用户名: 密码: 验证码:
真核双表达载体pIRES-hVEGF_(121)/hBMP-4的构建与鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的构建含有人血管内皮生长因子(human Vascular endothelial growth factor,hVEGF121)和人骨形态发生蛋白-4(human Bone morphogenesia protein-4,hBMP-4)两基因的真核双表达质粒,并鉴定。
     方法首先将hVEGF121通过定向克隆至真核双表达质粒pIRES一个多克隆位点中,命名为pIRES-hVEGF121。再将hBMP-4定向克隆至穿梭质粒pShuttle CMV上,构建pShuttle CMV-hBMP-4重组穿梭质粒,最后通过重组穿梭质粒将hBMP-4定向克隆至真核双表达质粒pIRES-hVEGF121上,完成真核双表达载体pIRES- hVEGF121/hBMP-4的构建,并作酶切鉴定。转染COS-7细胞,提取总RNA和总蛋白,分别进行RT-PCR检测其转录和Western blot检测其蛋白表达。
     结果酶切证明pIRES-hVEGF121真核表达载体构建正确;酶切证明pShuttle CMV-hBMP-4穿梭质粒构建正确;酶切证明真核双表达载体pIRESh-VEGF121/hBMP-4构建正确;RT-PCR检测到hVEGF121和hBMP- 4基因转录,Western- blot检测hVEGF121和hBMP-4基因在COS-7细胞中的表达。
     结论真核双表达载体pIRES-hVEGF121/hBMP-4成功构建,RT-PCR检测到hVEGF121和hBMP-4基因转录,Western-blot检测到hVEGF121和hBMP-4基因在COS-7细胞中的表达。hVEGF121和hBMP-4在COS-7细胞中成功表达,为进一步研究打下良好基础。
Objective To construct the eukaryotic coexpression vector encoding human vascular endothelial growth factor (VEGF121) and human bone morphogenesia protein-4 (hBMP-4), and detect the expression of the plasmid after COS-7 cell being transformed into.
     Methods Firstly, VEGF121 was directly cloned into one of the multiple cloning sites of the eukaryotic expression plasmid-pIRES to construct pIRES-hVEGF121 . Secondly,hBMP-4 was directly cloned into pShuttle CMV to construct pShuttle CMV-hBMP-4, a new reconstructed shuttle plasmid. Carried with the instrument of pShuttle CMV-hBMP-4,hBMP-4 was cloned into pIRES-hVEGF121 to construct pIRES-hVEGF121/hBMP-4, which laterly were confirmed by restriction enzymolysis and then transformed into COS-7. Thirdly, the transcription of the RNA extracted from COS-7 were detected by RT-PCR and the expression of proteins extracted from COS-7 were detected by Western blot assay.
     Results The eukaryotic expression plasmid-pIRES-hVEGF121 could be digested by enzyme, which can certificate its right construction; the shuttle plasmid-pShuttle CMV-hBMP-4 could be digested by enzyme, which can certificate its right construction; the eukaryotic expression plasmid-pIRES-hVEGF121/hBMP-4 could be digested by enzyme, which can certificate its right construction. The transcription of hVEGF121 and hBMP-4 gene could be detected by RT-PCR and the proteins expression of hBMP-4 and hVEGF121 genes could be confirmed by Western-blot assay.
     Conclusion The construction of pIRES-hVEGF121/hBMP-4 was acheved; the transcription of hVEGF121 and hBMP-4 gene could be detected by RT-PCR and the proteins expression of hBMP-4 and hVEGF121 genes could be confirmed by Western-blot assay; the proteins expression of hBMP-4 and hVEGF121 genes could set a sound ground for the further researches.
引文
1. Nussenbaum B, Rutherford RB, Teknos TN, et al. Ex vivo gene therapy for skeletal regeneration in cranial defects compromised by postoperative radiotherapy. Hum Gene Ther, 2003; 14(11): 1107 ~ 15.
    2. Park J, Lutz R, Felszeghy E, Wiltfang J, et al. The effect on bone regeneration of a liposomal vector to deliver BMP-2 gene to bone grafts in peri-implant bone defects. Biomaterials, 2007; 28(17): 2772 ~ 82.
    3. Lieberman JR, Daluiski A, Stevenson S, et al. The effect of regional gene therapy with bone morphogenetic protein-2-producing bone-marrow cells on the repair of segmental femoral defects in rats. J Bone Joint Surg Am, 1999; 81(7): 905 ~ 17.
    4. Kirker-Head CA. Potential applications and delivery strategies for bone morphogenetic proteins. Adv Drug Deliv Rev, 2000; 43(1): 65 ~ 92.
    5. Stuart DD, Kao GY, Allen TM, et al. A novel, long-circulating, and functional liposomal formulation of antisense oligodeoxynucleotides targeted against MDR1. Cancer Gene Ther, 2000; 7 (3): 466 ~ 75.
    6. Peng H, Usas A, Olshanski A, et al. VEGF improves, whereas sFlt1 inhibits, BMP2-induced bone formation and bone healing through modulation of angiogenesis. J Bone Miner Res, 2005; 20(11): 2017 ~ 27.
    7. John S, Min B, Leo DG, et al. Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. PNAS, 2002; 99(15): 9656 ~ 61.
    8. Hairong P, Vonda W, Arvydas U, et al. Synergistic enhancement of bone formation and healing by stem cell–expressed VEGF and bone morphogenetic protein-4. J. Clin. Invest, 2002; 110(6): 751 ~ 9.
    9. Keith DK, Yan C, Kenneth MC, et al. Adeno-associated virus-mediated bone morphogenetic protein-4 gene therapy for in vivo bone formation. Biochem Biophys Res Commun , 2003; 308 (3): 636 ~ 45.
    10. Yan C, Kenneth MC, et al. In vivo new bone formation by direct transfer of adenoviral-mediated bone morphogenetic protein-4 gene. Biochem Biophys ResCommun , 2002; 298 (1): 121 ~ 7.
    11. Bouletreau PJ, Warren SM, Spector JA, et al. Hypoxia and VEGF up-regulate BMP-2 mRNA and protein expression in microvascular endothelial cells: implications for fracture healing. Plast Reconstr Surg. 2002; 109(7): 2384 ~ 97.
    12. Huang YC, Kaigler D, Rice KG, et al. Combined angiogenic and osteogenic factor delivery enhances bone marrow stromal cell-driven bone regeneration. J Bone Miner Res. 2005; 20(5): 848 ~ 57.
    13. Deckers MM, Bezooijen RL, et al. Bone morphogenetic proteins stimulate angiogenesis through osteoblast-derived vascular endothelial growth factor A. Endocrinology, 2002; 143(4): 1545 ~ 53.
    14. Ferrara N, Davis-Smyth T, et al. The biology of vascular endothelial Growth factor. EndoerRev, 1997; 18(1): 4 ~ 25.
    15. Nagy JA, Vasile E, Feng D, et al. Vascular permeability factor/vascular endothelial growth factor induces lymphangiogenesis as well as angiogenesis. J Exp Med, 2002; 196(11): 1497 ~ 506.
    16. Kroll J, Waltenberger J, et al. Regulation of the endothelial function and angiogenesis by vascular endotherlial growth factor(VEGF-A). ZKardiol, 2000; 19(3): 206 ~ 18.
    17. Ikeda Y, Fukuda N, Wada M, et al. Development of angiogenic Cell and gene therapy by transplantation of umbilical cord blood With vascular endothelial growth factor gene. Hypertens Res, 2004; 27(2): 119 ~ 28.
    18. Hiltunen MO, Ruuskanen M, Huuskonen J, et al. Adenovirus-mediated VEGF-A gene transfer induces bone formation in vivo. FASEB J, 2003; 17(9): 1147 ~ 9.
    19. Shimasaki S, Zachow RJ, Li D, et al. A functional bone Morphogenetic protein system in the ovary. Proc Natl Acad Sci USA, 1999; 96(13): 7282 ~ 7.
    20. Shore EM, Xu M, Shah PB, et al. The human bone morphogenetic protein
    4(BMP-4) gene: molecular structure and transcriptional regulation. Calcif Tissue Int, 1998; 63(3): 221 ~ 229.
    21. Pecina M, Jelic M, Martinovic S, et al. Articular cartilage repair: the role of bone morphogenetic proteins. Int Orthop, 2002; 26(3): 131 ~ 136.
    22. Sekiya I, Larson BL, Vuoristo JT, et al. Comparison of effect of BMP-2,-4,and-6 on in vitro cartilage formation of human adult stem cells from bone marrow stroma. Cell Tissue Res, 2005; 320(2): 269 ~ 276.
    23. Roelen BA, Dijke P, et al. Controlling mesenchymal stem cell differentiation by TGFBeta family members. J Orthop Sci, 2003; 8(5): 740 ~ 748.
    24. 汪炬, 孙奋勇, 戴云, 等. 由 BMP-4 基因转入 C2C12 细胞引起的成肌细胞到成骨细胞的表型转变. 中国病理生理杂志, 2004; 20(5): 719 ~ 723.
    25. Rose T, Peng H, Usas A, et al. Gene therapy to improve osteogenesis in bone lesions with severe soft tissue damage. Langenbecks Arch Surg, 2003; 388(5): 356 ~ 365.
    26. Honsawek S, Powers RM, Wolfinbarger L, et al. Extractable bone morphogenetic protein and correlation with induced new bone formation in an in vivo assay in the athymic mouse model. Cell Tissue Bank, 2005; 6(1): 13 ~ 23.
    27. Anderson WF. Uses and abuses of human gene therapy . Hum Gene Ther, 1992; 3(1): 1 ~ 2.
    28. Park J, Ries J, Gelse K, et al. Bone regeneration in critical size defects by cell- mediated BMP-2 gene transfer : a comparison of adenoviral vectors and liposomes. Gene Ther, 2003; 10(13): 1089 ~ 98.
    29. Ramesh R, Saeki T, Templeton NS, et al. Successful treatment of primary and disseminated human lung cancers by systemic delivery of tumor suppressor genes using an improved liposome vector. MolTher, 2001; 3 (3): 337 ~ 50.
    30. Yew NS, Wang KX, Przybylska M, et al. Contribution of plasmid DNA to inflammation in the lung after administration of cationic lipid:pDNA complexes. Hum Gene Ther, 1999; 10(2): 223 ~ 34.
    31. Kren BT, Parashar B, Bandyopadhyay P, et al. Correction of the UDP-glucuronosyltransferase gene defect in the gunn rat model of crigler-najjar syndrome type I with a chimeric oligonucleotide. Proc Natl Acad Sci USA, 1999; 96(18): 10349 ~ 54.
    32. Plank C, Oberhauser B, Mechtler K, et al . The influence of endosome-disruptive peptides on gene transfer using synthetic virus-like gene transfer systems. J BiolChem, 1994; 269(17): 12918 ~ 24.
    33. Wyman TB, Nicol F, Zelphati O, et al . Design, synthesis, and characterization of a cationic peptide that binds to nucleic acids and permeabilizes bilayers. Biochemistry, 1997; 36 (10): 3008 ~ 17
    34. Subramanian A, Ranganathan P, Diamond SL, et al . Nuclear targeting peptide scaffolds for lipofection of nondivding mammalian cells. Nat Biotechnol, 1999; 17(9): 873 ~ 7.
    1. Urist MR. Bone: formation by autoinduction. Science, 1965; 150(698): 893 ~ 9.
    2. Service RF.Tissue engineers build new bone. Science, 2000; 289(5484): 1498 ~ 500.
    3. Croteau S, Rauch F, SilvestriA, et al. Bone morphogenetic proteins in orthopedics:from basic science to clinical practice. Orthopedics, 1999; 22(7): 698 ~95.
    4. Kanzler B, Foreman RK, Labosky PA, et al. BMP signaling is essential for development of skeletogenic and neurogenic cranial neural crest. Development, 2000; 127(5): 1095 ~ 104.
    5. Luca DF, Barnes KM, Uyeda JA, et al. Regulation of growth plate chondrogenesis by bone morphogenetic protein-2. Endocrinology, 2001; 142(1): 430 ~ 36.
    6. Solheim E. Chromosomal location of three human genes encoding bone morphogenetic protein receptors. Mamm Genome, 1999; 10(3): 299 ~ 302.
    7. Sakou T. Bone morphogenetic proteins : from basic studies to Clinical approaches. Bone, 1998; 22(6): 591 ~ 603.
    8. Service RF. Tissue engineers build new bone. Science, 2000; et al. 289(5484): 1498 ~ 500.
    9. Bosch P, Musgrave DS, Lee JY, et al. Osteoprogenitor cells within skeletal muscle. J Orthop Res, 2000; 18(6): 933 ~ 44.
    10. Reddi AH. Morphogenesis and tissue engineering of bone and cartilage : inductive signals, stem cells, and biomimetic biomaterials. TissueEng, 2000; 6(4): 351 ~ 9.
    11. Bosch P, Pratt SL, Stice SL, et al. Isolation, characterization, gene modification, and nuclear reprogramming of porcine mesenchymal stem cells. Biol Reprod, 2006; 74(1): 46 ~ 57.
    12. Valimaki VV, Yrjans JJ, Vuorio E, et al. Combined effect of BMP-2 gene transfer and bioactive glass microspheres on enhancement of new bone formation. J Biomed Mater Res A, 2005; 75(3): 501 ~ 9.
    13. Peng H, Usas A, Olshanski A, et al. Synergistic enhancement of bone formation and healing by stem cell–expressed VEGF and bone morphogenetic protein-4. J. Clin. Invest, 2002; 110(6): 751 ~ 9.
    14. Zhao M, Zhao Z, Koh JT, et al. Combinatorial gene therapy for bone regeneration: cooperative interactions between adenovirus vectors expressing bone morphogenetic proteins 2, 4, and 7. J Cell Biochem, 2005; 95(1): 1 ~ 16.
    15. Smith JD, Melhem ME, Magge KT, et al. Improved growth factor directed vascularization into fibrin constructs through inclusion of additional extracellular molecules. Microvasc Res, 2007; 73(2): 84 ~ 94.
    16. Veillette CJ, von Schroeder HP, et al. Endothelin-1 down-regulates the expression of vascular endothelial growth factor-A associated with osteoprogenitor proliferation and differentiation. Bone, 2004; 34(2): 288 ~ 96.
    17. Widenfalk J, Lipson A, Jubran M, et al. Vascular endothelial growth factor improves functional outcome and decreases secondary degeneration in experimental spinal cord contusion injury. Neuroscience, 2003; 120(4): 951 ~ 60.
    18. Kroll J, Waltenberger J, et al. Regulation of the endothelial function and angiogenesis by vascular endotherlial growth factor(VEGF-A). ZKardiol, 2000; 19(3): 206 ~ 18.
    19. Ikeda Y, Fukuda N, Wada M, et al. Development of angiogenic Cell and gene therapy by transplantation of umbilical cord blood With vascular endothelial growth factor gene. Hypertens Res, 2004; 27(2): 119 ~ 28.
    20. Galiano RD, Tepper OM, Pelo CR, et al. Topical vascular endothelial growth factor accelerates diabetic wound healing through increased angiogenesis and mobilizing and recruiting bone marrow-derived cells. Am J Pathol, 2004; 164(6): 1935 ~ 47.
    21. Mayr-Wohlfart U, Waltenberger J, Hausser H, et al. Vascular endothelial growth factor stimulates chemotactic migration of primary human osteoblasts.Bone, 2002; 30(3): 472 ~ 7.
    22. Deckers MM, van Bezooijen RL, vander Horst G, et al. Bone morphogeneticproteins stimulate angiogenesis through osteoblast-derived vascular endothelial growth factor A. Endocrinology, 2002; 143(4): 1545 ~ 53.
    23. Niida S, Kaku M, Amano H, et al. Vascular endothelial growth factor can substitute for macrophage colony2stimulating factor in the support of osteoclastic bone resorption. J Exp Med ,1999; 190(2): 293 ~ 98.
    24. Engsig MT, Chen QJ, Vu TH, et al. Matrix metaloproteinase 9 and vascular endothelial growth factor are essential for osteoclast recruitment into developing long bones. J Cell Biol ,2000; 151(4): 879 ~ 89.
    25. Street J, Bao M, deGuzman L, et al. VEGF stimulates bone repair by promoting angiogenesis and bone turnover. PNAS, 2002; 99 (15): 9656 ~ 61.
    26. Uchida S, Sakai A, Kudo H, et al. vascular endothelial growth factor is expressed along with its receptors during the healing process of bone and bone marrow after drill-hole injury in rats. Bone, 2003; 32(5): 491 ~ 501.
    27. Pufe T, Wildemann B, Petersen W, et al. Quantitative measurement of the splice variants 120 and 164 of the angiogenic peptide vascular endothelial growth factor in the time flow of fracture healing:a study in the rat. Cell Tissue Res, 2002; 309 (3): 387 ~ 92.
    28. Peng H, Usas A, Olshanski A, et al. VEGF improves, whereas sFlt1 inhibits, BMP2-induced bone formation and bone healing through modulation of angiogenesis. J Bone Miner Res, 2005; 20(11): 2017 ~ 27.
    29. John S, Min B, Leo D G, et al. Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. PNAS, 2002; 99(15): 9656 ~ 61.
    30. Wu H, Li Y, Zhu G, et al. Expression of vascular endothelial growth factor and its receptor (Flt-1) in breast carcinoma. 2002; 82(10): 708 ~ 11.
    31. Nakagawa M, Kaneda T, Arakawa T, et al. Vascular endothehal growth factor(VEGF) directly enhances osteoclastic bone resorption and survival of mature osteoclastes. FEAS Lett, 2000; 473(2): 161 ~ 4.
    32. Lee JY, Peng H, Usas A, et al. Enhancement of bone healing based on ex vivo gene therapy using human muscle-derived cells expressing bone morphogeneticprotein 2. Hum Gene Ther, 2002; 13(10): 1201 ~ 11.
    33. 刘建, 常祺, 胡蕴玉, 等. 骨形态发生蛋白-2对兔骨髓基质细胞生物行为的影响. 中国临床康复, 2003; 7(20): 2798 ~ 800.
    34. Cao C, Mao TQ, Xi Q, et al. Biological characteristics of human bone marrow stromal stem cell cultured in vitro. J Fourth Mil, 2002; 23(3): 207 ~ 9.
    35. Kozawa O, Matsuno H, Umatsu T, et al. Involvement of p70 S6 kinase in bone morphogenetic protein signaling:vascular endothelial growth factor synthesis by bone morphogentic protein-4 in osteoblasts. J Cell Biochem, 2001; 81(3): 430 ~ 6.
    36. Pufe T, Claassen H, Scholz-Ahrens KE, et al. Influence of estradiol on vascular endothelial growth factor expression in bone: a study in gottingen miniature pigs and human osteoblasts. Calcif Tissue Int, 2007; 80(3): 184 ~ 91.
    37. Deckers MM, Karperien M, van der Bent C, et al. Expression of vascular endothelial growth factors and their receptors during osteoblast differentiation. Endocrinology, 2000; 141(5): 1667 ~ 74.
    38. 曾中华, 余黎, 龚玲玲, 等. 骨折愈合过程中BMP-2和VEGF的表达. 武汉大学学报, 2005; 26(4): 473 ~ 76.
    39. Bouletreau PJ, Warren SM, Spector JA, et al. Hypoxia and VEGF up-regulate BMP-2 mRNA and protein expression in microvascular endothelial cells;implications for fracture healing.Plastic and Recostructive surgery, 2002; 109(7): 2384 ~ 92.
    40. Spector JA, Mehrara BJ, Greenwald JA, et al. Co-culture of osteoblasts with immature dural cells causes an increased rate and degree of osteoblast differentiation. Plast Reconstr Surg, 2002; 109(2): 631 ~ 42.
    41. Kessler S, Koepp HE, Mayr-Wohlfart U, et al. Bone morphogenetic protein 2 accelerates osteointegration and remodelling of solvent-dehydrated bone substitutes. Arch Orthop Trauma Surg, 2004; 124(6): 410 ~ 4.
    42. Frazier K, Thomas R, et al. Inhibition of ALK5 signaling induces physeal dysplasia in rats. Toxicol Pathol, 2007; 35(2): 284 ~ 95.
    43. Scharpfenecker M, van Dinther M, Liu Z, et al. BMP-9 signals via ALK1 and inhibits bFGF-induced endothelial cell proliferation and VEGF-stimulatedangiogenesis. J Cell Sci, 2007; 120(Pt 6): 964 ~ 72.
    44. Matsumoto Y, Tanaka K, Hirata G, et al. Possible involvement of the vascular endothelial growth factor Flt-1 focal adhesion kinase pathway in chemotaxis and the cell proliferation of osteoclastprecursor cells in arthritic joints. J Immunol, 2002; 168 (11): 5824 ~ 31.
    45. Bouletreau PJ, Warren SM, Spector JA, et al. Hypoxia and VEGF up-regulate BMP22 mRNA and protein expression in microvascular endothelial cells : Implications for fracture healing. Plast ReconstrSurg, 2002; 109 (7): 2384 ~ 97.
    46. Keith DK, Yan C, Kenneth MC, et al. Adeno-associated virus-mediated bone morphogenetic protein-4 gene therapy for in vivo bone formation. Biochem Biophys Res Commun, 2003; 308 (3): 636 ~ 45.
    47. Yan C, Kenneth MC, et al. In vivo new bone formation by direct transfer of adenoviral-mediated bone morphogenetic protein-4 gene. Biochem Biophys Res Commun, 2002; 298 (1): 121 ~ 7.
    48. Huang YC, Kaigler D, Rice KG , et al. Combined angiogenic and osteogenic factor delivery enhances bone marrow stromal cell-driven bone regeneration. J Bone Miner Res, 2005; 20(5): 848 ~ 57.
    49. 鱼兵. 人BMP-7 及VEGF基因共表达腺病毒的构建及在兔骨髓基质干细胞的共表达. 中国矫形外科杂志, 2004; 12(21-22): 1704 ~ 7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700