用户名: 密码: 验证码:
多支柱起落架飞机支柱刚度优化匹配设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代国外研制成功的大、中型军用运输机大都采用多机轮、多支柱起落架设计方案。这种起落架布置方式提高了飞机起飞着陆的安全性,同时也降低了对机场路面的要求。但多支柱起落架各个支柱间的载荷分配计算、缓冲刚度匹配等问题,国内外尚无相应的设计规范与设计准则加以解决。为此,本文以多支柱起落架为研究对象,尝试研究其最优的支柱刚度匹配设计。作者以某型军用运输机为原型,设计了相似试验模型,并对其进行了不同状态的坠落撞击试验,由此初步了解了该种多支柱起落架飞机的着陆响应规律;同时,建立了多支柱起落架及对应的全机的力学模型,利用大型瞬态动力学软件MSC.Dytran对其不同状态的着陆过程进行仿真,并将试验结果与仿真分析结果进行初步比较;为提高仿真分析速度,本文提出了针对这种起落架结构全机着陆的快速仿真分析方法,应用该方法编写了多支柱起落架刚度分配仿真软件并对各种着陆工况进行了仿真,在此过程中通过把自编软件仿真结果与之前的试验与MSC.Dytran计算值进行比较分析,验证了计算方法与软件的正确性。最后,以自编软件为分析工具,应用多目标最优化理论,以机身各关键部位加速度响应、支柱压缩位移、支柱吸收的能量、支柱部位应力以及支柱重量为目标函数,以起落架支柱刚度比为设计变量,对不同着陆状态进行多目标最优化,最终综合各着陆状态得到最优的支柱刚度匹配设计,为多支柱起落架的设计提供理论指导与参考。
The multi-wheel, multi-stanchion landing gear design has been selected by most of foreign large military transporter. The takeoff and landing security of the plane is improved and the demand to the road face of the airfield is depressed. But many difficult such as calculation of load distribution, crush stiffness matching of each stanchion, and so on exist. And, up to the present, no design criterion or guidance books about them can be found in China or other countries. In order to analyze the best stiffness matching design of stanchions and solve these problems above, the multi-stanchion landing gear has been chosen as the research object of this paper. A similar experimental model was made by using a military transporter as the objective archetype. The landing impact experiments of different states were accomplished and some rules of landing responses were found out. At the same time, a mechanical model of multi-stanchion landing gear and the whole plane was established, it’s landing impact processes of different cases were simulated by MSC.Dytran, and the results were primary compared with the experimental data. In order to improve the simulation speed, an efficient approach to simulate the landing processes of multi-stanchion landing gear and the whole plane was set up, and the stiffness matching simulation system of multi-stanchion landing gear was established by applying this method. Many landing impact cases were simulated by this system, the results were compared with the previous experiment and MSC.Dytran simulation data, and the simulation approach and system were verified correct. Ultimately, the stanchion stiffness matching of each landing cases was optimized by applying the multi-objective optimum theory. The objective functions including the acceleration responses of key point of the airframe, the compression of each stanchion, and so on. The stiffness ratio of landing gear’s stanchion were the design variable. Finally, the best stanchion stiffness matching was gained by synthesized all of the landing cases. The research of this paper can be used as the guidance and reference of multi-stanchion landing gear design.
引文
[1] 张大千,吕伟,起落架落震试验测试系统的现状及其发展,沈阳航空工业学院学报, Vol.19 No.2,2002
    [2] W.Flugge, Landing-gear impact. NACA TN2743
    [3] James N.Daniels, A method for landing gear modeling and simulation with experimental validation, NASA Langley Research Center, Hampton, Virginia
    [4] Mercedes C.Reaves, Lucas G.Horta, Taxiing, take-off, and landing simulation of the high speed civil transport aircraft. NASA/TM-1999-209531
    [5] Edwin L. Fasanella and Karen E. Jackson, Best practices for crash modeling and simulation, NASA/TM-2002-211944
    [6] Edwin L. Fasanella, Karen E. Jackson, Crash simulation of a vertical drop test of a B737 fuselage section with auxiliary fuel tank, NASA Langley Research Center, Hampton, Virginia
    [7] Karen E. Jackson, Edwin L. Fasanella, Crash simulation of a vertical drop test of a B737 fuselage section with overhead bins and luggage, NASA Langley Research Center, Hampton, Virginia,2001
    [8] 张志林,苏开鑫,飞机起落架着陆撞击动力分析,洪都科技,2000
    [9] 史友进,张曾錩,大柔性飞机着陆响应弹性机体模型,东南大学学报, Vol.35 No.4 July 2005
    [10] 牟让科,罗俊杰,飞机结构弹性对起落架缓冲性能的影响,航空学报, Vol.16 No.2,1995
    [11] 牟让科,胡孟权,飞机非对称着陆和滑跑载荷的分析方法,机械科学与技术, Vol.19 SI,1995
    [12] 牟让科,弹性飞机对称着陆滑跑过程中动响应分析方法研究,应用力学学报, Vol.13 SI,1996
    [13] 晋萍,飞机起落架动态性能分析,[硕士学位论文],南京,南京航空航天大学,2003
    [14] 晋萍,聂宏,起落架着陆动态仿真分析模型及参数优化设计,南京航空航天大学 学报,Vol.35 No.5,2003
    [15] 晋萍,飞机着陆动力响应分析模型及仿真,安徽工业大学学报,Vol.22 No.2,2005
    [16] 方平, 小车式飞机起落架着陆与滑跑动态性能仿真分析, [硕士学位论文],南京, 南京航空航天大学,2004
    [17] 李思政,多轮多支柱起落架飞机滑跑响应分析,[硕士学位论文],西北工业大学,2006
    [18] 赵经文,王宏钰,结构有限元分析(第二版),北京:科学出版社,2001
    [19] 胡海岩,机械振动与冲击,北京:航空工业出版社,1998.2
    [20] 高泽迥, 张日新, 三维机身起落架着陆冲击力学模型,航空学报,第 12 卷 第 8 期,1991
    [21] 张大千,吕伟,起落架落震试验测试系统的现状及其发展,沈阳航空工业学院学报, Vol.19 No.2,2002
    [22] 刘莉, 杨国柱, 何庆芝, 起落架缓冲系统参数对飞机滑行动态响应的影响, 航空学报, 第 13 卷第 6 期,1992
    [23] 刘莉, 杨国柱, 何庆芝, 起落架缓冲系统参数优化设计, 航空学报, 第 13 卷第 10 期,1992
    [24] 李霞, 某型飞机主起落架缓冲系统性能分析研究. 航空工程,2000
    [25] 沈航,飞机起落架着陆与滑跑性能分析,应用力学学报,Vol.18 SI Sep.2001
    [26] 刘霞,齐欢等,空投货物冲击过程的仿真, 包装工程, Vol.26 No.5, 2005
    [27] 万志敏,陈立平,飞行器模型着陆特性的试验研究,物理测试,2002 年第 1 期
    [28] 李霞,现代飞机起落架缓冲性能分析、优化设计一体化技术,[硕士学位论文], 西北工业大学,2004
    [29] 卞文杰等,瞬态动力学 CAE 解决方案 MSC.Dytran 基础教程,北京大学出版社,2004
    [30] 万力等,瞬态动力学 CAE 解决方案 MSC.Dytran 实例教程,北京大学出版社,2004
    [31] 胡毓达,实用多目标最优化,上海科学技术出版社,1987
    [32] 解可新,韩健等,最优化方法,天津大学出版社,2004
    [33] 张陵,诸德培,主起落架纵向抖振的动态特性研究,航空学报,Vol.17 No.3,1996
    [34] 隋福成,陆华,飞机起落架缓冲器数学模型研究,飞机设计,第 2 期,2001
    [35] 罗漳平,向锦武,直升机起落架抗坠毁性能的有限元仿真评估,航空学报, Vol.24 No.3, May 2003
    [36] 段松云, 朱纪洪, 孙增圻,无人机着陆数学模型研究—三轮着地滑行, 系统仿真学报,Vol.16 No.6, June 2004
    [37] 陈旺, 小车式飞机起落架落震及全机着陆动态仿真分析, [硕士学位论文],南京, 南京航空航天大学,2005
    [38] 麻士东, 飞机起落架缓冲系统动力学仿真研究, [硕士学位论文],南京, 南京航空航天大学,2004
    [39] Brent York, A physically representative aircraft landing gear model for real-time simulation. AIAA. 1996
    [40] The design, qualification and maintenance of vibration-free landing gear. AGARD REPORT 800, 1996
    [41] Stanley Faber, Dynamic model investigation of a landing-gear configuration consisting of a single main skid and a nose wheel, NASA TN D-213
    [42] Marcus Dwight Billings, Analytical simulation of energy-absorbing impact spheres for a Mars sample return earth entry vehicle, NASA/CR-2002-211671
    [43] James M. McKay, Eldon E. Kordes, Landing loads and dynamics of the X-15 airplane, NASA TM X-639
    [44] Ulysse J. Blanchard, Characteristics of a lunar landing configuration having various multiple-leg landing-gear arrangements, NASA TN D-2027
    [45] Patrick Monclar, Messier Dowty, Technology programs for landing gear systems, AIAA 2003-2505, July 2003, Dayton, Ohio
    [46] Alessandro Airoldi, Luca Lanzi, Multi-Objective genetic optimization for helicopter skid landing gears, AIAA 2005-2310, April 2005, Austin, Texas
    [47] Horta Lucas G., Daugherty Robert H., Modeling and validation of a navy A6-intruder actively controlled landing gear system, NASA Langley Research Center, Hampton, Virginia, 1999
    [48] Pritchard Jocelyn I., An overview of landing gear dynamics, NASA Langley Research Center, Hampton, Virginia, 1999
    [49] Fasanella Edwin L., Lyle Karen H., Simulation of X-38 Landing Scenarios With Landing Gear Failures, NASA Langley Research Center, Hampton, Virginia, 2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700