用户名: 密码: 验证码:
微孔复合材料的制备、表征以及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的不断进步,单一组分材料所具有的性能已经无法满足人们日益增长的需求。复合材料具有单一组分所不具备的多种新奇性质和优越性能。因此,在过去的20年间,关于复合材料的研究飞速发展,越来越多的新型复合材料不断地被研制开发,而它们的多种特异性能也展现出了良好的应用前景。在无机复合材料中,微孔分子筛无疑是最为理想的主体载体材料之一。其特殊的孔道结构以及良好的机械与热稳定性,使其受到科研工作者的青睐。因此开发以分子筛为主体的复合材料无论对于科学研究还是实际应用都有重要的意义。
     发光材料广泛应用于人民生活的各个领域,从日常生活的灯光照明,荧光管,投影电视到工业用的阴极射线管、可调变激光、发光二极管以及医用的X射线增感屏都包含了发光材料。本论文首先以微孔分子筛为主体合成了一系列具有良好荧光性能的复合发光材料,这些复合材料以限制于微孔分子筛孔道内的碳基纳米粒子为发光中心,显示出了良好的热稳定性以及发光波长调变性能。通过改变实验条件,其发光波长可以从420nm调变到550nm。其次,采用水相合成法分别以已合成的复合发光材料和生物质材料—两种树木的落叶为原料合成三种水溶性荧光碳基纳米粒子,并详细研究了三种样品的荧光性质及其在生物活性和细胞荧光标记方面的应用性能。结果显示,三种发光材料对于细胞显示为无毒性,并具有良好的细胞荧光标记性能,是生物医学领域潜在的应用材料。最后在微孔分子筛孔道内以单核一价锌为基础合成出了两种II-V半导体材料氮化锌与磷化锌。其中氮化锌材料表现出良好的室温可见光区的荧光性质;而磷化锌材料作为蒸发源,通过真空气相沉积方法,可以一次性在同一基底上得到多种氮化锌的低维纳米级结构。
With the continuous progress of science and technology, the performance ofthe single-component materials has been unable to meet the growing demand forpractical application. Composite materials have displayed a variety of novelproperties and superior performance which are not available in the single-componentmaterials. Therefore, the research on the composite materials underwent a rapiddevelopment in the past two decades. More and more new composite materials havebeen synthesized, and their specific properties have shown good prospects forapplications. Among the inorganic composite materials, microporous molecularsieve is undoubtedly one of the most ideal host materials. Its special pore structureand good mechanical and thermal stability make it favored by scientific researchers.Molecular sieve-based composite materials have great applications in a variety range.For example, in the field of gas storage and separation, drug delivery, industrialcatalysis and so on, they have exhibited good performance and promoted the relatedresearch. Therefore the exploiture of molecular sieve-based composite materials hasa great significance both for the scientific research and the practical application.
     In this paper, firstly, microporous molecular sieve was chosen as the hostmaterials to synthesize a series fluorescent composite material with goodphotoluminescence performance. Secondly, on the basis of previous work, we usethe synthesized molecular sieve-based composite materials and biomaterial defoliation as the raw material to prepare two kinds of water-soluble carbogenicnanoparticles. These nanoparticles are almost nontoxic for human cells and idealcellular imaging agents. Finally, according to the principles of CVD, a set of vacuumchemical vapor reaction system was designed, which was used to prepare zincphosphide and zinc nitride semiconductor nanomaterials in the host microporousmolecular sieve. This thesis is divided into four parts.
     In chapter one, we introduced the research background of this thesis andsummarized the development process and status of host-guest composite materials.Then emphasis was given to the prospect of porous material-based luminescentmaterial on the development of its synthesis and property, as well as the practicalapplication and potential barriers of luminescent material in the biomedical field.After that, we focused on the situation of low-dimensional materials synthesized inthe condition of vacuum. Finally, the significance and achievement was brieflydescribed.
     Well-defined synthesis conditions allow microporous molecular sieve materialsto be highly transparent in the UV and visible regions. In chapter two, CNP-loadedmagnesium-aluminophosphate solid phosphors have been prepared through thermaldecomposition of the occluded template or loaded organic molecules. It is revealedthat the carbogenic species in the phosphors is responsible for the observedphotoluminescence, and the emission wavelength depends on the carbon content inthe materials. XPS and ESR spectroscopies demonstrate that the PL property arisesfrom defects which render electron localization in the CNPs possible. Uponirradiation with UV light, the surface states with the localized electrons in the CNPsare excited, whereas the radiative relaxation of the excited surface states releasesenergy, emitting visible light. The emission intensity is also correlated with thecarbon content in the phosphor materials. At a lower carbon content, the emissionintensity increases with the content, whereas at a higher carbon content, the emissionintensity is inversely proportional to the content because of the competition betweenconcentration contribution and quenching of the luminescent centers in the phosphor. These phosphor materials possess high thermal stability and tunable emissionwavelength. Through varying the thermal treatment condition, the emissionwavelength can be tuned from420to550nm.
     In chapter three, we use an aqueous route to synthesize three samples of watersoluble carbogenic nanoparticles. The solid phosphors in the previous chapter and twokinds of biomaterial defoliation were used as the raw materials. Their performance inphotoluminescence, cytotoxicity and cellular imaging was investigated in detail. Theresults showed that, the defoliation-derived carbogenic nanoparticles exhibited thetypical excitation-dependent emission, which may reflect not only effects fromparticles of different sizes in the sample but also a distribution of different emissivesites on the carbogenic nanoparticles. On the other hand, the solid phosphor-derivedsample displayed the excitation-independent emission, implying its relatively simplechemical environment. All the three samples have good photostability and are stablein a solution at high ionic strength of5M. NaCl. In the HeLa cell survival test, all thecarbogenic nanoparticles exhibited low cytotoxicity. Especially in the highconcentration, the performance of all the samples were superior to that of thetraditional quantum dots, which render them better prospects for the biologicallabeling. In the following cell imaging to human embryonic kidney cells, all thesamples enter into cells without any further functionalization, and exhibit obviousphotoluminescence signal. In particular, the solid phosphor-derived sample penetratedinto the karyon without the modification with specific transferrable protein, and usingits fluorescence property, it is possible track the carbogenic nanoparticles. All thebiological results indicates that the three samples of carbogenic nanoparticles is ableto used as fluorescent probe molecules in cellular imaging and bio-detection.Moreover, there is no distinct difference in the photoluminescence property,cytotoxicity, and cell labeling results of these two kinds of defoliation-derivedcarbogenic nanoparticles, suggesting that the aqueous route we used for thepreparation of water soluble carbogenic nanoparticles is generally universal, and maybe extended to various defoliations.
     In chapter four, the elemental zinc was introduced into the cages of microporousmagnesium-aluminophosphate and silicoaluminophosphate molecular sieve,respectively, using the designed vacuum chemical vapor reaction system. Elementalzinc reacted with the proton in the framework and the univalent zinc was generated.For the magnesium-aluminophosphate system, the formation of univalent zinc leadedthe dephosphorization on the framework. The removed phosphorus reacted withpartial univalent zinc, and generated zinc phosphide. We use the zincphosphide-loaded composite material as the evaporation source to synthesize a seriesof low-dimensional nanostructures of zinc phosphide on one substrate, includingnanoparticles, nanowires, and dense zinc phosphide films. The results show that thegrowth of zinc phosphide nanostructures follows the vapor-solid mechanism. On theother hand, for the silicoaluminophosphate system, ammonia molecules areintroduced into the univalent zinc-contained molecular sieve in sequence. At roomtemperature, the univalent zinc reacted with ammonia, resulting in zinc nitride in themicroporous, and the reaction is exothermic. The resulted zinc nitride-loadedmicroporous composite material displayed a certain room temperaturephotoluminescence. Since the high temperature or complicated equipment is alwaysneeded in its preparation, zinc nitride directly synthesized from ammonia at roomtemperature have not been achieved yet prior to our work.
引文
[1] Blasse G. New luminescent materials [J]. Chem. Mater.,1989,1:294-301.
    [2] Blasse G, Grabmaier B C. Luminescent materials [M]. Berlin: Springer-Verlag,1994.
    [3] Justel T, Nikol H, Ronda C. New developments in the field of luminescentmaterials for lighting and displays [J]. Angew. Chem. Int. Ed.,1998,37:3084-3103.
    [4] Hoppe H A. Recent developments in the field of inorganic phosphors [J]. Angew.Chem. Int. Ed.,2009,48:2-13.
    [5] Butler K H. Fluorescent lamp phosphors: technology and theory [M].Pennsylvania State University Press (University Park),1980.
    [6] Oomen E W J L, Smit W M A, Blasse G. Luminescence of the Sb3+ion incalcium fluorapatite and other phosphates [J]. Mater. Chem. Phys.,1988,19:357-378.
    [7] Koedam M, Opstelten J J. Measurement and computer-aided optimization ofspectral power distributions [J]. Light. Res. Technol.,1971,3:205-210.
    [8] Verstegen J M P J, Radielovic D, Vrenken L E. A new generation of "Deluxe"fluorescent lamps, combining an Efficacy of80lumens/W or more with a colorrendering index of approximately85[J]. J. Electro-chem. Soc.,1974,121:1627-1631.
    [9] Franz K A, Kehr W G, Siggel A, et al. Luminescent materials in: ullmannsencyclopedia of industrial chemistry [M].Berlin: Springer-Verlag,1990.
    [10] T. Welker. Recent developments on phosphors for fluorescent lamps andcathode-ray tubes [J]. J. Lumin.,1991,49:48-49.
    [11] Blasse G. Luminescence of rare earth ions at the end of the century [J]. J. AlloysCompd.,1993,192:17-21.
    [12] Ronda C R. Phosphors for lamps and displays: an applicational view [J]. J.Alloys Compd.,1995,225:534-538.
    [13] Ronda C R. Recent achievements in research on phosphors for lamps anddisplays [J]. J. Lumin.,1997,49:72-74.
    [14] Ronda C R. Newly developed solid state lasers in: spectroscopy and dynamicsof collective excitations in solids,[M]. New York: Plenum Press,1997.
    [15] Bredol M, Kynast U, Ronda C. Designing luminescent materials [J]. Adv.Mater.,1991,3:361-367.
    [16] Smets B. Advances in Nonradiative processes and solids,[M]. New York:Plenum Press,1997.
    [17] Ropp, R C. Luminescence and the Solid State [M]. Amsterdam, Netherlands:Elsevier,1991.
    [18] Xu X Y, Ray R, Gu Y L, et al. Electrophoretic Analysis and Purification ofFluorescent Single-Walled Carbon Nanotube Fragments [J]. J. Am. Chem. Soc.,2004,126:12736-12737.
    [19] Bourlinos A B, Stassinopoulos A, Anglos D, et al. Simple Aqueous SolutionRoute to Luminescent Carbogenic Dots from Carbohydrates [J], Chem. Mater.,2008,20:4539-4541.
    [20] Bourlinos A B, Stassinopoulos A, Anglos D, et al. Surface FunctionalizedCarbogenic Quantum Dots [J]. Small,2008,4:455-458.
    [21] Cao L, Wang X, Meziani M J, et al. Carbon Dots for Multiphoton Bioimaging[J]. J. Am. Chem. Soc.,2007,129:11318-11319.
    [22]胡胜亮,白培康,曹士锐等.脉冲激光制备发光碳纳米颗粒[J].高等学校化学学报,2009,30:1497-1500.
    [23] Hu S L, Niu K Y, Sun J, et al. One-step synthesis of fluorescent carbonnanoparticles by laser irradiation [J]. J. Mater. Chem.,2009,19:484-488.
    [24] Liu H, Ye T, Mao C. Fluorescent carbon nanoparticles derived from candle soot.[J], Angew. Chem. Int. Ed.,2007,46:6473-6475.
    [25] Lu J, Yang J X, Wang J, et al. One-Pot Synthesis of Fluorescent CarbonNanoribbons, Nanoparticles, and Graphene by the Exfoliation of Graphite in IonicLiquids [J]. ACS Nano,2009,3:2367-2375.
    [26] Liu R, Wu D, Liu S, et al. An Aqueous Route to Multicolor PhotoluminescentCarbon Dots Using Silica Spheres as Carriers [J], Angew. Chem. Int. Ed.,2009,48:4598-4601.
    [27] Ray S C, Saha A, Jana N R, et al. Fluorescent Carbon Nanoparticles: Synthesis,Characterization, and Bioimaging Application [J], J. Phys. Chem. C,2009,113:18546-18551.
    [28] Sun Y P, Wang X, Lu F S, et al. Doped Carbon Nanoparticles as a New Platformfor Highly Photoluminescent Dots [J]. J. Phys. Chem. C,2008,112:18295-18298.
    [29] Sun Y P, Zhou B, Lin Y, et al. Quantum-Sized Carbon Dots for Bright andColorful Photoluminescence [J]. J. Am. Chem. Soc.,2006,128:7756-7757.
    [30] Tian L, Ghosh D, Chen W, et al. Nanosized Carbon Particles From Natural GasSoot [J]. Chem. Mater.,2009,21:2803-2809.
    [31] Wang X, Cao L, Lu F S, et al. Photoinduced electron transfers with carbon dots[J]. Chem. Commun.,2009,3774-3776.
    [32] Yang S T, Cao L, Luo P G, et al. Carbon Dots for Optical Imaging in Vivo [J]. J.Am. Chem. Soc.,2009,131:11308-11309.
    [33] Yang S T, Wang X, Wang H, et al. Carbon Dots as Nontoxic andHigh-Performance Fluorescence Imaging Agents [J]. J. Phys. Chem. C,2009,113:18110-18114.
    [34] Zhao Q L, Zhang Z L, Huang B H, et al. Facile preparation of low cytotoxicityfluorescent carbon nanocrystals by electrooxidation of graphite [J]. Chem. Commun.,2008,5116-5118.
    [35] Zheng L Y, Chi Y W, Dong Y Q, et al. Electrochemiluminescence ofWater-Soluble Carbon Nanocrystals Released Electrochemically from Graphite [J]. J.Am. Chem. Soc.,2009,131:4564-4565.
    [36] Zhou J G, Booker C, Li R Y, et al. An Electrochemical Avenue to BlueLuminescent Nanocrystals from Multiwalled Carbon Nanotubes (MWCNTs)[J]. J.Am. Chem. Soc.,2007,129:744-745.
    [37] Zhu H, Wang X L, Li Y L, et al. Microwave synthesis of fluorescent carbonnanoparticles with electrochemiluminescence properties [J]. Chem. Commun.,2009,5118-5120.
    [38] Bottini M, Mustelin T. Carbon materials: Nanosynthesis by candlelight [J]. Nat.Nanotechnol.,2007,2:599-600.
    [39] Xiu Y, Gao Q, Li G. D, et al. Preparation and Tunable Photoluminescence ofCarbogenic Nanoparticles Confined in a Microporous Magnesium-Alumino-phosphate [J]. Inorg. Chem.,2010,49:5859-5867.
    [40] Peng H, Travas-Sejdic J. Simple Aqueous Solution Route to LuminescentCarbogenic Dots from Carbohydrates [J]. Chem. Mater.,2009,21:5563-5565.
    [41] Yu S J, Kang M W, Chang H C, et al. Bright Fluorescent Nanodiamonds: NoPhotobleaching and Low Cytotoxicity [J]. J. Am. Chem. Soc.,2005,127:17604-17605.
    [42] Krueger A. Diamond nanoparticles: Jewels for chemistry and physics [J]. Adv.Mater.,2008,20:2445-2449.
    [43] Krueger A. The structure and reactivity of nanoscale diamond [J]. J. Mater.Chem.,2008,18:1485-1492.
    [44] Krueger A. New carbon materials: Biological applications of functionalizednanodiamond materials [J]. Chem. Eur. J.,2008,14:1382-1390.
    [45] Wilson W L, Szajowski P F, Brus L E. Quantum Confinement in Size-Selected,Surface-Oxidized Silicon Nanocrystals [J]. Science,1993,262:1242-1244.
    [46] Gao X H, Yang L L, Petros J A, et al. In vivo molecular and cellular imagingwith quantum dots [J]. Curr. Opin. Biotechnol.,2005,16:63-72.
    [47] Hardman R. A toxicologic revies of quantum dots: Toxicity depends on environhealth perspect [J]. Environ. Health Perspect.,2006,114:165-172.
    [48] Jaiswal J K, Simon S M. Potentials and pitfalls of fluorescent qusntum dots forbiological imaging [J]. Trends Cell Biol.,2004,14:497-504.
    [49] Li S D, Huang L.7th International Symposium on Polymer Therapeutics [C].Spain: American Chemical Society,2007.
    [50] Henglein A. Small-particle research: physicochemical properties of extremelysmall colloidal metal and semiconductor particles [J]. Chem. Rev.,1989,89:1861-1873.
    [51] Alivisatos A P. Semiconductor clusters, nanocrystals, and quantum dots [J].Science,1996,271:933-937.
    [52] Nirmal M, Brus L. Luminescence Photophysics in Semiconductor Nanocrystals[J]. Acc. Chem. Res.,1999,32:407-414.
    [53] Bahnemann D W, Kormann C, Hoffmann M R. Preparation and characterizationof quantum size zinc oxide: a detailed spectroscopic study [J]. J. Phys. Chem.,1987,91:3789-3798.
    [54] Alivisatos A P. Semiconductor clusters, nanocrystals, and quantum dots [J].Science,1996,271:933-937.
    [55] Yang Y H, Gao M Y. Preparation of fluorescent SiO2paticles with single CdTenanocrystal cores by the reverse microemulsion method [J]. Adv. Mater.,2005,17:2354-2357.
    [56] Darbandi M, Thomann R, Nann T. Single quantum dots in silica spheres bymicromulsion synthesis [J]. Chem. Mater.,2005,17:5720-5725.
    [57] Selvan S T, Tan T T, Ying J Y. Robust, non-cytotoxic, silica-coated CdSequantum dots with efficient photoluminescence [J]. Adv. Mater.,2005,17:1620-1625.
    [58] Wu Y L, Lim C S, Fu S, et al. Surface modifications of ZnO quantum dots forbioimagine [J]. Nanotechnology,2007,18:215604-1-9.
    [59] Jana N R, Yu H H, Ali E M, et al. Controlled photostability of luminescentnanocrystalline ZnO solution for selective detection of aldehydes [J]. Chem.Commun.,2007,1406-1408.
    [60] Das S, Chakrabarti S, Chaudhuri S. Optical transmission andphotoluminescence studies of ZnO-MgO nanocomposite thin films [J]. J. Phys. D:Appl. Phys.,2005,38:4021-4026.
    [61] Bang J, Yang H, Holloway P H. Enhanced and stable green emission of ZnOnanoparticles by surface segregation of Mg [J]. Nanotechnology,2006,17:973-1-7.
    [62] Zhang J Y, Zhang Z T, Wang T M. A New Luminescent Phenomenon of ZnODue to the Precipitate Trapping Effect of MgO [J]. Chem. Mater.,2004,16:768-770.
    [63] Rakshit S, Vasudevan S. Trap-State Dynamics in Visible-Light-EmittingZnO:MgO Nanocrystals [J]. J. Phys. Chem. C,2008,112:4531-4537.
    [64] Dabbousi B O, Rodriguez-Viejo J, Mikulec F V, et al.(CdSe)ZnS core-shellquantum dots: synthesis and characterization of a size series of highly luminescentnanocrystallites [J]. J. Phys. Chem. B,1997,101:9463-9475.
    [65] Peng X, Schlamp M C, Kadavanich A V, et al. Epitaxial growth of highlyluminescent CdSe/CdS core/shell nanocrystals with photostability and electronicaccessibility [J]. J. Am. Chem. Soc.,1997,119:7019-7029.
    [66] Hines M A, Guyot-Sionnest P. Synthesis and character-ization of stronglyluminescing ZnS-capped CdSe nanocrystals [J]. J. Phys.Chem.,1996,100:468-471.
    [67] Murray X G, Norris D J, Bawendi M G. Epitaxial Growth of HighlyLuminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and ElectronicAccessibility [J]. J. Am. Chem. Soc.,1997,119:7019-7029.
    [68] Dabbousi B O, Rodriguez-Viejo J, Mikulec F V, et al.(CdSe)ZnS Core-ShellQuantum Dots: Synthesis and Characterization of a Size Series of HighlyLuminescent Nanocrystallites [J]. J. Phys. Chem. B,1997,101:9463-9475.
    [69] Hines M A, Guyot-Sionnest P. Synthesis and Characterization of StronglyLuminescing ZnS-Capped CdSe Nanocrystals [J]. J. Phys. Chem.,1996,100:468-471.
    [70] Tian Y C, Newton T, Kotov N A, et al. Coupled Composite CdS-CdSe andCore-Shell Types of (CdS)CdSe and (CdSe)CdS Nanoparticles [J]. J. Phys. Chem.,1996,100:8927-8939.
    [71] Bruchez M, Moronne M, Gin P, et al. Semiconductor nanocrystals asfluorescent biological labels [J]. Science,1998,281:2013-2016.
    [72] Quan Z W, Wang Z L, Yang P P, et al. Synthesis and Characterization ofHigh-Quality ZnS, ZnS:Mn2+, and ZnS:Mn2+/ZnS (Core/Shell) LuminescentNanocrystals [J]. Inorg. Chem.,2007,46:1354-1360.
    [73] Li X H, Li J X, Li G D, et al. Controlled synthesis, growth mechanisum, andproperties of monodisperse CdS colloidal spheres [J]. Chem. Eur. J.,2007,13:8754-8761.
    [74] Talapin D V, Rogach A L, Kornowski A, et al. Highly LuminescentMonodisperse CdSe and CdSe/ZnS Nanocrystals Synthesized in a Hexadecylamine-Trioctyl-phosphine Oxide-Trioctylphosphine Mixture [J]. Nano. Lett.,2001,1:207-211.
    [75] Xiong H M, Liu D P, Xia Y Y, et al. Polyether-Grafted ZnO Nanoparticles withTunable and Stable Photoluminescence at Room Temperature [J]. Chem. Mater.,2005,17:3062-3064.
    [76] Liu D P, Li G D, Su Y, et al. Highly luminescent ZnO nanocrystals stabilized byionic-liquid components [J]. Angew. Chem. Int. Ed.,2006,45:7370-7373.
    [77] Xiong H M, Xu Y, Reng Q G, et al. Stable Aqueous ZnO@Polymer Core-ShellNanoparticles with Tunable Photoluminescence and Their Application in CellImaging [J]. J. Am. Chem. Soc.,2008,130:7522-7523.
    [78] Xie R, Peng X. Synthesis of Cu-Doped InP Nanocrystals (d-dots) with ZnSeDiffusion Barrier as Efficient and Color-Tunable NIR Emitters [J]. J. Am. Chem. Soc.2009,131:10645-10651.
    [79] Chan W C, Nie S M. Quantum dot bioconjugates for ultrasensitive nonisotopicdetection [J]. Science,1998,281:2016-2018.
    [80] Chan W C, Maxwell D J, Gao X, et al. Luminescent quantum dots formultiplexed biological detection and imaging [J]. Curr. Opin. Biotechnol.,2002,13:40-46.
    [81] Pinaud F, King D, Moore H P, et al. Bioactivation and cell targeting ofsemiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides [J]. J. Am.Chem. Soc.,2004,126:6115-6123.
    [82] Hanaki K, Momo A, Oku T, et al. Semiconductor quantum dot/albumin complexis a long-life and highly photostable endosome marker [J]. Biochem. Biophys. Res.Commun.,2003,302:496-501.
    [83] Mahtab R, Harden H H, Murphy C J. Temperature-and salt-dependent bindingof long DNA to protein-sized quantum dots: thermodynamics of ‘inorganicprotein’-DNA interactions [J]. J. Am. Chem. Soc.,2000,122:14-17.
    [84] Mattoussi H, Mauro J M, Goldman E R, et al. Bioconjugation of highlyluminescent colloidal CdSe-ZnS quantum dots with an engineered two-domainrecombinant protein [J]. Phys. Status Solidi B,2001,224:277-283.
    [85] Goldman E R, Anderson G P, Tran P T, et al. Conjugation of luminescentquantum dots with antibodies using an engineered adaptor protein to provide newreagents for fluoroimmunoassays [J]. Anal. Chem.2002,74:841-847.
    [86] Goldman E R, Baliqhian E D, Mattoussi H, et al. Avidin: a natural bridge forquantum dot-antibody conjugates [J]. J. Am. Chem. Soc.,2002,124:6378-6382.
    [87] Chan W C W, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopicdetection [J]. Science,1998,281:2016-2018.
    [88] Zhang C Y, Ding M H, Yao D, et al. Quantum dot-labeled trichosanthin [J].Analyst,2000,125:1029-1031.
    [89] Winter J O, Liu T Y, Korgel B A, et al. Recognition molecule directedinterfacing between semiconductor quantum dots and nerve cells [J]. Adv. Mater.,2001,13:1673-1677.
    [90] Kloepfer J A, Mielke R E, Wong Ms, et al. Quantum dots as strain-andmetabolism-specific microbiological labels [J]. Appl. Environ. Microbiol.,2003,69:4205-4213.
    [91] Sukhanova A, Venteo L, Devy J, et al. Highly stable fluorescent nanocrystals asa novel class of labels for immunohistochemical analysis of paraffin-embeddedtissue sections [J]. Lab. Investigation,2002,82:1259-1261.
    [92] Pathak S, Choi S K, Arnheim N, et al. Hydroxylated quantum dots asluminescent probes for in situ hybridization [J]. J. Am. Chem. Soc.,2001,123:4103-4104.
    [93] Bruchez M J, Moronne M, Gin P, et al. Semiconductor nanocrystals asfluorescent biological labels [J]. Science,1998,281:2013-2016.
    [94] Wu X, Liu H, Liu J, et al. Immunofluorescent labeling of cancer marker Her2and other cellular targets with semiconductor quantum dots [J]. Nat. Biotechnol.,2003,21:41-46.
    [95] Dubertret B, Skourides P, Norris D J, et al. In vivo imaging of quantum dotsencapsulated in phospholipid micelles [J]. Science,2002,298:1759-1762.
    [96] Hanaki K, Momo A, Oku T, et al. Semiconductor quantum dot/albumin complexis a long-life and highly photostable endosome marker [J]. Biochem. Biophys. Res.Commun.,2003,302:496-501.
    [97] Jaiswal J K, Mattoussi H, Mauro J M, et al. Long-term multiple color imagingof live cells using quantum dot bioconjugates [J]. Nat. Biotechnol.,2003,21:47-51.
    [98] Schroedter A, Weller H. Biofunctionalization of silica-coated CdTe and goldnanocrystals [J]. Nano Lett.,2002,2:1363-1367.
    [99] Akerman M E, Chan W C, Laakkonen P, et al. Nanocrystal targeting in vivo [J].Proc. Natl Acad. Sci. USA,2002,99:12617-12621.
    [100] Rosenthal S J, Tomlinson I, Adkins E M, et al. Targeting cell surface receptorswith ligand-conjugated nanocrystals [J]. J. Am. Chem. Soc.,2002,124:4586-4594.
    [101] Gerion D, Parak W J, Williams S C, et al. Sorting fluorescent nanocrystalswith DNA [J]. J. Am. Chem. Soc.,2002,124:7070-7074.
    [102] Gerion D, Chen F Q, Kannan B, et al. Room-temperature single nucleotidepolymorphism detection and multi-allele DNA detection using fluorescentnanocrystal probes and microarray [J]. Anal. Chem.,2003,75:4766-4772.
    [103] Bruchez M, Moronne M, Gin P, et al. Semiconductor nanocrystals asfluorescent biological labels [J]. Science,1998,281:2013-2016.
    [104] Chan W C, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopicdetection [J]. Science,1998,281:2016-2018.
    [105] Wu X Y, Liu H J, Liu J Q, et al. Immunofluorescent labeling of cancer markerHer2and other cellular targets with semiconductor quantum dots [J]. Nat Biotechnol,2003,21:41-46.
    [106] Chen F, Gerion D. Fluorescent CdSe/ZnS nanocrystal-peptide conjugates forlong-term nontoxic imaging and nuclear targeting in living cells [J]. Nano Lett.,2004,4:1827-1832.
    [107] Derfus A M, Chan W C W, Bhatia S N. Intracellular delivery of quantum dotsfor live cell labelling and organelle tracking [J]. Adv. Mater.,2004,16:961-966.
    [108] Akerman M E, Chan W C W, Laakkonen P, et al. Nanocrystal Target in In vivo[J]. Proc. Natl. Acad. Sci. USA,2002,99:12617-12621
    [109] Gao X H, Cui Y Y, Levenson R M, et al. In vivo cancer targeting and imagingwith semiconductor quantum dots [J]. Nat. Biotechnol,2004,22:969-976.
    [110] Hoshino A, Hanaki K, Suzuki K, et al. Applications of T-Lymphoma Labeledwith Fluorescent Quantum Dots to Cell Tracing Markers in Mouse Body [J].Biochem. Biophys. Res. Comm.,2004,314:46-53.
    [111] Hull D. An Introduction to Composite Materials [M]. Cambridge UniversityPress,1981.
    [112] Heo N H, Seff K. Preparation and structure of fully caesium exchanged zeoliteA and of the linear (Cs4)3+cation [J]. J. Chem. Soc. Chem. Commun.,1987,16:1225-1226.
    [113] Heo N H, Seff K. Reaction of dehydrated Na12-A with cesium. Synthesis andcrystal structure of fully dehydrated, fully cesium ion-exchanged zeolite A [J]. J. Am.Chem. Soc.,1987,109:7986-7992.
    [114] Song S H, Kim Y, Seff K. Reaction of Na12-A with rubidium vapor. Synthesisand crystal structure of fully dehydrated fully Rb+-exchanged zeolite A containing(Rb6)4+clusters [J]. J. Phys. Chem.,1992,96:10937-10941.
    [115] Wang N, Tang Z K, Li G D, et al. Single-walled4carbon nanotube arrays [J].Nature,2000,408:50-51.
    [116] Tang Z K, Zhang L Y, Wang N, et al. Superconductivity in4angstromsingle-walled carbon nanotubes [J]. Science,2001,292:2462-2465.
    [117] Mokaya R. Al Content Dependent Hydrothermal Stability of DirectlySynthesized Aluminosilicate MCM-41[J]. J. Phys. Chem. B.,2000,104:8279-8286.
    [118] Mal N K, Fujiwara M, Tanaka Y. Photocontrolled reversible release of guestmolecules from coumarin-modified mesoporous silica [J]. Nature,2003,421:350-353.
    [119] Mercier L, Pinnavaia T J. Heavy Metal Ion Adsorbents Formed by the Graftingof a Thiol Functionality to Mesoporous Silica Molecular Sieves: Factors AffectingHg(II)[J]. Uptake Environ. Sci. Technol.,1998,32:2749-2754.
    [120] Yoshitake H, Yokoi T, Tatsumi T. Adsorption of Chromate and Arsenate byAmino-Functionalized MCM-41and SBA-1[J]. Chem. Mater.,2002,14:4603-4610.
    [121] Liu A M, Hidajat K, Kawi S, et al. A new class of hybrid mesoporous materialswith functionalized organic monolayers for selective adsorption of heavy metal ions[J]. Chem. Commun.,2000,1145-1146.
    [122]徐如人,庞文琴等.分子筛与多孔化学材料化学[M].科学出版社,2004.
    [123] Milton R M. Molecular sieve adsorbents: US,2882243[P].1959-4-14
    [124] Breck D M. Crystalline zeolite L: US3216789[P].1965-11-09.
    [125] Breck D M. Crystalline zeolite Y: US3130007[P].1964-04-21.
    [126] Sand L B. Synthetic mordenite and preparation thereof: US3436174[P].1969-04-01.
    [127] Argauer R J, Landolt G. R. Crystalline zeolite ZSM-5and method of preparingthe same: US3702886[P].1972-11-14.
    [128] Wilson S T, Brent M L, Celeste A, et al. Aluminophosphate molecular sieves: anew class of microporous crystalline inorganic solids [J]. J. Am. Chem. Soc.,1982,104:1146-1147.
    [129] Moller K, Eddy M M, Stucky G D, et al. Stabilization of cadmium selenidemolecular clusters in zeolite Y: EXAFS and x-ray diffraction studies [J]. J. Am.Chem. Soc.,1989,111:2564-2571.
    [130] Stucky G D, MacDougall J E. Quantum Confinement and Host/GuestChemistry: Probing a New Dimension [J]. Science,1990,247:669-678.
    [131] Chen W, Sammynaiken R, Huang Y. Luminescence enhancement of ZnS:Mnnanoclusters in zeolite [J]. J. Appl. Phys.,2000,88:5188-5193.
    [132] Chen J, Feng Z, Ying P, et al. ZnO clusters encapsulated inside micropores ofzeolites studied by UV raman and laser-induced luminescence spectroscopies [J]. J.Phys. Chem. B,2004,108:12669-12676.
    [133] Kim Y, Keller S W, Krueger J S, et al. Photochemical charge transfer andhydrogen evolution mediated by oxide semicondubtor particles in zeolite-basedmolecular assemblies [J]. J. Phys. Chem. B1997,101,2491-2500.
    [134] Abeykoon A M M, Castro-Colin M, Anokhina E V, et al. Synchrotron x-rayand optical studies of the structure of HgSe semiconductor nanoclusters confined inzeolite L and zeolite Y [J]. Phys Rev. B,2008,77:075333-10.
    [135] He J, Ba Y, Ratcliffe C I, et al. Encapsulation of Silicon Nanoclusters inZeolite Y [J]. J. Am. Chem. Soc.,1998,120:10697-10705.
    [136] Dag O, Kuperman A, Ozin G A. Germanium Nanoclusters: Chemical VaporDeposition of Digermane in Zeolite Y and Mordenite [J]. Adv. Mater.,1994,6:147-150.
    [137] Parise J B, MacDougall J E, Herron N, et al. Characterization of Se-loadedmolecular sieves A, X, Y, AlPO4-5single crystal [J]. Inorg. Chem.,1988,27:221-228.
    [138] Goldbach A, Saboungi M. Selenium/Zeolite Y Nanocomposites [J]. Acc. Chem.Res.2005,38:705-712.
    [139] Pereira C, Kokotailo G.T, Gorte R J. Acetylene polymerization in a H-ZSM-5zeolite [J], J. Phys. Chem.,1991,95:705-709.
    [140] Cox S D, Stucky G D. Polymerization of methylacetylene in hydrogen zeolites[J]. J. Phys. Chem,1991,95:710-720.
    [141] Bein T, Enzel P. Polypyrrole chains in zeolite channels [J]. Angew. Chem.,1989,101:1737-1738.
    [142] Enzel P, Bein T. Inclusion of Polyanlline Filaments in Zeolite MolecularSieves [J]. J. Phys. Chem.,1989,93:6270-6272.
    [1] Blasse G. New luminescent materials [J]. Chem. Mater.,1989,1:294-301.
    [2] Blasse G, Grabmaier B C. Luminescent Materials[M]. Berlin: Springer-Verlag,1994.
    [3] Justel T, Nikol H, Ronda C. New Developments in the Field of LuminescentMaterials for Lighting and Displays [J]. Angew. Chem. Int. Ed.,1998,37:3084-3103.
    [4] Hoppe H A. Recent Developments in the Field of Inorganic Phosphors [J].Angew. Chem. Int. Ed.,2009,48:2-13.
    [5] Ropp, R C. Luminescence and the Solid State [M]. Amsterdam, Netherlands:Elsevier,1991.
    [6] Green W H, Le K P, Grey J, et al. White Phosphors from a Silicate-CarboxylateSol-Gel Precursor That Lack Metal Activator Ions [J]. Science,1997,276:1826-1828.
    [7] Brankova T, Bekiari V, Lianos P. Photoluminescence from Sol-GelOrganic/Inorganic Hybrid Gels Obtained through Carboxylic Acid Solvolysis [J].Chem. Mater.,2003,15:1855-1859.
    [8] Bekiari V, Lianos P. Tunable Photoluminescence from a Material Made by theInteraction between (3-Aminopropyl) triethoxysilane and Organic Acids [J]. Chem.Mater.,1998,10:3777-3779.
    [9] Bekiari V, Lianos P. Characterization of Photoluminescence from a MaterialMade by Interaction of (3-Aminopropyl) triethoxysilane with Acetic Acid [J].Langmuir,1998,14:3459-3461.
    [10] Nunes S C, de Zea Bermudez V, Cybinska J, et al. Structure and photo-luminescent features of di-amide cross-linked alkylene-siloxane hybrids [J]. J. Mater.Chem.,2005,15:3876-3886.
    [11] Fu L, Sa Ferreira R A, Silva N J O, et al. Photoluminescence and QuantumYields of Urea and Urethane Cross-Linked Nanohybrids Derived from CarboxylicAcid Solvolysis [J]. Chem. Mater.,2004,16:1507-1516.
    [12] Carlos L D, Sa Ferreira R A, Pereira R N, et al. White-Light Emission ofAmine-Functionalized Organic/Inorganic Hybrids: Emitting Centers andRecombination Mechanisms [J]. J. Phys. Chem. B,2004,108:14924-14932.
    [13] Carlos L D, Sa Ferreira R A, de Zea Bermudez V, et al. Full-Color Phosphorsfrom Amine-Functionalized Crosslinked Hybrids Lacking Metal Activator Ions [J].Adv. Funct. Mater.,2001,11:111-115.
    [14] Carlos L D, de Zea Bermudez V, Sa Ferreira R A, et al. Sol-Gel Derived UreaCross-Linked Organically Modified Silicates.2. Blue-Light Emission [J]. Chem.Mater.,1999,11:581-588.
    [15] Hayakawa T, Hiramitsu A, Nogami M. White light emission from radicalcarbonyl-terminations in Al2O3-SiO2porous glasses with high luminescencequantum efficiencies [J]. Appl. Phys. Lett.,2003,82:2975-2977.
    [16] Zhang C, Lian H, Kong D, et al. Structural and Bluish-White LuminescentProperties of Li+-Doped BPO4as a Potential Environmentally Friendly PhosphorMaterial [J]. J. Phys. Chem. C,2009,113:1580-1588.
    [17] Zhang C, Lin C, Li C, et al. Enhanced Luminescence of BPO4by Mixing withSiO2and Al2O3[J]. J. Phys. Chem. C,2008,112:2183-2192.
    [18] Lin C K, Luo Y, You H, et al. Sol-Gel-Derived BPO4/Ba2+as a New Efficientand Environmentally-Friendly Bluish-White Luminescent Material [J]. Chem. Mater.,2006,18:458-464.
    [19] Feng P. Photoluminescence of open-framework phosphates and germanates [J].Chem. Commun.,2001,1668-1669.
    [20] Zheng N, Bu X, Wang B, et al. Microporous and PhotoluminescentChalcogenide Zeolite Analogs [J]. Science,2002,298:2366-2368.
    [21] Liao Y C, Lin C H, Wang S L, et al. Direct White Light Phosphor: A PorousZinc Gallophosphate with Tunable Yellow-to-White Luminescence [J]. J. Am. Chem.Soc.,2005,127:9986-9987.
    [22] Nishida T, Kobayashi N.346nm Emission from AlGaN Multi-Quantum-WellLight Emitting Diode [J]. Phys. Status Solidi A,1999,176:45-48.
    [23] Nakamura S, Senoh M, Nagahama S, et al. InGaN/GaN/AlGaN-Based LaserDiodes with Modulation-Doped Strained-Layer Superlattices [J]. J. Appl. Phys. Part2,1997,36:1568-1571.
    [24] Narukawa Y, Kawakami Y, Fujita S, et al. Recombination dynamics of localizedexcitons in In0.20Ga0.80N-In0.05Ga0.95N multiple quantum wells [J]. Phys. Rev. B,1997,55:1938-1941.
    [25] Douma K, Prinzen L, Slaaf D W, et al. Nanoparticles for Optical MolecularImaging of Atherosclerosis [J]. Small,2009,5:544-557.
    [26] Iijima S. Helical microtubules of graphitic carbon [J]. Nature,1991,354:56-58.
    [27] Oberlin A, Endo M. Filamentous growth of carbon through benzenedecomposition [J]. J. Cryst. Growth.,1976,32:335-349.
    [28] Rinzler A G, Hafner J H, Nikolaev P, et al. Unraveling Nanotubes: FieldEmission from an Atomic Wire [J]. Science,1995,269:1550-1553.
    [29] Kong J, Franklin N R, Zhou C W, et al. Nanotube molecular wires as chemicalsensors [J]. Science,2000,287:622-625.
    [30] Kociak M, Kasumov A Yu, Guéron S, et al. Superconductivity in Ropes ofSingle-Walled Carbon Nanotubes [J]. Phys. Rev. Lett.,2001,86:2416-2419.
    [31] Riggs J E, Guo Z, Carroll D L, et al. Strong Luminescence of SolubilizedCarbon Nanotubes [J]. J. Am. Chem. Soc.,2000,122:5879-5880.
    [32] Lin Y, Zhou B, Martin R B, et al. Visible Luminescence of Carbon Nanotubesand Dependence on Functionalization [J]. J. Phys. Chem. B,2005,109:14779-14782.
    [33] O’Connell M J, Bachilo S M, Huffman C B, et al. Band Gap Fluorescence fromIndividual Single-Walled Carbon Nanotubes [J]. Science,2002,297:593-596.
    [34] Bachilo S M, Strano M S, Kittrell C, et al. Structure-Assigned Optical Spectraof Single-Walled Carbon Nanotubes [J]. Science,2002,298:2361-2366.
    [35] Lebedkin S, Hennrich F, Skipa T, et al. Near-Infrared Photoluminescence ofSingle-Walled Carbon Nanotubes Prepared by the Laser Vaporization Method [J]. J.Phys. Chem. B,2003,107:1949-1956.
    [36] Hamada N, Sawada S, Oshiyama A. New one-dimensional conductors-graphitic microtubules [J]. Phys. Rev. Lett.,1992,68,1579-1581.
    [37] Heller D A, Mayrhofer R M, Baik S, et al. Concomitant Length and DiameterSeparation of Single-Walled Carbon Nanotubes [J]. J. Am. Chem. Soc.,2004,126:14567-14573.
    [38] Lefebvre J, Austing D G, Bond J, et al. Photoluminescence Imaging ofSuspended Single-Walled Carbon Nanotubes [J]. Nano Lett.,2006,6:1603-1608.
    [39] Rao C N R, Satishkumar B C, Govindaraj A, et al. Nanotubes [J]. Chem. Phys.Chem.,2001,2:78-105.
    [40] Bottini M, Balasubramanian C, Dawson M I, et al. Isolation andCharacterization of Fluorescent Nanoparticles from Pristine and Oxidized ElectricArc-Produced Single-Walled Carbon Nanotubes [J]. J. Phys. Chem. B,2006,110:831-836.
    [41] Xu X, Ray R, Gu Y, et al. Electrophoretic Analysis and Purification ofFluorescent Single-Walled Carbon Nanotube Fragments [J]. J. Am. Chem. Soc.,2004,126:12736-12737
    [42] Sun Y P, Zhou B, Lin Y, et al. Quantum-Sized Carbon Dots for Bright andColorful Photoluminescence [J]. J. Am. Chem. Soc.,2006,128:7756-7757.
    [43] Liu H, Ye T, Mao C. Fluorescent Carbon Nanoparticles Derived from CandleSoot [J]. Angew. Chem. Int. Ed.,2007,46:6473-6475.
    [44] Cao L, Wang X, Meziani M J, et al. Carbon Dots for Multiphoton Bioimaging[J]. J. Am. Chem. Soc.,2007,129:11318-11319.
    [45] Hu S L, Niu K Y, Sun J, et al. One-step synthesis of fluorescent carbonnanoparticles by laser irradiation [J]. J. Mater. Chem.,2009,19:484-488.
    [46] Zhou J, Booker C, Li R, et al. An Electrochemical Avenue to Blue LuminescentNanocrystals from Multiwalled Carbon Nanotubes (MWCNTs)[J]. J. Am. Chem.Soc.,2007,129:744-745.
    [47] Liu R, Wu D, Liu S, et al. An Aqueous Route to Multicolor PhotoluminescentCarbon Dots Using Silica Spheres as Carriers [J]. Angew. Chem. Int. Ed.,2009,48:4598-4601.
    [48] Peng H, Travas-Sejdic J. Simple Aqueous Solution Route to LuminescentCarbogenic Dots from Carbohydrates [J]. Chem. Mater.,2009,21:5563-5565.
    [49] Ray S C, Saha A, Jana N R, et al. Fluorescent Carbon Nanoparticles: Synthesis,Characterization, and Bioimaging Application [J]. J. Phys. Chem. C,2009,113:18546-18551.
    [50] Bourlinos A B, Stassinopoulos A, Anglos D, et al. Photoluminescent CarbogenicDots [J]. Chem. Mater.,2008,20:4539-4541.
    [51] Lu J, Yang J, Wang J, et al. One-pot synthesis of fluorescent carbon nanoribbons,nanoparticles, and graphene by the exfoliation of graphite in ionic liquids [J]. ACSNano,2009,3:2367-2375.
    [52] Zhao Q L, Zhang Z L, Huang B H, et al. Facile preparation of low cytotoxicityfluorescent carbon nanocrystals by electrooxidation of graphite [J]. Chem. Commun.,2008,5116-5118.
    [53] Zheng L, Chi Y, Dong Y, et al. Electrochemiluminescence of Water-SolubleCarbon Nanocrystals Released Electrochemically from Graphite [J]. J. Am. Chem.Soc.,2009,131:4564-4565.
    [54] Wilson S T, Brent M L, Celeste A, et al. Aluminophosphate molecular sieves: anew class of microporous crystalline inorganic solids [J]. J. Am. Chem. Soc.,1982,104:1146-1147.
    [55] Tian Y, Li G D, Chen J S. Chemical Formation of Mononuclear Univalent Zincin a Microporous Crystalline Silicoaluminophosphate [J]. J. Am. Chem. Soc.,2003,125:6622-6623.
    [56] McCusker L B, Baerlocher C. Zeolite Structure, in Introduction to ZeoliteScience and Practice [J]. Stud. Surf. Cata.,2001,137:37-56.
    [57] Thomas J M. Design, Synthesis, and In Situ Characterization of New SolidCatalysts [J]. Angew. Chem. Int. Ed.,1999,38:3589-3628.
    [58] Feuerstein M, Lobo R F. Characterization of Li cation in zeolite LiX bysolid-state NMR spectroscopy and neutron diffraction [J]. Chem. Mater.,1998,10:2197-2204.
    [59] Costenoble M L, Mortier W J. Location of cations in synthetic zeolites X and Y.Part4. exchange limiting factors for Ca2+in zeolite Y [J]. J. Chem. Soc. FaradayTrans. Ι,1976,72:1877-1883.
    [60] Shibata W, Seff K. Terahertz laser vibration-rotation-tunneling spectroscopy ofthe water tetramer [J]. J. Phys. Chem. B,1997,101:9022-9026.
    [61] Davis M E. Ordered porous materials for emerging applications [J]. Nature,2002,417:813-821.
    [62] Olson D H. The crystal structure of dehydrated NaX [J]. Zeolites,1995,15:439-443.
    [63] Kim Y, Han Y W, Seff K. Crystal structure of fully dehydrated fullyTl+-exchanged zeolite X [J]. Zeolites,1997,18:325-333.
    [64] Porcher F, Souhassou M, Lecomete C. The crystal structure of a low silicadehydrated NaX zeolite [J]. Eur. J. Mineral,1999,11:333-343.
    [65] Vitale G, Mellot C F, Cheetham A K, Neutron diffraction and computationalstudy of zeolite NaX: influence of cations on its complex with benzene [J]. J. Phys.Chem. B,1997,101:4559-4564.
    [66] Behrens P, Stucky G D, Behrens P, et al. Comprehensive SupramolecularChemistry [M]. New York: Elsevier1996.
    [67] Braun I, Ihlein G, Laeri F, et al. Hexagonal microlasers based on organic dyes innanoporous crystals [J]. Appl. Phys. B,2000,70:335-343.
    [68] Justel T, Wiechert D U, Lau C, et al. Optically Functional Zeolites: Evaluationof UV and VUV Stimulated Photoluminescence Properties of Ce3+-and Tb3+-dopedZeolite X [J]. Adv. Funct. Mater.,2001,11:105-110.
    [69] Chen W, Sammynaiken R, Huang Y J. Photoluminescence and photostimulatedluminescence of Tb3+and Eu3+in zeolite Y [J]. Appl. Phys.,2000,88:1424-1431
    [70] Chen W, Sammynaiken R, Huang Y J. Luminescence enhancement of ZnS:Mnnanoclusters in zeolite [J]. Appl. Phys.,2000,88:5188-5193.
    [71] Wada Y, Sato M, Tsukahara Y. Fine Control of Red-Green-BluePhotoluminescence in Zeolites Incorporated with Rare-Earth Ions and aPhotosensitizer [J]. Angew. Chem. Int. Ed.,2006,45:1925-1928.
    [72] Lohse U, Parlitz B, Muller D, et al. MgAPO molecular sieves of CHA and AFIstructure-Acidity and Mg ordering [J]. Micro. Meso. Mater.,1997,12:39-49.
    [73] van Heyden H, Mintova S, Bein T. Nanosized SAPO-34Synthesized fromColloidal Solutions [J]. Chem. Mater.,2008,20:2956-2963.
    [74] Wantanabe I, Matsushita T, Sasahara K. Heat Treatment of Gallium Arsenide [J].J. Appl. Phys.,1992,31:1428-1430.
    [75] Nonogaki R, Yamada S, T Araski, et al. High rate deposition of diamond-likecarbon films by sheet-like plasma chemical vapor deposition [J]. J. Vac. Sci. Technol.A,1999,17:731-734.
    [76] Tuinstra F, Koenig J L. Raman Spectrum of Graphite [J]. J. Chem. Phys.,1970,53:1126-1130.
    [77] Ferrari A C, Robertson J. Resonant Raman spectroscopy of disordered,amorphous, and diamond-like carbon [J]. Phys. Rev. B,2001,64:075414-075426.
    [78] Ferrari A C, Robertson J. Interpretation of Raman spectra of disordered andamorphous carbon [J]. Phys. Rev. B,2000,61:14095-14107.
    [79] Ferrari A C, Meyer J C, Scardaci V, et al. Raman Spectrum of Graphene andGraphene Layers [J]. Phys. Rev. Lett.,2006,97:187401-187404.
    [80] Capano M A, McDeutt N T, Singh R K, et al. Characterization of AmorphousCarbon Thin Films [J]. J. Vac. Sci. Technol. A,1996,14:431-435.
    [81] Wrighton M S, Ginley D S, Morse D L. Technique for the determination ofabsolute emission quantum yields of powdered samples [J]. J. Phys. Chem.,1974,78:2229-2233.
    [82] Kovtyukhova N I, Mallouk T E, Pan L, et al. Individual Single-WalledNanotubes and Hydrogels Made by Oxidative Exfoliation of Carbon NanotubeRopes [J]. J. Am. Chem. Soc.,2003,125:9761-9769.
    [83] Ago H, Kugler T, Cacialli F, et al. Work Functions and Surface FunctionalGroups of Multiwall Carbon Nanotubes [J]. J. Phys. Chem. B,1999,103:8116-8121.
    [84] Waltman R J, Pacansky J, Bates C W. X-ray photoelectron spectroscopic studieson organic photoconductors: evaluation of atomic charges on chlorodiane blue andp-(diethylamino) benzaldehyde [J]. Chem. Mater.,1993,5:1799-1804.
    [85] Stankovich S, Piner R D, Chen X, et al. Stable aqueous dispersions of graphiticnanoplatelets via the reduction of exfoliated graphite oxide in the presence ofpoly(sodium4-styrenesulfonate)[J]. J. Mater. Chem.,2006,16:155-158.
    [86] Eberhardt W, Sham T K, Carr R, et al. Site-Specific Fragmentation of SmallMolecules Following Soft-X-Ray Excitation [J]. Phys. Rev. Lett.,1983,50:1038-1041.
    [87] Su C Y, Xu Y, Zhang W, et al. Electrical and Spectroscopic Characterizations ofUltra-Large Reduced Graphene Oxide Monolayers [J]. Chem. Mater.,2009,21:5674-5680.
    [88] Watanabe M O, Itoh S, Mizushima K, et al. Bonding characterization of BC2Nthin films [J]. Appl. Phys. Lett.,1996,68:2962-2964.
    [89] Darmstadt H, Roy C, Kaliaguine S, et al. Surface and Pore Structures of CMK-5Ordered Mesoporous Carbons by Adsorption and Surface Spectroscopy [J]. Chem.Mater.,2003,15:3300-3307.
    [90] Darmstadt H, Roy C. Surface spectroscopic study of basic sites on carbonblacks [J]. Carbon,2003,41:2662-2665.
    [1] Michalet X, Pinaud F F, Bentolila L A, et al. Quantum Dots for Live Cells, inVivo Imaging, and Diagnostics [J], Science,2005,307:538-544.
    [2] Dabbousi B O, Rodriguez V J, Mikulec F V, et al. CdSe/ZnS core-shell quantumdots: synthesis and characterization of a size series of highly luminescentnanocrystallites [J], J. Phys. Chem. B,1997,101:9463-9475.
    [3] Bruchez M, Moronne M, Gin P, et al. Semiconductor nanocrystals as fluorescentbiological labels [J], Science,1998,281:2013-2016.
    [4] Alivisatos P. The use of nanocrystals in biological detection [J], Nat. Biotechnol.,2004,22:47-52.
    [5] Chan C W, Maxwell D J, Gao X, et al. Luminescent quantum dots formultiplexed biological detection and imaging [J], Curr. Opin. Biotechnol.,2002,13:40-46.
    [6] Gao X, Cui Y, Levenson R M, et al. In vivo cancer targeting and imaging withsemiconductor quantum dots [J], Nat. Biotechnol.,2004,22:969-976.
    [7] Dubertret B, Skourides P, Norris D J, et al. In vivo imaging of quantum dotsencapsulated in phospholipid micelles [J], Science,2002,298:1759-1762.
    [8] Colton H M, Falls J G, Ni H, et al. Visualization and quantitation of peroxisomesusing fluorescent nanocrystals: treatment of rats and monkeys with fibrates anddetection in the liver [J], Toxicol. Sci.,2004,80:183-192.
    [9] Lidke D S, Nagy P, Heintzmann R, et al. Quantum dot ligands provide newinsights into erbB/HER receptor-mediated signal transduction [J], Nat. Biotechnol.,2004,22:198-200.
    [10] Beaurepaire E, Buissette V, Sauviat M P, et al. Functionalized fluorescent oxidenanoparticles: artificial toxins for sodium channel targeting and imaging at thesingle-molecule level [J], Nano Lett.,2004,4:2079-2083.
    [11] Scherer F, Anton M, Schillinger U, et al. Magnetofection: enhancing andtargeting gene delivery by magnetic force in vitro and in vivo [J], Gene. Ther.,2001,9:102-109.
    [12] Yu S, Chow G. Carboxyl group (-CO2H) functionalized ferrimagnetic iron oxidenanoparticles for potential bioapplications [J], J. Mater. Chem.,2005,14:2781-2786.
    [13] Jounai N, Takeshita F, Kobiyams, K, et al. The Atg5-Atg12conjugate associateswith innate antiviral immune responses [J], Proc. Natl. Acad. Sci. U.S.A.,2007,104:14050-14055.
    [14] Biju V, Itoh T, Anas A, et al. Semiconductor quantum dots and metalnanoparticles: syntheses, optical properties, and biological applications [J], Anal.Bioanal. Chem.,2008,391:2469-2495.
    [15] Cai W, Shin D W, Chen K, et al. Peptide-labeled near-infrared quantum dots forimaging tumor vasculature in living subjects [J], Nano Lett.,2006,6:669-676.
    [16] Green M. Halbleiter-Quantenpunkte as biologische Imaging-Substanzen [J],Angew. Chem. Int. Ed.,2004,43:4221-4223.
    [17] Yang Y, Jing L, Yu X, et al. Coating Aqueous Quantum Dots with Silica viaReverse Microemulsion Method: Towards Size-controllable and Robust FluorescentNanoarticles [J], Chem. Mater.,2007,19:4123-4128.
    [18] Lovric J, Bazzi H S, Cuie Y, et al. Differences in subcellular distribution andtoxicity of green and red emitting CdTe quantum dots [J], J. Mol. Med.,2005,85:377-385.
    [19] Riggs J E, Guo Z X, Carroll D L, et al. Strong Luminescence of SolubilizedCarbon Nanotubes [J], J. Am. Chem. Soc.,2000,122:5879-5880.
    [20] Yu S J, Kang M W, Chang H C, et al. Bright Fluorescent Nanodiamonds: NoPhotobleaching and Low Cytotoxicity [J], J. Am. Chem. Soc.,2005,127:17604-17605.
    [21] Chao J I, Perevedentseva E, Chung P H, et al. Nanometer-sized diamondparticle as a probe for biolabeling [J], Biophys. J.,2007,93,2199-2208.
    [22] Schrand A M, Huang H, Carlson C, et al. Are Diamond Nanoparticles Cytotoxic?[J], J. Phys. Chem. B,2007,111,2-7.
    [23] Sun Y P, Zhou B, Lin Y, et al. Quantum-Sized Carbon Dots for Bright andColorful Photoluminescence [J], J. Am. Chem. Soc.,2006,128:7756-7757.
    [24] Liu H, Ye T, Mao C. Fluorescent carbon nanoparticles derived from candle soot.[J], Angew. Chem. Int. Ed.,2007,46:6473-6475.
    [25] Hu S L, Niu K Y, Sun J, et al. One-step synthesis of fluorescent carbonnanoparticles by laser irradiation [J], J. Mater. Chem.,2009,19:484-488.
    [26] Liu R, Wu D, Liu S, et al. An Aqueous Route to Multicolor PhotoluminescentCarbon Dots Using Silica Spheres as Carriers [J], Angew. Chem. Int. Ed.,2009,48:4598-4601.
    [27] Peng H, Travas-Sejdic. Simple Aqueous Solution Route to LuminescentCarbogenic Dots from Carbohydrates [J], Chem. Mater.,2009,21:5563-5565.
    [28] Ray S C, Saha A, Jana N R, et al. Fluorescent Carbon Nanoparticles: Synthesis,Characterization, and Bioimaging Application [J], J. Phys. Chem. C,2009,113:18546-18551.
    [29] Bourlinos A B, Stassinopoulos A, Anglos D, et al. Simple Aqueous SolutionRoute to Luminescent Carbogenic Dots from Carbohydrates [J], Chem. Mater.,2008,20:4539-4541.
    [30] Lu J, Yang J, Wang J, et al. One-pot synthesis of fluorescent carbon nanoribbons,nanoparticles, and graphene by the exfoliation of graphite in ionic liquids [J], ACSNano,2009,3:2367-2375.
    [31] Zhao Q L, Zhang Z L, Huang B H, et al. Facile preparation of low cytotoxicityfluorescent carbon nanocrystals by electrooxidation of graphite [J], Chem. Commun.,2008,5116-5118.
    [32] Wang X, Cao L, Yang S T, et al. Bandgap-Like Strong Fluorescence inFunctionalized Carbon Nanoparticles [J], Angew. Chem. Int. Ed.,2010,49:5310-5314.
    [33] Xiu Y, Gao Q, Li G. D, et al. Preparation and Tunable Photoluminescence ofCarbogenic Nanoparticles Confined in a Microporous MagnesiumAluminophosphate[J], Inorg. Chem.,2010,49:5859-5867.
    [34] Wang F, Pang S, Wang L, et al. One-Step Synthesis of Highly LuminescentCarbon Dots in Noncoordinating Solvents [J], Chem. Mater.,2010,22:4528-4530.
    [35] Tian S L, Ghosh D, Chen W, et al. Nanosized Carbon Particles From NaturalGas [J], Chem. Mater.,2009,21:2803-2809.
    [36] Yang S T, Cao L, Luo P G, et al. Carbon Dots for Optical Imaging in Vivo [J], J.Am. Chem. Soc.,2009,131:11308-11309.
    [37] Marsh J, Minel L, Barthes-Labrousse M G, et al. The nature of the surfaceacidity of anodized titanium: an XPS study using1,2-diaminoethane [J], Appl. Surf.Sci.,1996,99:335-333.
    [38] Mishra S, Weimer J J. Procedings of the23rd Annual Meeting of the Society ofBiomaterials, April1997,[C], New Orleans,1997.
    [39] Seol Y J, Park Y J, Lee S C, et al. Immobilization of the cell-adhesive peptideArg-Gly-Asp-Cys (RGDC) on titanium surfaces by covalent chemical attachment [J],J. Mater. Sci: Mater. Medic.,1997,8:867-872.
    [40] Kovtyukhova N I, Mallouk T E, Pan L, et al. Individual Single-WalledNanotubes and Hydrogels Made by Oxidative Exfoliation of Carbon NanotubeRopes [J], J. Am. Chem. Soc.,2003,125:9761-9769.
    [41] Ago H, Kugler T, Cacialli F, et al. Work functions and surface functional groupsof multiwall carbon nanotubes [J], J. Phys. Chem. B,1999,103:8116-8121.
    [42] Wilson W L, Szajowski P F, Brus L E. Quantum confinement in size-selected,surface-oxidized silicon nanocrystals [J], Science,1993,262:1242-1244.
    [43] Xu X, Ray R, Gu Y, et al. Electrophoretic Analysis and Purification ofFluorescent Single-Walled Carbon Nanotube Fragments [J], J. Am. Chem. Soc.,2004,126:12736-12737.
    [44] Xiong H M, Xu Y, Reng Q G, et al. Stable Aqueous ZnO@Polymer Core-ShellNanoparticles with Tunable Photoluminescence and Their Application in CellImaging [J], J. Am. Chem. Soc.,2008,130:7522-7523.
    [1] Tian Y, Li G D, Chen J S. Chemical Formation of Mononuclear Univalent Zinc ina Microporous Crystalline Silicoaluminophosphate [J]. J. Am. Chem. Soc.,2003,125:6622-6623.
    [2] Tian Y, Li G D, Chen J S. Stabilization and Magnetic Property of MononuclearZn+Species in SAPO-CHA [J]. Stud. Surf. Sci. Catal.,2004,154:1700-1707.
    [3] Gao Q, Xiu Y, Li G D. et al. Sensor material based on occluded trisulfur anionicradicals for convenient detection of trace amounts of water molecules [J]. J. Mater.Chem.,2010,20:3307-3312.
    [4] Lok B M, Messina C A, Patton R L, et al. Silicoaluminophosphate molecularsieves: another new class of microporous crystalline inorganic solids [J]. J. Am.Chem. Soc.,1984,106:6092-6093.
    [5] Lohse, U, Parlitz, B, Muller, D, et al. MgAPO molecular sieves of CHA and AFIstructure Acidity and Mg ordering [J]. Micro. Mater.1997,12:39-49.
    [6] Deng F, Yue Y, Xiao T, et al. Substitution of Aluminum in AluminophosphateMolecular Sieve by Magnesium: A Combined NMR and XRD Study [J]. J. Phys.Chem.1995,99:6029-6035.
    [7] Yang R, Chueh Y, Morber J R, et al. Single-Crystalline Branched Zinc PhosphideNanostructures: Synthesis, Properties, and Optoelectronic Devices [J]. Nano Letter,2007,7:269-275.
    [8] Amanda E H, Raymond E S. Trioctylphosphine: A General Phosphorus Sourcefor the Low-Temperature Conversion of Metals into Metal Phosphides [J]. Chem.Mater.,2007,19:4234-4242.
    [9] Shen G, Ye C, Golberg D, et al. Structure and cathodoluminescence ofhierarchical Zn3P2/ZnS nanotube/nanowire heterostructures,[J]. Appl. Phys. Lett.2007,90:073115-1-073115-3.
    [10] Shen G, Bando Y, Golberg D. Synthesis and Structures of High-QualitySingle-Crystalline II3-V2Semiconductors Nanobelts [J]. J. Phys. Chem. C2007,111:5044-5049.
    [11] Hermanna A M, Madanb A, Wanlassc M W, et al. MOCVD growth andproperties of Zn3P2and Cd3P2films for thermal photovoltaic applications [J]. SolarEnergy Materials&Solar Cells,2004,82:241-252.
    [12] Smith L, Cheetham A K, Morris R E, et al. On the nature of water bound to asolid acid catalyst,[J]. Science,1996,271:799-802.
    [13] Ashtekar S, Chilukuri S V V, Chakrabarty D K. Small-Pore Molecular SievesSAPO-34and SAPO-44with Chabazite Structure: A Study of Silicon Incorporation[J]. J. Phys. Chem.1994,98:4878-4883.
    [14] Zong F, Ma H, Ma J, et al. Structural properties and photoluminescence of zincnitride nanowires [J]. Appl. Phys. Lett.,2005,87:233104-1-233104-3.
    [15] Masanobu F, Katsuaki Y, Osamu T. Structural, electrical and optical propertiesof zinc nitride thin films prepared by reactive rf magnetron sputtering,[J]. Thin SolidFilms,1998,322:274-281.
    [16] Giordano P, Zlatka S, Ronald I S, et al. Synthesis, stoichiometry and thermalstability of Zn3N2powders prepared by ammonolysis reactions,[J]. Journal of SolidState Chemistry,2008,181:158-165.
    [17] Yang T, Zhang Z, Li Y, Lv M, et al. Structural and optical properties of zincnitride films prepared by rf magnetron sputtering,[J]. Applied Surface Science,2009,255:3544-3547.
    [18]宗福建,马洪磊,薛成山等氮化锌粉末的结构和化学键状态[J].稀有金属材料与工程,2006,35:55-58.
    [9] Kuriyama K, Takahashi Y, Sunohara F. Optical band gap of Zn3N2films [J]. Phys.Rev. B1993,48:2781-2782.
    [20] Toshikazu S, Kazuhiko K. Band-gap energy and electron effective mass ofpolycrystalline Zn3N2[J]. J. Appl. Phys.2006,99:076101-1-076101-2.
    [21] Partin D E, Williams D J, O’Keeffe M. The Crystal Structures of Mg3N2andZn3N2[J]. J. Solid State Chem.,1997,132:56-59.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700