58. Bruner CA, Webb RC. Effect of felodipine on blood pressure and vascular reactivity in stroke-prone spontaneously hypertensive rats. J Hypertens 1989;7:31-35.
    59. Lamb FS, Myers JH, Hamlin MN, Webb RC. Oscillatory contractions in tail arteriesfrom genetically hypertensive rats. Hypertension 1985;7:I25-30.
    60. Osol G, Halpern W. Spontaneous vasomotion in pressurized cerebral arteries from genetically hypertensive rats. Am J Physiol 1988;254:H28-33.
    61. Boegehold MA. Enhanced arteriolar vasomotion in rats with chronic salt-induced hypertension. Microvasc Res 1993;45:83-94.
    62. Lefer DJ, Lynch CD, Lapinski KC, Hutchins PM. Enhanced vasomotion of cerebral arterioles in spontaneously hypertensive rats. Microvasc Res 1990;39:129-139.
    63. Watts SW, Webb RC. Vascular gap junctional communication is increased in mineralocorticoid-salt hypertension. Hypertension 1996;28:888-893.
    64. Veerareddy S, Cooke CL, Baker PN, Davidge ST. Gender differences in myogenic tone in superoxide dismutase knockout mouse: animal model of oxidative stress. Am J Physiol Heart Circ Physiol 2004;287:H40-45.
    65. Funk W, Endrich B, Messmer K, Intaglietta M. Spontaneous arteriolar vasomotion as a determinant of peripheral vascular resistance. Int J Microcirc Clin Exp 1983;2:11-25.
    66. Meyer C, de Vries G, Davidge ST, Mayes DC. Reassessing the mathematical modeling of the contribution of vasomotion to vascular resistance. J Appl Physiol 2002;92:888-889.
    67. Gratton RJ, Gandley RE, McCarthy JF, Michaluk WK, Slinker BK, McLaughlin MK. Contribution of vasomotion to vascular resistance: a comparison of arteries from virgin and pregnant rats. J Appl Physiol 1998;85:2255-2260.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700