用户名: 密码: 验证码:
三相电压型PWM整流器的直接功率控制技术研究与实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三相PWM整流器是目前整流器领域研究的热点,由于其具有双向能量流动性,以及交流电流波形和功率因数任意可控性,应用场合越来越广泛。直接功率控制对变换器的瞬时功率直接进行闭环控制,本文主要内容即对三相电压型PWM整流器的直接功率控制技术进行全面深入的研究。
     根据瞬时功率理论,推导和建立了三相PWM变换器的功率数学模型。通过分析PWM整流器的有功功率和无功功率的功率流向,阐述了其工作原理。基于数学模型,分别研究每个开关矢量在矢量空间中对瞬时功率的不同影响,提出了一种非固定18扇区矢量空间划分方法,基于这种划分方法提出了新的开关矢量表。这种开关矢量表不仅可以克服传统开关表对无功功率控制上的缺陷,获得更好的稳态和动态控制效果,而且可以对其他开关表的不足进行一定的解释,具有很强的通用性。
     根据直接功率控制的特点,提出了PWM整流器交流侧电感值、直流侧电压值和直流侧电容值的设计计算方法。通过数学推导,得出了系统参数间相互关系,有利于指导系统设计。本文引入了数字控制器的实时性因子概念,来考察直接功率控制的数字化对控制效果的影响,同时给出了整个数字控制系统延迟时间的最大容忍值,并提出衡量数字控制系统效果的真实环宽的概念。死区效应也是影响波形质量的一大原因,本文通过分别分析死区时间对变换器交流侧电压和交流电流的影响,将死区时间对PWM整流器的影响归纳为死区的电压效应和电流效应,给出了这两种效应的表达式,并给出了一种优化的死区设置方法,该方法实现简单且不会增加控制器的负担。
     采用滞环比较器的直接功率控制系统的开关频率不固定,是实用化过程中需要解决的一个技术问题。将采用PI调节器的直接电流控制方法和采用滞环比较器的直接功率控制系统进行对比,指出滞环环宽与开关频率的矛盾关系,提出一种开关频率限制方法。该方法在新型18扇区划分方式的基础上,通过控制无功功率滞环比较器的环宽来达到提高波形质量、限制最大开关频率的目的。为了实现开关频率恒定的直接功率控制策略,本文将直接功率控制与空间矢量调制方法相结合,提出基于瞬时功率反馈解耦的DPC-SVM控制方法,通过实验分析了这种控制方法的性能。
     将交流电机中定子磁链的概念引入到三相PWM整流器中,定义为虚拟磁链VF,并利用虚拟磁链矢量进行定向控制和瞬时功率估算,获得了一种新的直接功率控制方法,称为VF-DPC控制方法。该方法不仅省去了电网电压传感器,提高了系统的可靠性;而且,由于虚拟磁链估算中积分环节的滤波器特性,可以在非理想电网条件下获得很好的控制效果。在实现过程中,利用一个二阶滤波器代替纯积分器成功解决了积分初值问题,而且获得了更好的滤波特性。本文还讨论了将VF-DPC控制系统与空间矢量调制方法相结合,获得一种恒频VF-DPC-SVM控制策略,它兼有三者的优点,是一种很有研究价值的控制方法。
Three-phase PWM rectifiers, which have more and more widespread applications, is in a hot research area, because their ability of two-way energy flowing, as well as arbitrary AC current wave and power factor. Direct power control is a kind of method, which directly control converters' instantaneous power with closed-loop. The main content of this paper is to conduct a comprehensive in-depth study about direct power control in PWM rectifiers.
     According to the instantaneous power theory, the three-phase PWM rectifier's mathematical power model is established. By analyzing the energe flow of PWM rectifier's active power and reactive power, its working principle is powered on. Based on the mathematical model to examine the different effects for instantaneous power of each switch vector in the vector space, a non-fixed 18 sectors dividing method with a novel switching vector table is proposed. They not only can overcome the defects of the traditional one in reactive power control, resulting better steady-state and dynamic effects, but also can give a certain explanation to the lack of other tables.
     Under the features of direct power control, main circut components design methods are proposed, including: value of the AC side inductor, DC capacitor and DC side voltage. The inter-relationship between the system parameters is researched to guid system design. A concept of real-time gene is introduced to digital direct power control system, to scale the influence of the digitalized system. At the same time, the greatest tolerance value of the entire digital control system delay is given. Another concept: real hysteresis-band is also introduced to measure effect of digital control system. Dead-time is one of the most impacts on the waves' qualities. Through analysis of impact on the AC side voltage of the converter and grid current respectively, dead-time effect can be summed up as voltage-effect and current-effect to the PWM rectifier. The expressions of these two effects are dedused.
     The switch frequency of the direct power control system using hysteresis comparator is not fixed, which is a technical issue in practical needing be solved. By comparing to direct current control method using PI regulator, the contradictory relationship between the hysteresis-band and the switching frequency is analysed. Then a method of switching frequency limitation is proposed, which base on the novel 18 sectors space division method. By controlling the hysteresis-band of reactive power, the switching frequency can be regulated within a safty range, at the same time achiveing an improved wave quality. In order to achieve a direct power control strategy with constant switching frequency, a combining control method named DPC-SVM is proposed, which maintains the characters of simple control structure, no impact of coordinate transformation.
     In the paper, the stator flux concept is introducted from induction motor to three-phase PWM rectifier, which is defined as virtual flux: VF. And the instantaneous power can be estimated using of virtual flux. With virtual flux orientation, a new method of direct power control is gotten, called VF-DPC. This novle method has attractive merits, such as: saving voltage sensor and the low-pass filter behave of the integral. In the realization process, a second-order filter is used in place of pure integrator to solve the initial value problem. At the same time, a better filtering property is achieved. By combining space vector modulation method with VF-DPC, a constant frequency control strategy called VF-DPC-SVM is discussed in the paper, which is an ideal control method with great research value.
引文
[1] 陈坚.电力电子学--电力电子变换和控制技术.北京:高等教育出版社,2002.
    [2] 林渭勋.现代电力电子电路.浙江:浙江大学出版社,2002.
    [3] 王兆安,黄俊.电力电子技术,北京:机械工业出版社,2000.
    [4] 张崇巍,张兴.PWM整流器及其控制.北京:机械工业出版社,2003.
    [5] 熊健.三相电压型高频PWM整流器研究.[博士学位论文].武汉:华中科技大学图书馆,1999.
    [6] 蔡炜.高频PWM整流器研究.[硕士学位论文].武汉:华中科技大学图书馆,2007.
    [7] 金红元.三电平PWM整流器研究.[硕士学位论文].武汉:华中科技大学图书馆.2006.
    [8] 曹承洁.基于自耦变压器的24相整流电路研究.[硕士学位论文].武汉:华中科技大学图书馆,2005.
    [9] 魏学良.三相三线并联型APF电流环数字化控制研究.[博士学位论文].武汉:华中科技大学图书馆,2007.
    [10] 徐金榜.三相电压源PWM整流器控制技术研究.[博士学位论文].武汉:华中科技大学图书馆,2004.
    [11] 王展.三电平异步电机直接转矩控制系统研究.[硕士学位论文].武汉:华中科技大学图书馆,2005.
    [12] Malinowski. M, Kazmierkowski, M.P, Trzynadlowski, A.M. A Comparative Study of Control Techniques for PWM Rectifiers in AC Adjustable Speed Drives. IEEE Transactions on Power Electronics, 2003, 18(6): 1390-1396
    [13] Skandari, R., Rahmati, A., Abrishamifar, A., Abiri, E. A Fuzzy Logic Controller for Direct Power Control of PWM Rectifiers with SVM. Proceedings of PEDES'06, 2006:1-5
    [14] Serpa, L.A., Ponnaluri, S., Barbosa, P.M., Kolar, J.W. A Modified Direct Power Control Strategy Allowing the Connection of Three-Phase Inverters to the Grid through LCL Filters. IEEE Transactions on Industry Applications Power Electronics, 2007, 43(5): 1388-1400
    [15] Tongzhen Wei. A Novel Direct Power Control Method of Three-Phase Active Rectifiers in Industrial Drive System. Proceedings of ICMA2007, 2007: 3712-3716
    [16] Hao Ma., Zheng Ca. Direct Power Control for three-phase PWM rectifier with active filtering function. Proceedings of IECON2004, 2004: 1429-1423
    [17] Chen, B. S., Jo(?)s, G. S. Direct Power Control of Active Filters with Averaged Switching Frequency Regulation. IEEE Transactions on Power Electronics, 2008,23(6): 2729-2737
    [18] Dawei Zhi, Lie Xu. Direct Power Control of DFIG With Constant Switching Frequency and Improved Transient Performance. IEEE Transactions on Energy Conversion, 2007, 22(1): 110-118
    [19] Lie Xu, Dawei Zhi, Liangzhong Yao. Direct Power Control of Grid Connected Voltage Source Converters. Proceedings of Power Engineering Society General Meeting, 2007: 1-6
    [20] Rahmati, A., Abrishamifar, A., Abiri, E. Direct Power Control of Hvdc Light System for Connecting Two Networks at Different Frequency. Proceedings of the 41~(st) International Universities Power Engineering Conference, 2006 : 579-583
    [21] Noguchi, T., Tomiki, H., Kondo, S., Takahashi, I. Direct power control of PWM converter without power-source voltage sensors. IEEE Transactions on Industry Applications, 1998 , 34(3): 473-479
    [22] Chaoui, A., Gaubert, J.-P., Krim, F., Rambault, L. Direct power control of shunt active filter. Proceedings of 2007 European Conference on Power Electronics and Applications, 2007 : 1-11
    [23] Malinowsk, M., Kazmierkowski, M.P. Direct Power Control of Three-Phase PWM Rectifier Using Space Vector Modulation-Simulation Study. Proceedings of ISIE,2002: 1114-1118
    [24] Cichowlas, M., Malinowski, M., Jasinski, M., , Kazmierkowski, M.P. DSP Based Direct Power Control for three-phase PWM Rectifier with Active Filtering Function.Proceedings of ISIE, 2003 : 831-835
    [25] Malinowski, M., Kamierkowski, M.P. DSP Implementation of Direct Power Control with Constant Switching Frequency for Three-Phase PWM Rectifiers. Proceedings of IECON'02, 2002 : 198-203
    [26] Eloy-Garcia, 1, Alves, R. DSP-based Direct Power Control of a VSC with Voltage Angle Estimation. Proceedings of TDC'06, 2006: 1-5
    [27] Noguchi, T., Sato, A., Takeuchi, D. Minimization of DC Reactor and Operation Characteristics of Direct-Power-Controlled Current-Source PWM Rectifier. Proceedings of IECON, 2006 : 2787-2792
    [28] Yongsug Suh, Lipo, T.A. Modeling and analysis of instantaneous active and reactive power for PWM AC/DC converter under generalized unbalanced network. IEEE Transactions on Power Delivery, 2006, 21 (3): 1530-1540
    [29] Malinowski, M., Marques, G., Cichowlas, M., Kazmierkowski, M.P. New Direct Power Control of Three-phase PWM Boost Rectifiers under Distorted and Imbalanced Line Voltage Conditions. Proceedings of ISIE, 2003 : 438-443
    [30] Larrinaga, S.A., Vidal, M.A.R., Oyarbide, E., Apraiz, J.R.T. Predictive Control Strategy for DC/AC Converters Based on Direct Power Control. IEEE Transactions on Industrial Electronics, 2007,54(3):1261-1271
    [31] Aurtenechea, S., Rodriguez, M.A., T Oyarbide, E., Torrealday, J.R. Predictive Direct Power Control - A New Control Strategy for DC/AC Converters. Proceedings of IECON, 2006:1661-1666
    [32] Rahrnati, A., Abrishamifar, A., Abiri, E. Sensorless Direct Power Control For A DSTATCOM. Proceedings of UPEC'06, 2006 : 1001-1005
    [33] Malinowski, M., Jasinski, M., Kazmierkowski, M.P. Simple Direct Power Control of Three-Phase PWM Rectifier Using Space-Vector Modulation (DPC-SVM). IEEE Transactions on Industry Electronics, 2004,51 (2): 447-454
    [34] Wang Jiuhe, Yin Hongren, Zhang Jinlong, Li Huade. Study on Power Decoupling Control of Three Phase Voltage Source PWM Rectifiers. Proceedings of IPEMC'06, 2006:1-5
    [35] Ohnishi, T. Three-phase PWM converter inverter by means of instantaneous active and reactive power control. Proceedings of IECON'91, 1991:819-824
    [36] Bouafia, A., Gaubert, J.-P, krim, F, Chaoui, A. Unity Power Factor Operation of Three-Phase PWM Rectifier Based on Direct Power Control. Proceedings of EUROCON'07, 2007:1518-1523
    [37] 王久和,李华德.一种新的电压型PWM整流器直接功率控制策略.中国电机工程学报,2005,25(16):47-52
    [38] 接峰,黄进.三相PWM整流器直接功率控制的新调制方法.电力电子技术,2006.40(4):9-11
    [39] 王栓庆,王久和,王立明.具有快速跟踪能力的电压型PWM整流器直接功率控制.电气传动,2007,237(5):27-30
    [40] 王久和,杨微,李华德.功率前馈电压型PWM整流器直接功率解耦控制.辽宁工程技术大学学报,2007,23(2):238-241
    [41] 何致远,韦巍.基于虚拟磁链的PWM整流器直接功率控制研究.浙江大学学报(工学版),2004,38(12):1619-1622
    [42] 王久和,李华德.改善电压型PWM整流器DPC系统性能的策略.电气传动,2005年,35(8):40-43
    [43] 赵仁德,贺益康.无电网电压传感器三相PWM整流器虚拟电网磁链定向矢量控制研究.中国电机工程学报,2005,25(20):56-61
    [44] 王栓庆,王久和,王立明.电压型PWM整流器变无功给定直接功率控制.辽宁工程技术大学学报,2006,25(增刊):173-175
    [45] 王久和、李华德、李正熙.电压型PWM整流器直接功率控制研究.辽宁工程技术大学学报,2004,23(5):658-660
    [46] 王久和,李华德,王立明.电压型PWM整流器直接功率控制系统.中国电机工程学报,2006,26(18):54-60
    [47] 王久和,张金龙,李华德.电压型PWM整流器直接功率控制系统主电路参数设计.北京科技大学学报,2006,28(11):1091-1095
    [48] 薛鹏骞,王久和,薛伟宁.电压型PWM整流器直接功率控制系统设计.辽宁工程技术大学学报,2006,25(5):173-175
    [49] 郭文勇,赵彩宏,张志丰.电压型超导储能系统的统一直接功率控制方法.电网技术,2007,31(9):58-63
    [50] 徐小品,黄进,杨家强.瞬时功率控制在三相PWM整流中的应用.电力电子技术,2004,38(2):30-31(44)
    [51] 王久和,李华德,杨立永.设置扇形边界死区的电压型PWM整流器直接功率控制.北京科技大学学报,2005,27(3):380-384
    [52] 毛鸿,吴兆麟.基于三相PWM整流器的无死区空间矢量调制策略.中国电机工程学报,2001,21(11):54-60
    [53] Serpa, L.A., Kolar, J.W. Virtual-Flux Direct Power Control for Mains Connected Three-Level NPC Inverter Systems. Proceedings of PCC'07, 2007:130-136
    [54] Malinowski. M, Kazmierkowski, M.P, Hansen, S., Blaabjerg, F., Marques, G.D. Virtual-Flux-Based Direct Power Control of Three-Phase PWM Rectifiers. IEEE Transactions on Industry Applications, 2001, 37(4): 1019-1027
    [55] Heredia, A.L., Antoniewicz, P., Etxeberria-Otadui, I., Malinowski, M., Bacha, S. A Comparative Study between the DPC-SVM and the Multi-Resonant Controller for Power Active Filter Applications. Proceedings of 2006 IEEE International Symposium on Power Electronics, 2006: 1058-1063
    [56] Bong-Hwan Kwon, Jang-Hyoun Youm, Jee-Woo Lim. A Line-Voltage-Sensorless Synchronous Rectifier. IEEE Transactions on Power Electronics, 1999, 14(5):966-972
    [57] Agirman, I., Blasko, V. A Novel Control Method of a VSC without AC Line Voltage Sensors. IEEE Transactions on Industry Applications, 2003, 39(2): 519-524
    [58] Malinowski, M., Kazmierkowski, M.P., Trzynadlowski, A. Direct Power Control with Virtual Flux Estimation for Three-phase PWM Rectifiers. Proceedings of ISIE,2000 :442-447
    [59] Huibin Zhu, Arnet, B., Haines, L., Shaffer, E., Jih-Sheng Lai. Grid Synchronization Control without AC Voltage Sensors. Proceedings of APEC'03, 2003: 172-178
    [60] Duarte, J.L., Van Zwam, A., Wijnands, C, Vandenput, A. Reference Frames Fit for Controlling PWM Rectifiers. IEEE Transactions on Industry Electronics, 1999,46(3): 628-630
    [61] Hansen, S., Malinowski, M., Blaabjerg, F., Kazmierkowski, M.P. Sensorless Control strategies for PWM Rectifier. Proceedings of APEC'00, 2000: 832-838
    [62] Kazmierkowski, M.P., Malinowski, M., Sobczuk, D.L., Blaabjerg, F., Pedersen, J.K.Simplified stator flux oriented control. Proceedings of ISIE'99, 1999 :474-479
    [63] Malinowski, M., Kazmierkowski, M.P. Simulation Study of Virtual Flux Based Direct Power Control for Three-Phase PWM Rectifiers. Proceedings of 26~(th) Annual Conference of the IEEE Industrial Electronics Society, 2000 : 2620-2652
    [64] Mihalache, L. A high performance DSP controller for three-phase PWM rectifiers with ultra low input current THD under unbalanced and distorted input voltage.Conference Record of the 2005 Industry Applications Conference, 2005: 138-144
    [65] Woo-Cheol Lee, Dong-Seok Hyun, Taeck-Kie Lee. A novel control method for three-phase PWM rectifiers using a single current sensor. IEEE Transactions on Power Electronics, 2000, 15(5): 861-870
    [66] Ye, Y, Kazerani, M., Quintana, V.H. A novel modeling and control method for three-phase PWM converters. Proceedings of PESC, 2001: 102-107
    [67] Jia-peng Xu, Yu-peng Tang. AC Current Sensorless Control of Three Phase Three-Wire PWM rectifiers under the Unbalanced Source Voltage. Proceedings of IPEMC'06, 2006: 1-5
    [68] Dong-Choon Lee, Dae-Sik Lim. AC voltage and current sensorless control of three-phase PWM rectifiers. Proceedings of PESC'00, 2000: 588-593
    [69] Lira, J., Cardenas, V., Nunez, C. Analysis and design of a PWM rectifier using the DQ theory and a digital control based in a DSP. Proceedings of CIEP, 2004: 52-57
    [70] Slazar, L.S., Zapata, F.H., Wiechmann, E.F. Analysis, design and experimental evaluation of a four-pole PWM rectifier using space vector modulation. Proceedings of PESC'97,1997:484-490
    [71] Nussbaumer, T., Kolar, J.W. Comparison of 3-Phase Wide Output Voltage Range PWM Rectifiers. IEEE Transactions on Industrial Electronics, 2007, 54(6):3422-3425
    [72] Sato, S., Suehiro, Y., Yamamoto, M., Nakaoka, M. High power-factor 3-phase PWM rectifier. Proceedings of 24~(th) Annual International Telecommunications Energy Conference, 2002: 303-308
    [73] Yao Chen, XinMin Jin. Modeling and Control of Three-phase Voltage Source PWM Rectifier. Proceedings of IPEMC'06, 2006: 1-4
    [74] Yu Fang, Yong Xie, Yan Xing. Modeling and Simulation of Three Phase High Power Factor PWM Rectifier. Proceedings of IPEMC'06, 2006: 1-6
    [75] Rodriguez, J.R., Dixon, J.W., Espinoza, J.R., Pontt, J., Lezana, P. PWM Regenerative Rectifiers State of the Art. IEEE Transactions on Industrial Electronics,2005, 52(1): 5-22
    [76] Rioual, P., Pouliquen, H., Louis, J. P. Regulation of a PWM rectifier in the unbalanced network state using a generalized model. IEEE Transactions on Power Electronics, 1996, 11(3): 495-502
    [77] Hongjin Song, Xinchun Shi, Guoliang Zhou. Research on three phase voltage-source PWM rectifier based on nonlinear control strategies. Proceedings of ICEMS, 2007:94-97
    [78] Hyunjae Yoo, Kim, J. H., Seung-Ki Su. Sensorless Operation of a PWM Rectifier for a Distributed Generation. IEEE Transactions on Power Electronics, 2007, 22(3):1014-1018
    [79] Hong-Seok Song, In-Won Joo, Kwanghee Nam S. Source voltage sensorless estimation scheme for PWM rectifiers under unbalanced conditions. IEEE Transactions on Industrial Electronics, 2003, 50(6): 1238-1245
    [80] Sato, Y, Ishizuka, T., Nezu, K., Kataoka, T. A New Control Strategy for Voltage-Type PWM Rectifiers to Realize Zero Steady-State Control Error in Input Current. IEEE Transactions on Industrial Applications, 1998, 34(3): 480-486
    [81] Stankovic, A.V., Lipo, T.A. A Novel Control Method for Input Output Harmonic Elimination of the PWM Boost Type Rectifier Under Unbalanced Operating Conditions. IEEE Transactions on Power Electronics, 2001, 16(5): 603-611
    [82] Woo-Cheol Lee, Dong-Seok Hyun, Taeck-Kie Lee. A Novel Control Method for Three-Phase PWM Rectifiers Using a Single Current Sensor. IEEE Transactions on Power Electronics, 2000, 15(5): 861-870
    [83] Chien-Ming Wang. A Novel Zero-Voltage-Switching PWM Boost Rectifier With High Power Factor and Low Conduction Losses. Proceedings of 25~(th) International Telecommunications Energy Conference, 2003: 224-229
    [84] Cichowlas, M., Malinowski, M., Kazmierkowski, M.P., Sobczuk, D.L., Rodriguez,P., Pou, J. Active Filtering Function of Three-Phase PWM Boost Rectifier Under Different Line Voltage Conditions. IEEE Transactions on Power Electronics, 2005,52(2): 410-419
    [85] Lee, D.-C. Advanced nonlinear control of three-phase PWM rectifiers. IEE Proceedings on Electric Power Applications, 2000, 147(5): 361-366
    [86] Bo Yin, Oruganti, R., Panda, S.K., Bhat, A.K.S. An Output-Power-Control Strategy for a Three-Phase PWM Rectifier Under Unbalanced Supply Conditions. IEEE Transactions on Industrial Electronics, 2008, 55(5): 2140-2151
    [87] Wu, X.H., Panda, S.K., Xu, J.X. Analysis of the Instantaneous Power Flow for Three-Phase PWM Boost Rectifier Under Unbalanced Supply Voltage Conditions.IEEE Transactions on Power Electronics, 2008, 23(4): 1679-1691
    [88] Nussbaumer, T., Heldwein, M.L., Guanghai Gong, Round, S.D., Kolar, J.W.Comparison of Prediction Techniques to Compensate Time Delays Caused by Digital Control of a Three-Phase Buck-Type PWM Rectifier System. IEEE Transactions on Industrial Electronics, 2008, 55(2): 791-799
    [89] Ohnuki, T., Miyashita, O., Lataire, P., Maggetto, G. Control of a Three-Phase PWM Rectifier using Estimated AC-Side and DC-Side Voltages. IEEE Transactions on Power Electronics, 1999, 14(2): 222-226
    [90] Sangshin Kwak, Toliyat, H.A. Design and Rating Comparisons of PWM Voltage Source Rectifiers and Active Power Filters for AC Drives With Unity Power Factor.IEEE Transactions on Power Electronics, 2005, 20(5): 1133-1142
    [91] Keliang Zhou, Wang, D. Digital Repetitive Controlled Three-Phase PWM Rectifier. IEEE Transactions on Power Electronics, 2003, 18(1): 309-316
    [92] Jia Wu, Lee, F.C., Boroyevich, D. Elimination of Low-Frequency Harmonics Caused by PWM in a Three-Phase Soft-Switched Boost Rectifier. IEEE Transactions on Industry Applications Power Electronics, 2002, 38(2): 483-489
    [93] Kanaan, H., Al-Haddad, K., Fnaiech, F. Modelling and control of three-phase switch level fixed-frequency PWM rectifier state-space averaged model. Proceedings of Electric Power Applications, 2005, 152(3): 551-557
    [94] Tiwari, A.N., Agarwal, P., Srivastava, S.P. Modified hysteresis controlled PWM rectifier. Proceedings of Electric Power Applications, 2003, 150(4): 389-396
    [95] Peng Xiao, Corzine, K.A., Venayagamoorthy, G.K. Multiple Reference Frame-Based Control of Three-Phase PWM Boost Rectifiers under Unbalanced and Distorted Input Conditions. IEEE Transactions on Industrial Electronics, 2008, 23(4): 2006-2017
    [96] In-Dong Kim, Bose, B.K. New ZCS turn-on and ZVS turn-off unity power factor PWM rectifier with reduced conduction loss and no auxiliary switches. Proceedings of PESC'98, 1998:1344-1350
    [97] Lee, T.-S. Nonlinear state feedback control design for three-phase PWM boost rectifiers using extended linearization. Sept 2003, 150(5): 546-554
    [98] Hengchun Mao, Boroyevich, D., Lee, F.C.Y. Novel Reduced-Order Small-Signal Model of a Three-Phase PWM Rectifier and Its Application in Control Design and System Analysis. IEEE Transactions on Power Electronics, 1998, 13(3): 511-521
    [99] Sheng-Hua Li, Chang-Ming Liaw. On the DSP-Based Switch-Mode Rectifier with Robust Varying-Band Hysteresis PWM Scheme. IEEE Transactions on Power Electronics, Sept 2004, 19(6): 1417-1425
    [100] 张书军、魏克新.正弦滞环电流控制可逆变流器.电力电子技术,2007,41(5):24-25
    [101] Barrass, P., Cade, M. PWM rectifier using indirect voltage sensing. Proceedings of Electric Power Applications, 1999, 146(5): 539-544
    [102] Min, B.-D., Youm, J.-H., Kwon, B.-H. SVM-based hysteresis current controller for three-phase PWM rectifier, 1999, 146(2): 225-230
    [103] Jia Wu; Lee, F.C., Boroyevich, D., Heping Dai, Kun Xing, Dengming Peng. A 100 kW High-Performance PWM Rectifier with a ZCT Soft-Switching Technique. IEEE Transactions on Power Electronics, 2003, 18(6): 1302-1308
    [104] Buso, S., Fasolo, S., Malesani, L., Mattavelli, P. A dead-beat adaptive hysteresis current control. IEEE Transactions on Industry Applications, 2000, 36(4):1174-1180
    [105] Marei, M.I., El-Saadany, E.F., Salama, M.M.A. A novel control scheme for STATCOM using space vector modulation based hysteresis current controller. Proceedings of 11~(th) International Conference on Harmonics and Quality of Power, 2004:58-65
    [106] Malesani, L., Tenti, P. A novel hysteresis control method for current-controlled voltage-source PWM inverters with constant modulation frequency. IEEE Transactions on Industry Applications, 1990, 26(1): 88-92
    [107] Bong-Hwan Kwon, Tae-Woo Kim, Jang-Hyoun Youm. A novel SVM-based hysteresis current controller. IEEE Transactions on Power Electronics, 1998, 13(2): 297-307
    [108] Buso, S., Malesani, L., Mattavelli, P. Comparison of current control techniques for active filter applications. IEEE Transactions on Industry Electronics, 1998, 45(5): 722-729
    [109] Kazmierkowski, M.P., Malesani, L. Current control techniques for three-phase voltage-source PWM converters a survey. IEEE Transactions on Industry Electronics, 1998, 45(5): 691-703
    [110] Malesani, L., Rossetto, L., Zuccato, A. Digital adaptive hysteresis current control with clocked commutations and wide operating range. IEEE Transactions on Industry Applications, 1996, 32(2): 316-325
    [111] Malesani, L., Mattavelli, P., Tomasin, P. High-performance hysteresis modulation technique for active filters. IEEE Transactions on Power Electronics, 1997, 12(5): 876-884
    [112] Malesani, L., Mattavelli, P., Tomasin, P. Improved constant-frequency hysteresis current control of VSI inverters with simple feedforward bandwidth prediction. IEEE Transactions on Industry Applications, 1997, 33(5): 1194-1202
    [113] Malesani, L., Tenti, P., Gaio, E., Piovan, R. Improved current control technique of VSI PWM inverters with constant modulation frequency and extended voltage range. IEEE Transactions on Industry Applications, 1991, 27(2): 365-369
    [114] 王焕岗,徐文立,黎坚,杨耕.一种新型的感应电动机直接转矩控制.中国电机工程学报,2004,24(1):107-111
    [115] 熊健、张凯、陈坚.PWM整流器的控制器工程化设计方法.电工电能新技术, 2002.21(3):44-48
    [116]杨旭、王兆安.一种新的准固定频率滞环PWM电流控制方法.电工技术学报,2003.18(3):24-28
    [117]魏克新、张书军、岳有军.可逆变流器正弦滞环宽度控制方法.电力自动化设备,2005.25(9):36-38
    [118]曾江、焦连伟、倪以信.有源滤波器定频滞环电流控制新方法.电网技术,2000,24(6): 1-8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700