用户名: 密码: 验证码:
Edenia gomezpompae的抗肿瘤活性及其生物学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从天然产物中寻找抗肿瘤活性成分,是抗肿瘤药物开发的重要策略之一。据统计,从1940年到2006年几十年间所应用的抗肿瘤药物中,有60%来自天然产物或其衍生物,其中如来源于植物的长春新碱、鬼臼毒素、紫杉醇及喜树碱等抗肿瘤药物已经被批准上市,并被广泛应用。但是这些化合物在植物中的含量较低,增加了分离纯化的难度,提高了成本。另外,珍稀植物的过度采伐会对生态环境带来恶劣影响。
     据估测,全世界真菌约有150万余种,已知真菌不及总数的10%,而真菌产生的代谢产物的种类更是不计其数。迄今为止,从真菌次级代谢产物中已发现包括紫杉醇、长春碱类及鬼臼毒素等100余种具有抗肿瘤活性的化合物,其结构类型与作用机制均体现出了丰富的多样性,是“天然药物的宝库”,受到了研究人员的青睐。在工业生产中,真菌发酵具有易于操作、不易污染、生产成本低、生产周期短等优点,并可通过诱变育种及遗传改造等手段来提高菌种性能,容易实现大规模生产。同时,利用真菌开发抗肿瘤药物还可以减少野生植物的过度采伐。因此从真菌中开发抗肿瘤药物,不仅具有良好经济前景,而且对自然资源的保护具有重要的意义。
     一、抗肿瘤活性菌株的筛选
     本研究利用MTT法对82株真菌的代谢产物进行筛选,得到4株对Hela细胞抗肿瘤活性较强的菌株,其中菌株FI29活性最强,IC_(50)值为16.1μg/ml,因此将菌株FI29作为后续的研究对象。
     二、菌株FI29的鉴定及生物学特性研究
     1.本研究利用形态学和分子生物学的方法,将菌株FI29鉴定为Edeniagomezpompae。
     2.本研究发现菌株FI29在SDA平板培养基上,培养温度为28℃时,生长最迅速。
     3.本研究通过对促孢条件的摸索,首次发现E. gomezpompae在燕麦培养基,28℃培养4w的条件下,可以形成厚垣孢子,并对其形成过程进行了观察。
     4.利用最大简约法对20种26株格孢科真菌以及E. gomezpompae进行了系统进化分析,这是对E. gomezpompae及Edenia在格孢科家族分类学地位的首次探讨。结果表明,在格孢科中Edenia与Alternaria(链格孢属)及Ulocladium(细基格孢属)的属间亲缘关系较近。
     这些发现加深了对罕见真菌Edenia gomezpompae的认识,为其开发利用奠定了实验基础。
     三、 Edenia gomezpompae次级代谢产物的结构研究
     1.本研究通过对菌株FI29的固体发酵,得到了乙酸乙酯粗提物约16g,对Hela细胞的IC_(50)值为8.1μg/ml。
     2.利用硅胶柱层析、反相ODS柱层析、TLC和HPLC等方法,并通过对活性追踪,得到了EG7-1和EG7-2两种化合物,纯度分别为87%和92%,对Hela细胞的IC_(50)值分别为8.8μg/ml和2.2μg/ml。
     3.利用HPLC-MS法对EG7-1和EG7-2这两种化合物的结构进行解析,根据质谱图及查阅相关文献,推测两者均为萘醌螺缩酮类化合物,分子式分别为C_(22)H_(21)O_5和C24H27O5。
     这两种化合物的发现丰富了萘醌螺缩酮类化合物家族的多样性,并为抗肿瘤药物的设计提供了新的思路。
     四、 Edenia gomezpompae次级代谢产物抗肿瘤作用的研究
     1.本研究利用MTT法检测了化合物EG7-2对Hela、BxPC-3和H460细胞的抗肿瘤活性,结果表明化合物EG7-2对Hela、BxPC-3和H460细胞均有一定抗肿瘤活性,其中对Hela细胞的活性最强。
     2.将化合物EG7-2分别以不同浓度、不同时间作用于Hela细胞,结果发现随着药物浓度的增加或作用时间的延长,化合物EG7-2对Hela细胞的抑制作用明显增强,呈明显的浓度依赖性和时间依赖性。
     3.利用DAPI染色法观察发现,EG7-2作用于Hela细胞后,细胞核染色加深,边缘化呈新月形,为细胞凋亡时的特征。
     4.利用流式细胞术Annexin V-FITC/PI双染法检测了EG7-2对Hela细胞的影响,结果表明,化合物EG7-2可诱导Hela细胞凋亡,并且随着EG7-2浓度的增加早期凋亡率逐渐升高。
     5.利用PI单染法检测了化合物EG7-2对Hela细胞周期的影响,结果表明,当EG7-2的浓度为20μg/ml时,G2/M期细胞分数显著增加,说明EG7-2会对G2/M期产生影响。
     通过初步探讨化合物EG7-2对Hela细胞的作用机制,为将萘醌螺缩酮类化合物开发成新型的抗肿瘤药物提供了理论依据。
     五、根癌农杆菌介导的Edenia gomezpompae遗传转化体系的建立
     1.本实验首先利用1%纤维素酶、1%蜗牛酶和1%溶壁酶的混合酶液,在30℃,100rpm,酶解3h的条件下,可以制备出E. gomezpompae的原生质体,产量约为2.5×10~5个/ml。
     2.本实验以原生质体为受体材料,利用ATMT技术,实现了E.gomezpompae遗传转化体系的构建。
     3.通过对突变体遗传稳定性的测定和PCR的分析,表明转化的阳性率接近100%,并且突变体具有遗传稳定的特点。
     根癌农杆菌介导的E. gomezpompae遗传转化体系的建立,为从分子水平探讨E. gomezpompae生物合成的机制提供了有效的实验途径,并为进一步的突变育种和遗传改造解决了技术难题。
Throughout medical history, plant products have proved to be valuable sourcesof potent antitumor drugs. Statistics shows that60%of the applied antitumor drugscome from plants products during1940to2006. But these compounds have lowcontent in plant products, which increasing the difficulty in the separation-purificationprocess, and meanwhile enhancing the cost. In addition, over-exploitation of theserare plants willadversely impact the ecological environment.
     According to a conservative estimate, there are about1.5million speciesworldwide in all. However, the quantity of known fungi is less than10%of the totalamount. So far, more than100kinds of compounds with antitumor activity have beenfound from the enormous fungal metabolites, with diversity in structures andmechanism, such as the vincristine, podophyllotoxin, paclitaxel, and camptothecinderived from fungal metabolites. It is belived that fungal secondary metabolites aretreasure trove of natural medicines, by pharmaceutical researchers favor.
     In industrial applications, fermentation of fungi has advantages such as easyoperation, low pollution, low production cost, short production cycle, and so on. Thefungal fermentation can improve strain performance by mutation breeding and geneticmodification, and it is easy to implement large-scale production. Meanwhile, theutilization of fungi to develop anticancer drugs can also reduce the dependence onwild or cultivated plant resources, replacing wasting those endangered medicinalplants with active ingredients content and the scarcity of natural resources. Therefore,the development of anticancer drugs from fungi not only has great economic value,but also can inhibit the excessive exploitation of plant.
     1. Screening for fungi with antitumor activities
     The screening of metabolites from82fungal strains was carried out with MTT assay. Only4strains showed potent antitumor activities on Hela cells, the strain FI29with the IC_(50)of16.1μg/ml. Therefore the strain FI29as a follow-up study.
     2. Identification and biological characteristics of the strain FI29
     ⅰ The strain FI29was identified as Edenia gomezpompae according tomorphological characteristics and molecular analysis.
     ⅱ The optimal growth condition of E.gomezpompae were optimized to in SDAculture medium under the temperature of28℃
     ⅲ E.gomezpompae was subcultured on OA and incubated at28℃. After4weeks,numerous chlamydospores produced from submerged mycelium were observed,which had never been described before.
     ⅳ Internal transcribed spacer (ITS) region of26strains representing20speciesof the family Pleosporaceae and E. gomezpompae were analysed to determine theirmolecular phylogenetic relationships, which was firstly reported. The phylogenetictrees was constructed by maximum parsimony and indicated that the geneticrelationship is fairly closed among Edenia, Alternaria and Ulocladium.
     These findings opened and enlighten us to understand the rare fungus ofE.gomezpompae, and lay the foundation for the follow-up experiments.
     3. Structure of secondary metabolites from Edenia gomezpompae
     ⅰ This study scaled up the solid fermentation of strain FI29, and got16g of thecrude extracting from ethyl acetate. These crude extract showed the IC_(50)of8.1μg/mlon Hela cell proliferation assay.
     ⅱ The antitumor chemical constituents was isolated by silica gel columnchromatography, ODS column chromatography, TLC, HPLC, and so on. Two finalproduct, EG7-1and EG7-2were obtained, with the purity of87%and92%, whichshowed potent anticancer activity on Hela cells with the IC_(50)values of8.8μg/mland2.2μg/ml, respectively.
     ⅲ According to HPLC-MS, it could be inferred that they have the structurecharacter of spirobisnaphthalenes, and the molecular formulas of EG7-1and EG7-2were inferred to be C_(22)H_(21)O_5and C24H27O5, respectively.
     This work provides a theoretical basis and technical support for the furtherseparation of the monomer of the antitumor agents.
     3、Anti-tumor effect of Secondary metabolites from Edenia gomezpompae
     ⅰ This study analyzed the antitumor activity of EG7-2to BxPC-3and H460cells by the MTT assay. The IC_(50)of EG7-2to BxPC-3and H460cells are2.2μg/ml,5.0μg/ml and15.8μg/ml, respectively. The result suggested that the compound EG7-2showed strongest antitumor activity against Hela cell.
     ⅱ It is examined that the effect of compound EG7-2to Hela cells at differentconcentrations in different time. The results showed that the inhibitory effect ofcompound EG7-2to Hela cells have concentration-dependent and time-dependentcorrelation in drug treatment.
     ⅲ Hela cells were stained by DAPI after treated by different concentrations ofEG7-2. The cells showed morphological changes such as cytoplasm shrinkage,staining deepen and marginalization.
     ⅳ In addition, flow cytometric analyses revealed enhanced apoptosis of Helacells treated with different concentration in a dose-dependent manner. These resultsdemonstrated that the inhibitory effect of EG7-2on Hela cells is accomplishedthrough inducing cell apoptosis.
     ⅴ Using the PI stained, observed the effect of the compound EG7-2on the cellcycle of Hela cells. Results showed that, G2/M phase fraction increased significantlywhich the concentration of EG7-2was20μg/ml, indicating that EG7-2will have animpact on G2/M phase.
     The work of mechanism illustration of EG7-2on Hela cell provides fundamentalbasis for the novel antitumor drug development on spirobisnaphthalenes
     5. Agrobacterium-mediated transformation ((AATTMMTT) system for Edeniagomezpompae
     ⅰ In this study, the mixture solution of1%cellulose,1%snailase and1%lywallzyme was used for protoplast preparation. Under the suitable culture conditionsof30℃,3h,110rpm, numerous protoplast produced were observed(2.5×105per/ml).
     ⅱ In this experiment, the protoplasts as receptor material, Agrobacterium-mediated transformation (ATMT) system of E.gomezpompae was established.
     ⅲThe efficient transformation enabled us to obtain a large scale ofE.gomezpompae T-DNA insertion mutagenesis within a short experimental period.These mutants had mitotic stability,sclear genetic backgrounds and insertion sites.
     This method may provide a new insight for molecular basic and geneticallymodify of E.gomezpompae.
引文
[1] JEMAL A, BRAY F, CENTER M M, et al. Global cancer statistics[J]. CA CancerJ Clin,2011,61(2):69-90.
    [2] CHANDRA S. Endophytic fungi: novel sources of anticancer lead molecules[J].Appl Microbiol Biotechnol,2012,95(1):47-59.
    [3] NEWMAN D J, CRAGG G M,SNADER K M. Natural products as sources of newdrugs over the period1981-2002[J]. J Nat Prod,2003,66(7):1022-37.
    [4] CRAGG G M. Paclitaxel (Taxol): a success story with valuable lessons for naturalproduct drug discovery and development[J]. Med Res Rev,1998,18(5):315-31.
    [5] BLACKWELL M. The fungi:1,2,3...5.1million species?[J]. Am J Bot,2011,98(3):426-38.
    [6] SMITH D. Culture collections over the world[J]. Int Microbiol,2003,6(2):95-100.
    [7] VERMA V C, KHARWAR R N,STROBEL G A. Chemical and functionaldiversity of natural products from plant associated endophytic fungi[J]. Nat ProdCommun,2009,4(11):1511-32.
    [8] CHEN H, ZHU X, ZHONG L L, et al. Synthesis and antitumor activities ofderivatives of the marine mangrove fungal metabolite deoxybostrycin[J]. MarDrugs,2012,10(12):2715-28.
    [9] WANG S, LI X M, TEUSCHER F, et al. Chaetopyranin, a benzaldehydederivative, and other related metabolites from Chaetomium globosum, anendophytic fungus derived from the marine red alga Polysiphonia urceolata[J]. JNat Prod,2006,69(11):1622-5.
    [10] POMMIER Y. Topoisomerase I inhibitors: camptothecins and beyond[J]. NatRev Cancer,2006,6(10):789-802.
    [11] STAKER B L, HJERRILD K, FEESE M D, et al. The mechanism of topoi-somerase I poisoning by a camptothecin analog[J]. Proc Natl Acad Sci U S A,2002,99(24):15387-92.
    [12] WALL M E. Camptothecin and taxol: discovery to clinic[J]. Med Res Rev,1998,18(5):299-314.
    [13] PEZZUTO J M. Plant-derived anticancer agents[J]. Biochem Pharmacol,1997,53(2):121-33.
    [14] REHMAN S, SHAWL A S, VERMA V, et al. An endophytic Neurospora sp.from Nothapodytes foetida producing camptothecin[J]. Prikl Biokhim Mikrobiol,2008,44(2):225-31.
    [15] LIN R J, CHENG M J, HUANG J C, et al. Cytotoxic compounds from the stemsof Cinnamomum tenuifolium[J]. J Nat Prod,2009,72(10):1816-24.
    [16] LINGQI Z, HUA S,BO G. Preliminary study on the isolation of endophyticfungus of Catharanthus roseus and its fermentation to produce products oftherapeutic value[J]. Chinese traditional and Herbal drugs,2000,31(11):805-807.
    [17] BLAJESKI A L, PHAN V A, KOTTKE T J, et al. G(1) and G(2) cell-cycle arrestfollowing microtubule depolymerization in human breast cancer cells[J]. J ClinInvest,2002,110(1):91-9.
    [18] ALY A H, DEBBAB A,PROKSCH P. Fungal endophytes: unique plantinhabitants with great promises[J]. Appl Microbiol Biotechnol,2011,90(6):1829-45.
    [19] ZHAO J, SHAN T, MOU Y, et al. Plant-derived bioactive compounds producedby endophytic fungi[J]. Mini Rev Med Chem,2011,11(2):159-68.
    [20] DING G, SONG Y C, CHEN J R, et al. Chaetoglobosin U, a cytochalasanalkaloid from endophytic Chaetomium globosum IFB-E019[J]. J Nat Prod,2006,69(2):302-4.
    [21] XU J, KJER J, SENDKER J, et al. Chromones from the endophytic fungusPestalotiopsis sp. isolated from the chinese mangrove plant Rhizophoramucronata[J]. J Nat Prod,2009,72(4):662-5.
    [22] KLEMKE C, KEHRAUS S, WRIGHT A D, et al. New secondary metabolitesfrom the marine endophytic fungus Apiospora montagnei[J]. J Nat Prod,2004,67(6):1058-63.
    [23] FAULKNER D J. Marine natural products[J]. Nat Prod Rep,2001,18(1):1-49.
    [24] SATTLER I, THIERICKE R,ZEECK A. The manumycin-group metabolites[J].Nat Prod Rep,1998,15(3):221-40.
    [25] PITTAYAKHAJONWUT P, DRAMAE A, MADLA S, et al. Depsidones fromthe endophytic fungus BCC8616[J]. J Nat Prod,2006,69(9):1361-3.
    [26] BASHYAL B P, WIJERATNE E M, FAETH S H, et al. Globosumones A-C,cytotoxic orsellinic acid esters from the Sonoran desert endophytic fungusChaetomium globosum[J]. J Nat Prod,2005,68(5):724-8.
    [27] WANG J, HUANG Y, FANG M, et al. Brefeldin A, a cytotoxin produced byPaecilomyces sp. and Aspergillus clavatus isolated from Taxus mairei andTorreya grandis[J]. FEMS Immunol Med Microbiol,2002,34(1):51-7.
    [28] CHINWORRUNGSEE M, WIYAKRUTTA S, SRIUBOLMAS N, et al.Cytotoxic activities of trichothecenes isolated from an endophytic fungusbelonging to order Hypocreales[J]. Arch Pharm Res,2008,31(5):611-6.
    [29] ADLERCREUTZ H, FOTSIS T, HEIKKINEN R, et al. Excretion of the lignansenterolactone and enterodiol and of equol in omnivorous and vegetarianpostmenopausal women and in women with breast cancer[J]. Lancet,1982,2(8311):1295-9.
    [30] PURI S C, NAZIR A, CHAWLA R, et al. The endophytic fungus Trameteshirsuta as a novel alternative source of podophyllotoxin and related aryl tetralinlignans[J]. J Biotechnol,2006,122(4):494-510.
    [31] EYBERGER A L, DONDAPATI R,PORTER J R. Endophyte fungal isolatesfrom Podophyllum peltatum produce podophyllotoxin[J]. J Nat Prod,2006,69(8):1121-4.
    [32] ARAI T, MIKAMI Y, FUKUSHIMA K, et al. A new antibiotic, leucinostatin,derived from Penicillium lilacinum[J]. J Antibiot (Tokyo),1973,26(3):157-61.
    [33] KAWADA M, INOUE H, OHBA S, et al. Leucinostatin A inhibits prostatecancer growth through reduction of insulin-like growth factor-I expression inprostate stromal cells[J]. Int J Cancer,2010,126(4):810-8.
    [34] STROBEL G A. Endophytes as sources of bioactive products[J]. Microbes Infect,2003,5(6):535-44.
    [35] WALL M E,WANI M C. Camptothecin and taxol: discovery to clinic--thirteenthBruce F. Cain Memorial Award Lecture[J]. Cancer Res,1995,55(4):753-60.
    [36] SCHIFF P B, FANT J,HORWITZ S B. Promotion of microtubule assembly invitro by taxol[J]. Nature,1979,277(5698):665-7.
    [37] CRAGG G M,NEWMAN D J. Plants as a source of anti-cancer agents[J]. JEthnopharmacol,2005,100(1-2):72-9.
    [38] LI J Y, STROBEL G, SIDHU R, et al. Endophytic taxol-producing fungi frombald cypress, Taxodium distichum[J]. Microbiology,1996,142(Pt8)2223-6.
    [39] GANGADEVI V,MUTHUMARY J. A novel endophytic Taxol-producingfungus Chaetomella raphigera isolated from a medicinal plant, Terminaliaarjuna[J]. Appl Biochem Biotechnol,2009,158(3):675-84.
    [40] STIERLE A, STROBEL G,STIERLE D. Taxol and taxane production byTaxomyces andreanae, an endophytic fungus of Pacific yew[J]. Science,1993,260(5105):214-6.
    [41] STIERLE A, STROBEL G, STIERLE D, et al. The search for a taxol-producingmicroorganism among the endophytic fungi of the Pacific yew, Taxusbrevifolia[J]. J Nat Prod,1995,58(9):1315-24.
    [42] GANGADEVI V,MUTHUMARY J. Taxol production by Pestalotiopsisterminaliae, an endophytic fungus of Terminalia arjuna (arjun tree)[J].Biotechnol Appl Biochem,2009,52(Pt1):9-15.
    [43] WIJERATNE E M, PARANAGAMA P A, MARRON M T, et al. Sesquiterpenequinones and related metabolites from Phyllosticta spinarum, a fungal strainendophytic in Platycladus orientalis of the Sonoran Desert[J]. J Nat Prod,2008,71(2):218-22.
    [44] CAI Y S, GUO Y W,KROHN K. Structure, bioactivities, biosyntheticrelationships and chemical synthesis of the spirodioxynaphthalenes[J]. Nat ProdRep,2010,27(12):1840-70.
    [45] MCDONALD L A, ABBANAT D R, BARBIERI L R, et al. Spiroxins, DNAcleaving antitumor antibiotics from a marine-derived fungus[J]. Tetrahedronletters,1999,40(13):2489-2492.
    [46] KROHN K, MICHEL A, FL RKE U, et al. Biologically active metabolites fromfungi,5. Palmarumycins C1–C16from Coniothyrium sp.: isolation, structureelucidation, and biological activity[J]. Liebigs Annalen der Chemie,1994,1994(11):1099-1108.
    [47] DONG J Y, SONG H C, LI J H, et al. Ymf1029A-E, preussomerin analoguesfrom the fresh-water-derived fungus YMF1.01029[J]. J Nat Prod,2008,71(6):952-6.
    [48] KHARWAR R N, MISHRA A, GOND S K, et al. Anticancer compoundsderived from fungal endophytes: their importance and future challenges[J]. NatProd Rep,2011,28(7):1208-28.
    [49] WEBER H A,GLOER J B. The preussomerins: novel antifungal metabolitesfrom the coprophilous fungus Preussia isomera Cain[J]. The Journal of OrganicChemistry,1991,56(14):4355-4360.
    [50] WEBER H A, BAENZIGER N C,GLOER J B. Structure of preussomerin A: anunusual new antifungal metabolite from the coprophilous fungus Preussiaisomera[J]. Journal of the American Chemical Society,1990,112(18):6718-6719.
    [51] COX A D,DER C J. Farnesyltransferase inhibitors: promises and realities[J].Curr Opin Pharmacol,2002,2(4):388-93.
    [52] LEONARD D M. Ras farnesyltransferase: a new therapeutic target[J]. J MedChem,1997,40(19):2971-90.
    [53] KOHL N E, MOSSER S D, DESOLMS S J, et al. Selective inhibition ofras-dependent transformation by a farnesyltransferase inhibitor[J]. Science,1993,260(5116):1934-7.
    [54] SINGH S B, ZINK D L, LIESCH J M, et al. Preussomerins anddeoxypreussomerins: novel inhibitors of ras farnesyl-protein transferase[J]. TheJournal of Organic Chemistry,1994,59(21):6296-6302.
    [55] SEEPHONKAI P, ISAKA M, KITTAKOOP P, et al. Evaluation ofantimycobacterial, antiplasmodial and cytotoxic activities of preussomerinsisolated from the lichenicolous fungus Microsphaeropsis sp. BCC3050[J].Planta Med,2002,68(1):45-8.
    [56] DONG J Y, SONG H C, LI J H, et al. Two unusual naphthalene-containingcompounds from a freshwater fungus YMF1.01029[J]. Chem Biodivers,2009,6(4):569-77.
    [57] SAKEMI S, INAGAKI T, KANEDA K, et al. CJ-12,371and CJ-12,372, twonovel DNA gyrase inhibitors. fermentation,isolation, structural elucidation andbiological activities[J]. J Antibiot (Tokyo),1995,48(2):134-42.
    [58] KROHN K, MICHEL A, FL RKE U, et al. Biologically active metabolites fromfungi,4. Palmarumycins CP1–CP4from Coniothyrium palmarum: Isolation,Structure Elucidation, and Biological Activity[J]. Liebigs Annalen der Chemie,1994,1994(11):1093-1097.
    [59] KROHN K, FL RKE U, JOHN M, et al. Biologically active metabolites fromfungi. Part16: New preussomerins J, K and L from an endophytic fungus:structure elucidation, crystal structure analysis and determination of absoluteconfiguration by CD calculations[J]. Tetrahedron,2001,57(20):4343-4348.
    [60] CHU M, TRUUMEES I, PATEL M, et al. Sch50673and Sch50676, two novelantitumor fungal metabolites[J]. J Antibiot (Tokyo),1995,48(4):329-31.
    [61] SCHLINGMANN G, WEST R, MILNE L, et al. Diepoxins, novel fungalmetabolites with antibiotic activity[J]. Tetrahedron letters,1993,34(45):7225-7228.
    [62] CHU M, PATEL M G, PAI J-K, et al. Sch53823and Sch53825, novel fungalmetabolites with phospholipase D inhibitory activity[J]. Bioorganic&MedicinalChemistry Letters,1996,6(5):579-584.
    [63] KING I, BLOOD C, CHU M, et al. Antitumor effect of keto-diepoxides isolatedfrom the fungus Nattrassia mangiferae[J]. Oncology research,1995,7(1):1-5.
    [64] POWIS G, WIPF P, LYNCH S M, et al. Molecular pharmacology and antitumoractivity of palmarumycin-based inhibitors of thioredoxin reductase[J]. MolCancer Ther,2006,5(3):630-6.
    [65] CHU M, TRUUMEES I, PATEL M G, et al. Structure of Sch49209: a novelantitumor agent from the fungus Nattrassia mangiferae[J]. The Journal ofOrganic Chemistry,1994,59(5):1222-1223.
    [66] CHU M, TRUUMEES I, PATEL M G, et al. Two new phospholipase dinhibitors, sch49211and sch49212, produced by the fungus Nattrasiamangirferae[J]. Bioorganic&Medicinal Chemistry Letters,1994,4(12):1539-1542.
    [67] GONZ LEZ MC, ANAYA AL, GLENN AE, et al. A new endophyticascomycete from El Eden Ecological reserve, Quintana Roo, Mexico[J].Mycotaxon,2007,201251–260.
    [68] CROUS P W, BRAUN U, WINGFIELD M J, et al. Phylogeny and taxonomy ofobscure genera of microfungi[J]. Persoonia,2009,22139-61.
    [69] MACIAS-RUBALCAVA M L, HERNANDEZ-BAUTISTA B E,JIMENEZ-ESTRADA M, et al. Naphthoquinone spiroketal with allelochemicalactivity from the newly discovered endophytic fungus Edenia gomezpompae[J].Phytochemistry,2008,69(5):1185-96.
    [70] MARTINEZ-LUIS S, DELLA-TOGNA G, COLEY P D, et al. Antileishmanialconstituents of the Panamanian endophytic fungus Edenia sp.[J]. J Nat Prod,2008,71(12):2011-4.
    [71] MARTINEZ-LUIS S, CHERIGO L, HIGGINBOTHAM S, et al. Screening andevaluation of antiparasitic and in vitro anticancer activities of Panamanianendophytic fungi[J]. Int Microbiol,2011,14(2):95-102.
    [72] NEWMAN D J,CRAGG G M. Natural products from marine invertebrates andmicrobes as modulators of antitumor targets[J]. Curr Drug Targets,2006,7(3):279-304.
    [73] GUO P, HUANG Z L, YU P, et al. Trends in cancer mortality in China: anupdate[J]. Ann Oncol,2012,23(10):2755-62.
    [74] MISIEK M,HOFFMEISTER D. Fungal genetics, genomics, and secondarymetabolites in pharmaceutical sciences[J]. Planta Med,2007,73(2):103-15.
    [75] WORAPONG J, STROBEL G, DAISY B, et al. Muscodor roseus anam. sp. nov.,an endophyte from Grevillea pteridifolia[J]. Mycotaxon,2002,81463-475.
    [76] GROSSE V,KRAPPMANN S. The asexual pathogen aspergillus fumigatusexpresses functional determinants of Aspergillus nidulans sexual development[J].Eukaryot Cell,2008,7(10):1724-32.
    [77] LAGOPODI A L,TZIROS G T. Formation of chlamydospores and microsclerotiain Alternaria dauci[J]. European journal of plant pathology,2010,128(3):311-316.
    [78] STAIB P,MORSCHHAUSER J. Chlamydospore formation in Candida albicansand Candida dubliniensis--an enigmatic developmental programme[J]. Mycoses,2007,50(1):1-12.
    [79] PATTERSON C. Importance of chlamydospores as primary inoculum forAlternaria solani, incitant of collar rot and early blight on tomato[J]. Plantdisease,1991,75(3):274-278.
    [80] LAGOPODI A L,THANASSOULOPOULOS C C. Development ofchlamydospores in Alternaria alternata[J]. Mycologia,1995,588-591.
    [81] O'NEILL N R, JENNINGS J C, BAILEY B A, et al. Dendryphion penicillatumand Pleospora papaveracea, destructive seedborne pathogens and potentialmycoherbicides for Papaver somniferum[J]. Phytopathology,2000,90(7):691-698.
    [82] BAGYALAKSHMI R, THERESE K L, PRASANNA S, et al. Newer emergingpathogens of ocular non-sporulating molds (NSM) identified by polymerasechain reaction (PCR)-based DNA sequencing technique targeting internaltranscribed spacer (ITS) region[J]. Curr Eye Res,2008,33(2):139-47.
    [83] VAN DER SAR S A, BLUNT J W,MUNRO M H. spiro-Mamakone A: a uniquerelative of the spirobisnaphthalene class of compounds[J]. Organic Letters,2006,8(10):2059-2061.
    [84] CHEN X, SHI Q, LIN G, et al. Spirobisnaphthalene enalogues from theendophytic eungus Preussia sp.[J]. Journal of natural products,2009,72(9):1712-1715.
    [85] WIPF P, HOPKINS T D, JUNG J K, et al. New inhibitors of thethioredoxin-thioredoxin reductase system based on a naphthoquinone spiroketalnatural product lead[J]. Bioorg Med Chem Lett,2001,11(19):2637-41.
    [86] EDINGER A L,THOMPSON C B. Death by design: apoptosis, necrosis andautophagy[J]. Current opinion in cell biology,2004,16(6):663-669.
    [87] ELMORE S. Apoptosis: a review of programmed cell death[J]. Toxicologicpathology,2007,35(4):495-516.
    [88] SUGUI J A, CHANG Y C,KWON-CHUNG K J. Agrobacteriumtumefaciens-mediated transformation of Aspergillus fumigatus: an efficient toolfor insertional mutagenesis and targeted gene disruption[J]. Appl EnvironMicrobiol,2005,71(4):1798-802.
    [89] ZHENG Z, HUANG C, CAO L, et al. Agrobacterium tumefaciens-mediatedtransformation as a tool for insertional mutagenesis in medicinal fungusCordyceps militaris[J]. Fungal Biology,2011,115(3):265-274.
    [90] HE R F, WANG Y, SHI Z, et al. Construction of a genomic library of wild riceand Agrobacterium-mediated transformation of large insert DNA linked to BPHresistance locus[J]. Gene,2003,321113-21.
    [91] BOYKO A, MATSUOKA A,KOVALCHUK I. High frequency Agrobacteriumtumefaciens-mediated plant transformation induced by ammonium nitrate[J].Plant Cell Rep,2009,28(5):737-57.
    [92] MATA M M, TANIWAKI M H, IAMANAKA B T, et al. Agrobacterium-mediated insertional mutagenesis of the ochratoxigenic fungus Aspergilluswesterdijkiae[J]. Can J Microbiol,2007,53(1):148-51.
    [93] CHRISTIE P J. Agrobacterium tumefaciens T-complex transport apparatus: aparadigm for a new family of multifunctional transporters in eubacteria[J]. JBacteriol,1997,179(10):3085-94.
    [94] KADO C I. The role of the T-pilus in horizontal gene transfer andtumorigenesis[J]. Curr Opin Microbiol,2000,3(6):643-8.
    [95] ZHONG Y H, WANG X L, WANG T H, et al. Agrobacterium-mediatedtransformation (AMT) of Trichoderma reesei as an efficient tool for randominsertional mutagenesis[J]. Applied microbiology and biotechnology,2007,73(6):1348-1354.
    [96] ZHANG Y, LI G, HE D, et al. Efficient insertional mutagenesis system for thedimorphic pathogenic fungus Sporothrix schenckii using Agrobacteriumtumefaciens[J]. J Microbiol Methods,2011,84(3):418-22.
    [97] ZHANG A, LU P, DAHL-ROSHAK A, et al. Efficient disruption of a polyketidesynthase gene (pks1) required for melanin synthesis throughAgrobacterium-mediated transformation of Glarea lozoyensis[J]. MolecularGenetics and Genomics,2003,268(5):645-655.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700