用户名: 密码: 验证码:
纳米TiO_2的低温合成及光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从1972年Fujishima发现TiO2电极在紫外光照射下可以光解水制氢以来,TiO2的光催化性能得到了广‘泛的研究。众所周知TiO2的量子产率是由光致电子与空穴的产生与复合决定的,而TiO2的颗粒大小则会直接影响光致电子与空穴的运动变化,具有较小的晶粒大小一般来说会提高TiO2的光学性能。因此,通过制备均匀细小的TiO2纳米颗粒以及对TiO2进行改性如:掺杂、半导体复合、表面贵金属修饰和有机染料敏化等方法,都可以提高TiO2的光催化性能,使其满足现代生活中各种不同的需求。
     本论文旨在探索TiO2低温液相制备方法(制备温度不超过180℃),避免了传统液相法如溶胶-凝胶法和共沉淀法中高温煅烧(煅烧温度大于400℃)过程引起的颗粒烧结增大,比表面减小等不利于光催化性能的缺点,低能耗地制备出具有细小颗粒及大比表面的TiO2光催化剂,并进一步通过对TiO2光催化剂进行掺杂改性以获得更加高效的可见光光催化活性,在此基础上,还尝试对TiO2进行表面修饰,得到具有更多特殊功能性的TiO2纳米材料如具有可见光活性的水溶性TiO2。本论文系统介绍了TiO2的结构,光催化原理,提高TiO2光催化性能的方法及机理研究、制备方法、光催化剂的应用,然后详细地阐述了用不超过180℃的低温液相法直接制备具有分等级孔结构TiO2微球、具有光催化活性的金红石相TiO2、C-N-S三掺杂TiO2、超细TiO2纳米颗粒及用Ni掺杂来调控其物理化学性能及具有可见光光催化活性的水溶性碘掺杂TiO2的方法,并采用XRD、XPS、SEM、TEM、DRS、Zeta电位测试,以及光催化降解等测试手段对所合成的TiO2光催化剂的结构、形貌、形成机理及其光催化性能进行了深入的研究。
     具体研究内容如下:
     1、在180℃水热条件下合成具有分等级孔结构的多孔纳米TiO2,此方法还已经用来合成钛酸盐SrTiO3和BaTiO3多孔材料。生成分等级孔TiO2、SrTiO3和1BaTiO3多孔微球的机理可以用一种类似Kirkendall效应的机理来解释,那就是,产物的多孔结构是Ti-OH2+或HTiO3·快速向氧化物层扩散以及与之平衡的空位从球表面向球内扩散形成的。本工作的创新点在于提供了一种低温合成多孔TiO2为基体的纳米材料的通用方法,这些多孔球具有高结晶度及大比表面,可以在很多领域内找到用途,例如催化,铁电和光电等等。
     2、金红石二氧化钛是TiO2三种晶型(锐钛矿、金红石、板钛矿)中稳定性最好的一种晶型,一般由锐钛矿高温煅烧得到,但是在高温煅烧过程会导致颗粒烧结,颗粒尺寸增大,比表面降低,因此所得金红石相TiO2的光催化活性较差。在本部分工作中,我们通过在50℃下水解TiCl4的醇水溶液制得纯的金红石相TiO2纳米棒,且纳米棒之间的组装可以通过调节。TiCl4、乙醇和水之间的比例来调节,得到花状和海胆状不同超结构的金红石相TiO2, Cl-、乙醇和H+等可能影响反应产物的因素也被详细讨论。与传统高温制备的TiO2不同,这种由低温合成的金红石TiO2在模拟太阳光下具有优异的光催化活性。本文提供了一种简单低耗大量生产高光催化活性金红石TiO2的方法。
     3、由于纯TiO2的禁带宽较大,只能吸收太阳光中极少部分的紫外光。掺杂非金属元素碳、氮以及硫可能提高TiO2在可见光下的吸收,从而提高在太阳光下的光催化活性。在液相中进行非金属掺杂的掺杂源多为尿素、硫脲等含有碳、氮、硫等元素的物质。在本部分工作中,我们选用具有特殊结构和含有丰富非金属元素的生物分子L-半胱氨酸在180℃水热合成C-N-S三掺杂TiO2光催化材料,L-半胱氨酸不仅充当了C、N和S三个元素的公共来源,而且起到了控制产物晶型、结构、形貌、粒径、比表面及光吸收的作用。XPS结果表明C-N-S三掺杂TiO2中S替代了TiO2晶格中的O,N可能以N-Ti-O或Ti-O-N的方式存在,而大部分C则以羧酸类化合物覆盖在TiO2的表面。样品的光催化活性通过在模拟太阳光下在一个流动的气相装置中降解氧化NO进行测试,结果表明低温制备的C-N-S三掺杂TiO2由于具有较高的比表面及可见光吸收,因此表现出比商业用TiO2 P25和未掺杂TiO2更加优越的光催化活性。本文提供了一种低温液相制备非金属掺杂TiO2的新的制备方法。
     4、传统的TiO2液相法制备中由于钛的水解速度过快,因此很难制备粒度均一的超细二氧化钛纳米颗粒。本文则通过一种新的制备纳米材料的方法:多羟基法,在油浴中以一缩二乙二醇(DEG)为溶剂,TTIP为钛源,在180℃合成了粒径为2~5 nm的超细TiO2纳米晶,并且这些纳米晶的物理化学性能可以通过Ni掺杂来调控。XPS结果表明Ni在TiO2中以Ti-O-Ni的形式存在。N2吸附测试表明Ni掺杂可以显著增加TiO2的比表面积,最大可以使TiO2纳米晶的比表面积从143m2/g提高到266 m2/g。通过紫外漫反射测试可以发现Ni掺杂可以使TiO2的禁带宽从3.08 eV缩小到2.73 eV,使TiO2在可见光区内有了明显的吸收。采用密度泛函理论(DFT)计算了Ni掺杂二氧化钛的能带结构和电子结构,结果表明,Ni掺杂可以使TiO2在可见光内有吸收。样品的光催化活性测试结果表明Ni掺杂后的TiO2表现出比商业用TiO2(P25)和未掺杂TiO2更加优越的光催化活性,这可能是由于Ni掺杂使TiO2在可见光内有响应以及比表面积增大而引起的。本文提供了一种低温制备超细TiO2纳米颗粒及金属离子掺杂TiO2的新方法。
     5、TiO2由于具有无毒及光催化活性,可以用于光动力治疗癌症,但是由于TiO2在水中分散性差,及需要紫外光激发(紫外线本身会对生命体造成伤害),大大影响了它在光动力治疗的应用,在本部分工作中,我们采用溶剂热法在180℃一步合成颗粒直径约为2-5nm具有水溶性及可见光活性的TiO2,其良好的水溶性来可能归因于TiO2表面修饰有以-COOH为终端的有机物,而可见光光催化活性则来源于碘掺杂,其中掺杂元素碘的形态为I-,有可能I取代了TiO2中O的位置而形成O-Ti-I键,掺杂后的TiO2的光吸收边向可见光区移动,且在在整个可见光区都有吸收,而可见光下降解RhB结果进一步证明所制得的碘掺杂TiO2比商业用TiO2(P25)有良好的可见光光催化活性。本实验制备的TiO2因具有良好的水溶性及可见光光催化活性,在光动力治疗(PDT)中有极好的应用前景。
In 1972, Fujishima discovered the phenomenon of photocatalytic splitting of water on a TiO2 electrode under ultraviolet (UV) light. Since then, enormous efforts have been devoted to the research of TiO2 material, which has led to many promising applications in areas photovoltaics and photocatalysis. Among the unique properties of nanomaterials, the movement of electrons and holes in semiconductor nanomaterials is primarily governed by the well-known quantum confinement, and the transport properties related to phonons and photons are largely affected by the size of the materials. The high surface area brought about by small particle size is beneficial to many TiO2-based photocatalytic materials. Therefore, it is facilitate the photocatalytic activity of TiO2 and further improvement of current and practical TiO2 nanotechnology by preparation of homogeneous TiO2 nanoparticles and modification of TiO2, such as doping with nonmetal or metal atoms, coupling with other narrow band-gap semiconductor and surface dye-sensization.
     This dissertation developed the low temperature preparation (not exceeding 180℃) method for TiO2 and further synthesized doped TiO2 to obtain excellent photocatalytic TiO2 and other special propertity such as water-solubility. The dissertation reviewed the phase structure, photocatalytic mechanism, synthesis method, modified method and application of TiO2, and then systematically introduced low temperature methods to prepare porous crystalline TiO2, rutile TiO2 nanorod superstructures with excellent photocatalytic activity, C-N-S-tridoped TiO2 nanocrystalline photocatalysts, ultrafine TiO2 nanocrystals by Ni doping and watersolubleⅠ-doped TiO2 with excellent visible light photocatalytic activity. These resulting materials were characterized by XRD、XPS、SEM、TEM and photocatalytic activity test. The detailed works were shown as the following:
     1. Monodispersed hierarchical porous crystalline TiO2 spheres were produced through a one-step hydrothermal process from amorphous TiO2 spheres. This synthesis method can also be used to product porous SrTiO3 and BaTiO3 nanomaterials. Based on the characterization results, we proposed a formation process of these porous spheres according to a mechanism analogous to the Kirkendall Effect. That is, the porous was formed by outward transport of fast-moving Ti-OH2+or HTiO3-through the oxide layer and a balancing inward flow of vacancies to the vicinity of the TiO2 interface. This study provides a general way to synthesize porous titania-based spheres under low temperature. This study provides a general way to synthesize porous titania-based spheres. These resulting porous spheres may find applications in the fields of catalysis, ferroelectrics, photoelectrics and so forth.
     2. Rutile is the most stable phase of TiO2. It can often be obtained via high-temperature calcinations (over 700℃) of anatase nanopartieles.However,calcination unavoldably leads to agglomeration and growth of the nanocrystalline particles. In this work, rutile TiO2 nanorods were synthesized by hydrolysis of TiCl4 ethanolic solution in water at 50℃. The assembly of rutiie nanorods could be controlled through simply changing the molar ratios of TiCl4, ethanol and water, resulting in different superstructures with flower or urchin-like morphologies. A possible mechanism for the growth and assembly of rutile nanorods superstructures was proposed on the basis of characterization results. More importantly, we found that those low temperature synthesized superstructures showed significantly higher photocatalytic activities than commercial photocatalyst P25 on degradation of rhodamine B (RhB) in water under artificial solar light. This study provides a simple and inexpensive way to prepare high active rutile nanorods superstructures photocatalysts on a large scale.
     3. TiO2 can only absorb UV light with wavelengths less than 388 nm, which is about 4% of the solar spectrum. This means most of solar energy in form of visible light cannot be utilized. Doping with nonmetals such as C, N and S can extend the spectral response of TiO2 into the visible region and thus enhances its photocatalytic activity. Thiourea and urea have often been used as nonmetal ion sources because they can supply sulfur, nitrogen, and carbon. In this study, C-N-S-tridoped TiO2 nanocrystals were synthesized by using a facile hydrothermal method at 180℃in the presence of a biomolecule L-cysteine. This biomolecule could not only serve as the common source for the carbon, sulfur and nitrogen tridoping, but also could control the final crystal phases and morphology. XPS analysis revealed that S was incorporated into the lattice of TiO2 through substituting oxygen atoms, N might coexist in the forms of N-Ti-O and Ti-O-N in tridoped TiO2 and most C could form a mixed layer of carbonate species deposited on the surface of TiO2 nanoparticles. The photocatalytic activities of the samples were tested on the degradation of NO at typical indoor air level in a flow system under simulated solar light irradiation. The tridoped TiO2 samples showed much higher removal efficiency than commercial P25 and the undoped counterpart photocatalyst. This study provides a new method to prepare nonmetal doped TiO2 photocatalyst.
     4. In the traditional liquid method such as sol-gel and precipitation method, the fast rate of hydrolysis is unfavorable for the formation of homogeneous TiO2 parities, and the subsequent calcinations process may result in uncontrollable crystal growth. In this work, we developed a polyol-mediated synthetic method to prepare ultrafine anatase TiO2 nanocrystals of about 2-5 nanometers in size. The advantage of this thethod is that the alcohol itself acts as a stabilizer, which can limit the particle growth and prohibit agglomeration. Due to the high temperatures which can be applied (>150℃) for these highboiling alcohols, highly crystalline oxides are often formed.The physiochemical properties of these nanocrystals are tuned by doping with Ni. High resolution XPS analysis revealed that Ni incorporates into the TiO2 framework to form Ti-O-Ni chain. Nitrogen adsorption measurements further showed that Ni doping can greatly enhance the surface area of these anatase TiO2 nanocrystals from 143 to 266 m2/g. Using UV-vis diffuse reflectance spectroscopy analysis, we found that the Ni doping reduced the band gap from 3.08 to 2.73 eV and permitted these TiO2 nanocrystals to successfully absorb light in the visible region. First principles band structure calculations were carried out to study the electronic origin of the nickel induced optical absorption. The photocatalytic activities of the samples were tested through degradation of NO under typical indoor air flow and simulated solar light environment. Ni-doped TiO2 was found to exhibit much higher photocatalytic activity than its undoped counterpart and P25. The enhancement of photocatalytic activity of Ni-doped TiO2 is attributed to the larger surface area and the band gap narrowing tuned by nickel doping. This study provides a new low temperature method to prepare untral fine TiO2 nanoparticles.
     5. TiO2 has been used as photodynamic therapy (PDT) agents for cancer treatment recently. However, the insolubility of the TiO2 nanocrystals in water greatly limits their applications in PDT and water-soluble TiO2 nanocrystals are desired. Moreover, all those water-dispersed TiO2 have effective photocatalytic activity only under UV irradiation owing to the large bandgap (3.2 eV) of TiO2, and it is all known that UV radiation may cause direct cellular injury. Thus it is desirable to synthesis of water-dispersed TiO2 with visible light response for photodynamic therapy (PDT). In this study, water-soluble iodine doped TiO2 nanoparticles were synthesized by solvothermal method under 180℃. Interestingly, the obtained nanoparticles can dispersed well in water. The high water solubility mainly comes from the terminated-COOH on the surface of the TiO2 nanoparticals. The characterization results indicate the obtained I-doped TiO2 was about 2-5 nm. The doping form of I is I. The iodine atom may substitute the O atom in the TiO2 lattice to form O-Ti-I band. Doping with iodine can shift the absorption edge of TiO2 to the visible light range and narrow the band gap. We found that those water-soluble I-doped TiO2 showed significantly higher photocatalytic activities than commercial photocatalyst P25 on degradation of rhodamine B in water under visible light. Owing to the excellent water-solubility and visible light photocatalytic ability, the obtained water-soluble I-doped TiO2 have potential to be used in photodynamic therapy (PDT).
引文
[1]A. Fujishima, T.N. Rao, D.A. Tryk, J. Photochem. Photobiol. C:Photochem. Rev.1 (2000) 1-21.
    [2]M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev.95 (1995) 69-96.
    [3]X. Bokhimi, A. Morales, M. Aguilar, J.A. Toledo-Antonio, F. Pedraza, Int. J. Hydrogen Energy 26(2001) 1279-1287.
    [4]H.M. Cheng, J.M. Ma, Z.G. Zhao, L.M. Qi, Chem. Mater.7 (4) (1995) 663-671.
    [5]D.W. Kim, N. enomoto, Z. Nakagawa, J. Am. Ceram. Soc.79 (1996) 1095-1100.
    [6]S.-D. Mo, W.Y. Ching, Phys. Rev. B 51 (1995) 13023-13032.
    [7]J.K. Burdett, T. Hughbanks, G.J. Miller, J.W. Richardson, J.V. Smith, J. Am. Chem. Soc.109 (12) (1987)3639-3646.
    [8]T.A. Kandiel, A. Feldhoff, L. Robben, R. Dillert, D.W. Bahnemann, J. Phys. Chem. C 113 (2009) 9210-9217.
    [9]W.B. Hu, L.P. Li, G.S. Li, C.L. Tang, L. Sun, Cryst. Growth. Design 9 (2009) 3676-3682.
    [10]X. Bokhimi, A. Morales, O. Novaro, T. Lo'pez, O. Chimal, M. Asomoza, R. Go'mez, Chem. Mater.9(1997)2616-2620.
    [11]X. Bokhimil, O. Novaro, R.D. Gonzalez, T.L. pez, O. Chimal, A. Asomoza, R.G. mez, J. Solid State Chem.144(1999)349-353.
    [12]M. Gotic, M. Ivanda, A. Sekulic, S. Music, S. Popovic, A. turkovic, K. Furic, Mater. Lett.28 (1996)225-229.
    [13]Y. Hwu, Y.D. Yao, N.F. Cheng, C.Y. Tung, H.M. Lin, Nanostruct. Mater.9 (1997) 355-365.
    [14]H. Zhang, J.F. Banfield, J. Phys. Chem. B 104 (2000) 3481-3487.
    [15]周芝骏,北京:高等教育出版社(1993).
    [16]余尚银,材料物理化学西安:西安交通大学出版社(1995).
    [17]郭祝昆,高温相平衡与相图上海:上海科学出版社(1987).
    [18]X.Z. Ding, J. Mater. Sci. Lett.14 (1994) 211-215.
    [19]X.Z. Ding, J. Mater. Sci. Lett.15 (1996) 1789-1791.
    [20]G. Oliverl, J. Mater. Chem.3(12) (1993) 1239-1244.
    [21]陈代荣,无机材料学报12(1)(1997)110-114.
    [22]S. Watson, D. Beydoun, J. Scott, R. Amal, J. Nanopart. Res.6 (2004) 193-195.
    [23]黄军华,无机材料学报11(1)(1996)51-57.
    [24]X.Z. Ding, Chem. Phys. Lett.14(1994) 211-215.
    [25]X.Z. Ding, J. Mater. Sci. Lett.15 (1996) 1392-1394.
    [26]E. Sa'nchez, T. Lo'pez, B. R. Go'mez, A. Morales, O. Novaro, J. Solid State Chem.122 (1996)309-314.
    [27]F. Pedraza, A. Vazquez, J. Phys. Chem. Solids.60 (1999) 445-448.
    [28]H. Cheng, J. Ma, Z. Zhao, L. Qi, Chem. Mater.7 (1995) 663-671.
    [29]R.H. Chu, J.C. Yan, S.Y. Lian, Y.H. Wang, F.C. Yan, D.W. Chen, Solid State Commun 130 (2004) 789-791.
    [30]K. Yang, J.M. Zhu, J.J. Zhu, S.S. Huang, X.H. Zhu, G.B. Ma, Mater. Lett.57 (2003) 4639-4642.
    [31]W. Wang, B.H. Gu, L.Y. Liang, W.A. Hamilton, D.J. Wesolowski, J. Phys. Chem. B 108 (2004) 14789-14792.
    [32]X. Bokhimi, A. Morales, M. Aguilar, J. A.Toledo-Antonio, F. Pedraza, Int. J. Hydrogen. Energ. 26(2001) 1279-1287.
    [33]I.B. Foger, G.C. Teresita, J. Solid. State. Chem 92 (1991) 178-190.
    [34]A. Sclafani, J.M. Herrmamm, J. Phys. Chem.100 (1996) 13655-13661.
    [35]R. Campostrini, G. Carturan, Mater. Chem. Physics 38 (1994) 277-281.
    [36]A. Sclafani, L. Palmisano, M. Schiavello, J. Phys. Chem.94 (1990) 829-832.
    [37]O. Carp, C.L. Huisman, A. Reller, J. Solid. State. Chem 32 (2004) 33-177.
    [38]B. Sun, P.G. Smirniotis, P. Booichand, Iangmuir 21 (2005) 11397-11403.
    [39]K. Nagaveni, M.S. Hegde, N. Ravishankar, G.N. Subbanna, G. Madras, Langmuir 20 (2004) 2900-2907.
    [40]H. Tang, K. Prasad, R. Sanjinbs, J. Appl. Phys.75(4) (1994) 2042-2047.
    [41]R. Bickley, T. Gonzalea-Carreno, J.A. Lees, J. Solid. State. Chem.92 (1991) 178-190.
    [42]S.H. Szczepankiewicz, A.J. Colussi, M.R. Hoffmann, J. Phys. Chem. B 104 (2000) 9842-9850.
    [43]I.L. Marta, Appl. Catal. B:Environ 23 (1999) 89-114.
    [44]A.L. Linsebigler, G.Q. Lu, J.T. Yates, Chem. Rev.95 (1995) 735-758.
    [45]N. Serpone, J. Phys. Chem. B 110 (2006) 24287-24293.
    [46]J.L. Gole, J.D. Stout, C. Burda, J. Phys. Chem. B 108 (2004) 1230-1240.
    [47]A.W. Xu, Y. Gao, H.Q. Liu, J. Catal.207 (2002) 151-157.
    [48]K. Wilke, H.D. Breuer, J. Photochem. Photobio. A:Chem.121 (1999) 49-53.
    [49]J. Zhao, X.D. Yang, Build. Environ.38 (2003) 645-654.
    [50]X. Chen, Y. Lou, S. Dayal, X. Qiu, R. Krolicki, C. Burda, C. Zhao, J. Becker, Nanosci. Nanotechnol.5 (2005) 1408-1411.
    [51]M.R. Dhananjeyan, V. Kandavelu, R. Renganathan, J. Mol. Catal. A 158 (2000) 577-582.
    [52]Slamet, H.W. Nasution, E. Purnama, Catal. Commun.6 (2005) 313-319.
    [53]A.D. Paola, E. Garcia-Lopez, S. Ikeda, Catal. Today.75 (2002) 87-98.
    [54]S. Rengaraj, X.Z. Li, J. Mol. Catal. A 243 (2006) 60-67.
    [55]S. Roy, T. Aarthi, M.S. Hegde, Ind. Eng. Chem. Res.46 (2007) 5798-5802.
    [56]X.H. Wang, J.G. Li, H. Kamiyama, J. Phys. Chem. B 110 (2006) 6804-6809.
    [57]R.J. Tayade, R.G. Kulkarni, R.V. Jasra, Ind. Eng. Chem. Res.45 (2006) 5231-5238.
    [58]H. Luo, T. Takata, J. Zhao, Chem. Mater.16 (2004) 846-849.
    [59]Y. Bessekhouad, D. Robert, J.V. Weber, N. Chaoui, J. Photochem. Photobiol. A 167 (2004) 49-57.
    [60]M. Salmi, N. Tkachenko, R.J. Lamminmaki, J. Photochem. Photobiol. A 175 (2005) 8-14.
    [61]W.Y.Choi, A. Termin, M.R. Hoffmann, Angew. Chem. Int. Ed.106 (1994) 1148-1149.
    [62]W. Choi, A. Termin, M.R. Hoffmann, J. Phys. Chem.98 (1994) 13669-13679.
    [63]A.D. Paola, G. Marei, L. Palmisano, J. Phys. Chem. B 106 (2002) 637-645.
    [64]M. Gratael, R.E. Howe, J. Phys. Chem.94 (1990) 2566-2572.
    [65]J.D. Bryan, S.M. Heald, S.A. Chambers, J. Am. Chem. Soc.126 (2004) 11640-11647.
    [66]F. Gracia, J.P. Holgado, A. Caballero, J. Phys. Chem. B 108 (2004) 17466-17476.
    [67]T. Umebayashi, T. Yamaki, H. Itoh, K. Asai, J. Phys. Chem. Solids 63 (2002) 1909-1910.
    [68]R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293 (2001) 269-271.
    [69]C. Di Valentin, G. Pacchioni, A. Selloni, S. Livraghi, E. Giamello, J. Phys. Chem. B 109 (2005) 11414-11419.
    [70]H. Irie, Y. Watanabe, K. Hashimoto, J. Phys. Chem. B 107 (2003) 5483-5486.
    [71]R. Nakamura, T. Tanaka, Y. Nakato, J. Phys. Chem. B 108 (2004) 10617-11062.
    [72]Y. Wang, D. Doren, J. Solid State Commun.136 (2005) 186-189.
    [73]J.Y. Lee, J. Park, J.H. Cho, Appl. Phys. Lett.87 (2005) art no.011904.
    [74]T. Ihara, M. Miyoshi, Y. Iriyama, Appl. Catal. B 42 (2003) 403-409.
    [75]H. Irie, Y. Watanabe, K. Hashimoto, Chem. Lett.32 (2003) 772-773.
    [76]H. Wang, J.P. Lewis, J. Phys. Condens. Matter.17 (2005) 209-213.
    [77]D. Li, H. Haneda, S. Hishita, J. Fluorine Chem.126 (2005) 69-77.
    [78]T. Yamaki, T. Umebayashi, T. Sumita, Nucl. Instrum. Meth. Phys. Res.306 (2003) 254-258.
    [79]C. Minero, G. Mariella, V. Maurino, Langmuir 16 (2000) 2632-2641.
    [80]C. Minero, G. Mariella, V. Maurino, Langmuir 16 (2000) 8964-8972.
    [81]H. Park, W. Choi, J. Phys. Chem.108 (2004) 4086-4093.
    [82]J.S. Park, W. Choi, Langmuir 20 (2004) 11523-11527.
    [83]T. Umebayashi, T. Yamaki, S. Tanaka, Chem. Lett.32 (2003) 330-331.
    [84]T. Umebayashi, T. Yamaki, H. Itoh, K. Asai, Appl. Phys. Lett.81 (2002) 454-456.
    [85]T. Umebayashi, T. Yamaki, S. Yamamoto, J. Appl. Phys.93 (2003) 5156-5160.
    [86]T. Ohno, T. Mitsui, M. Matsumura, Chem. Lett.32 (2003) 364-365.
    [87]T. Ohno, M. Akiyoshi, T. Umebayashi, Appl. Catal. A 265 (2004) 115-121.
    [88]T. Takashi, T. Sachiko, K. Kiyohiko, J. Phys. Chem. B 108 (2004) 19299-19306.
    [89]J.C. Yu, W. Ho, J.G. Yu, H. Yip, P.K. Wong, J.C. Zhao, Environ. Sci. Technol.39 (2005) 1175-1179.
    [90]W. Zhao, W. Ma, C. Chen, J. Am. Chem. Soc.126 (2004) 4782-4783.
    [91]R. Niishiro, R. Konta, H. Kato, W.-J. Chun, K. Asakura, A. Kudo, J. Phys. Chem. C 111 (2007) 17420-17426.
    [92]Y. Jing, B. Haizan, Appl. Surf. Sci.253 (2006) 1988-1994.
    [93]Y. Sakatani, J. Nunoshuge, H. Ando, Chem. Lett.32 (2003) 1156-1157.
    [94]H. Matsumoto, T. Matsunaga, T. Sakata, H. Mori, H. Yoneyama, Langmuir 11 (1995) 4283-4287.
    [95]L. Spanhel, H. Weller, A. Henglein, J. Am. Chem. Soc.109 (1987) 6632-6635.
    [96]R. Vogel, P. Hoyer, H. Weller, J. Phys. Chem.98 (1994) 3183-3188.
    [97]P.A. Sant, P.V. Kamat, Phys. Chem. Chem. Phys.4 (2002) 198-203.
    [98]J.L. Blackburn, D.C. Selmarten, A.J. Nozik, J. Phys. Chem. B 107(51) (2003) 14154-14157.
    [99]张金龙,陈锋,何斌,光催化(Photocatalysis)上海:华东理工大学出版社(2004)44-70.
    [100]S. Kim, S.J. Hwang, W. Choi, J. Phys. Chem. B 109 (2005) 24260-24267.
    [101]E. Stathatos, P. Lianos, P. Falaras, langmuir 16 (2000) 2398-2400.
    [102]M.S. Lee, S.S. Hong, M. Mohseni, J. Mol. Catal. A:Chem 242 (2005) 135-140.
    [103]Y. Tian, T. Tatsuma, J. Am. Chem. Soc.127 (2005) 7632-7637.
    [104]S.X. Liu, Z.P. Qu, X.W. Han, Catal. Today.93-95 (2004) 877-884.
    [105]I.M. Arabatzis, T. Stergiopoulos, M.C. Bernard, Appl. Catal. B 42 (2003) 187-201.
    [106]K. Kalyanasundaram, M. Gratzel, Coord. Chem. Rev.177 (1998) 347-414.
    [107]P. Qu, G.J. Meyer, Langmuir 17 (2001) 6720-6728.
    [108]B. O'Regan, M. Gratzel, Nature 353 (1991) 737-740.
    [109]O. Kohle, M. Gratzel, A. Meyer, Adv. Mater.9 (1997) 904-906.
    [110]W.D.K. Clark, N. Sutin, J. Am. Chem. Soc.99 (1997) 4676-4682.
    [111]L. Ziolkowski, K. Vinodgopal, P.V. Kamat, Langumuir 13 (1997) 3124-3128.
    [112]K. Hara, H. Sugihara, Y. Tachibana, Langmuir 17 (2001) 5992-5999.
    [113]X.Q. Li, G.J. Qiao, J. Chen, Progress in Chemistry 19 (2007) 220-224.
    [114]L. Miao, S. Tanemuraa, H. Watanabea, Appl. Surf. Sci.244 (2005) 412-417.
    [115]S. Tanemura, L. Miao, H. Watanabe, Appl. Surf. Sci.244 (2005) 546-549.
    [116]K. Sugiyama, T. Ogawa, N. Saito, Surf. Coat. Tech.174 (2003) 882-885.
    [117]Y.L. Li, T. Ishigaki, Chem. Phys. Lett.367 (2003) 561-565.
    [118]Y. Chiba, K. Kashiwagi, H. Kokai, Vacuum 74(3) (2004) 643-646.
    [119]B. Park, D.H. Jung, G. Lee, Surf. Coat. Tech.174 (2003) 643-647.
    [120]A.Y. Nosaka, E. Kojima, T. Fujiwara, J. Phys. Chem. B 107 (2003) 12042-12044.
    [121]A.Y. Nosaka, E. Kojima, T. Fujiwara, J. Phys. Chem. B 108 (2004) 9121-9125.
    [122]A.Y. Nosaka, J. Nishino, T. Fujiwara, J. Phys. Chem. B 110 (2006) 8380-8385.
    [123]X.D. Xue, Q.T. Jin, China Water and Wastewater 17(6) (2001) 26-29.
    [124]N. Serpone, D. Lawless, R. Khairutdinov, P. Eizo, J. Phys. Chem.99 (1995) 16655-16661.
    [125]Z. Zhang, C.C. Wang, R. Zakaria, J. Phys. Chem. B 102 (1998) 10871-10878.
    [126]Q.H. Zhang, L. Gao, J.K. Guo, Appl. Catal. B:Environ.26 (2000) 207-215.
    [127]A.J. Maira, K.L. Yeung, J. Soria, J.M. Coronado, C. Belver, C.Y. Lee, V. Augugliaro, Appl. Catal. B:Environ.29 (2001) 327-336.
    [128]T. Ohno, K. Sarukawa, K. Tokieda, J. Catal.203(1) (2001) 82-86.
    [129]J.G. Li, H. Kamiyama, X.H. Wang, J. Eur. Ceram. Soc.26 (2006) 423-438.
    [130]J.E. Lee, S.M. Oh, D.W. Park, Thin Solid Films 457 (2004) 230-234.
    [131]郑国梁,程如烟,钛工业进展6(2001)22-24.
    [132]Y.L. Li, T. Ishigaki, J. Phys. Chem. B 108 (2004) 15536-15542.
    [133]Y.L. Li, T. Ishigaki, Thin Solid Films 407 (2002) 79-85.
    [134]X.H. Wang, J.G. Li, H. Kamiyama, J. Am. Chem. Soc.127 (2005) 10982-10990.
    [135]D.G. Park, J.M. Murlitch, Chem. Mater.4 (1992) 500-502.
    [136]M. Grujic-Brojcin, M.J. Scepanovic, Z.D. Dohcevic-Mitrovic, J. Phys. D:Appl. Phys.38 (2005) 1415-1420.
    [137]P.K. Song, Y. Irie, Y. Shigesato, Thin Solid Films 496 (2006) 121-125.
    [138]M. Kitano, K. Funatsu, M. Matsuoka, J. Phys. Chem. B 110 (2006) 25266-25272.
    [139]R.J.P. Corriu, D. Leclercq, Angew. Chem., Int. Ed.35 (1996) 1420-1436.
    [140]B.H. Wu, C.Y. Guo, N.F. Zheng, Z.X. Xie, G.D. Stucky, J. AM. CHEM. SOC.130 (2008) 17563-17567.
    [141]H. Xu, L.Z. Zhang, J. Phys. Chem. C 114 (2010) 11534-11541
    [142]S.-m. Chang, R.-a. Doong, J. Phys. Chem. B 110 (2006) 20808-20814.
    [143]K.D. Kim, S.H. Kim, H.T. Kim, Coll. Surf. A.254 (2005) 99-105.
    [144]J.C. Yu,H.Y. Tang, J. Yu, J. Photochem. Photobiol. A 153 (2002)211-219.
    [145]K.T. Lim, H.S. Hwang, W. Ryoo, Langmuir 20 (2004) 2466-2471.
    [146]方晓明,瞿金清,陈焕饮,硅酸盐通报20(2001)30-32.
    [147]A. Gajovic, K. Furic, N. Tomasic, J. Alloys. Compd.398 (2005) 188-199.
    [148]郭文宏,中国卫生工程学6(2007)46-48.
    [149]S. Wang, H.M. Ang, O. TadeM, Environ2 ment International 33 (5) (2007) 694-705.
    [150]周亚美,上海环境化学16(1997)35-36.
    [151]N. Negishi, K. Takeuchi, T. Ibusuki, Appli. Surf. Sci 121 (1997) 417-424.
    [152]K. Takeuchi, Look Japan 12 (1995) 24-35.
    [153]S. Kayano, Y. Kikuchi, K. Hashzmoto, Enviro. Sci. Tech 32 (1998) 726-728.
    [154]K. Yoshihiko, S. Kayano, J. Photochem. Photobio A:Chemistry 106 (1997) 51-56.
    [155]藤屿沼,机能材料18(1998)29-33.
    [156]海老原功,工业材料45(1997)77-79.
    [1]A. Fujishima, K. Honda, Natrue 238 (1972) 37-38.
    [2]M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, Chem. Rev.95 (1995) 69-96.
    [3]A.L. Linsebigler, G. Q. Lu, J.T. Yates, Chem. Rev.95 (1995) 735-758.
    [4]M. A. Fox, M.T. Dulay, Chem. ReV.93 (1993) 341-357.
    [5]T. Yoko, A. Yuasa, K. Kamia, S. Sakka, J. Electrochem. Soc.138 (1991) 2279-2285.
    [6]B. Aurian-Blajeni, M. Halman, J. Manassen, J. Solar. Energy 25 (1980) 165-170.
    [7]C. Cristiani, M. L. Belloto, P. L. Forzatti, F. Bregani, J. Mater. Res.8 (1993) 2019-2020.
    [8]H. Matsumoto, T. Matsunaga, T. Sakata, H. Mori, H. Yoneyama, Langmuir 11 (1995) 4283-4287.
    [9]D. M. Antonelli, Y. J. Ying, Angew. Chem. Int. Ed. Engel.34 (1995) 2014-2017.
    [10]L. Z. Zhang, J. C. Yu, Chem. Commun. (2003) 2078-2079.
    [11]Y. X. Zhang, G. H. Li, Y. C. Wu, Y. Y. Luo, L. D. Zhang, J. Phys. Chem. B 109 (2005) 5478-5481.
    [12]C. L. Huisman, A. Goossens, J. Schoonman, Chem. Mater.15 (2003) 4617-4624.
    [13]C. Cho, M. Han, D. H. Kim, D. K. Kim, Mater. Chem. Phys.92 (2005) 104-111.
    [14]G. J. Wilson, G. D. Will, R. L. Frost, S. A. Montgomery, J. Mater. Chem.12 (2002) 1787-1791.
    [15]E. Borgarello, J. Kiwi, M. Gratzel, E. Pelizzetti, M. Visca, J. Am. Chem. Soc.104 (1982) 2996-3002.
    [16]J. Moreno, J. M. Dominguez, A. Montoya, L. Vicente, T. Viveros, J. Mater. Chem.5 (1995) 509-520.
    [17]I. F. Kononyuk, V. A. Lomonosov, A. S. Panasyugin, I. I. Yushkevich, Y.G. Zonov, Key Eng. Mater.132(1997)117-132.
    [18]A. Wold, K. Dwight, J. Solid State Chem.88 (1990) 229-231.
    [19]H. S. Potdar, S. B. Deshpande, P. D. Godbole, V. G. Gunjikar, S. K. Date, J. Mater. Res.7 (1992) 429-432.
    [20]J. Guang, S. K. Choi, J. Kyoung, L. Woo, K. K. Kee, Chem. Mater.10 (1998) 4104-4113.
    [21]U. Selvaraj, A.V. Prasadarao, S. Komarneni, R. Roy, Mater. Lett.23 (1995) 123-130.
    [22]A. Bernadette, C. Ki-Seog, Chem. Mater.14 (2002) 480-482.
    [23]H. Kumazawa, S. Annen, E. Sada, J. Mater. Sci.30 (1995) 4740-4744.
    [24]Y. Jing, S. Jin, Y.Z. Jia, J. D. Han, J.H. Sun, J. Mater. Sci.40 (2005) 6315-6317.
    [25]H. R. Xu, L. Gao, J. K. Guo, J. Eur. Ceram. Soc.22 (2002) 1163-1167.
    [26]J. C. Yu, L. Z. Zhang, Q. Li, Q. Li, K. W. Kwong, A.W. Xu, J. Lin, Langmuir 19 (2003) 7673-7675.
    [27]Y. F. Li, Q.Y. Lai, J. Chin, Inorg. Chem.21 (2005) 915-918.
    [28]K. S. W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Pure Appl. Chem.57 (1985) 603-619.
    [29]K. Yanagisawa, J. Ovenstone, J. Phys. Chem. B 103 (1999) 7781-7787.
    [30]M. Yoshimura, S.E. Yoo, M. Hayashi, N.J. Ishizawa, J. Appl. Phys.28 (1989) 2007-2016.
    [31]L. Z. Zhang, J. C. Yu, Z. Zheng, C.W. Leung, Chem. Commun. (2005) 2683-2685.
    [32]A. D. Smigelskas, E. O. Kirkendall, Trans. Aime.171 (1947) 130-142.
    [33]B. Liu, H. C. Zeng, J. Am. Chem. Soc.126 (2004) 16744-16746.
    [34]Y. D. Yin, R. M. Rioux, C. K. Erdonmez, S. Hughes, C. A. Somorjai, A.P. Alivisatos, Science 304(2004)711-714.
    [35]C. J. Brinker, G. W. Scherer, In Sol-Gel Science:The Physics and Chemistry of Sol-Gel Processing Academic Press:New York (1990) p 240.
    [36]H. Yin, Y. Wada, T. Kitamura, S. Kambe, S. Murasawa, H. Mori, T. Sakata, S. Yangaida, J. Mater. Chem.11 (2001) 1694-1703.
    [37]M. Pourbaix, In Atlas of Electrochemical Equilibria in Aqueous Solutions,2nd ed National Association of Corrosion/Engineers:Houston, TX (1974) p 251.
    [1]M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev.95 (1995) 69-96.
    [2]J. Zhao, X.D. Yang, Build. Environ.38 (2003) 645-654.
    [3]E. Borgarello, J. Kiwi, M. Gratzel, E. Pelizzetti, M. Visca, J. Am. Chem. Soc.104 (1982) 2996-3002.
    [4]K.-I. Ishibashi, A. Fujishima, T. Watanabe, K. Hashimoto, J. Photochem. Photobio. A:Chem 134 (2000) 139-142.
    [5]S. Klosek, D. Raftery, J. Phys. Chem. B 105 (2001) 2815-2819.
    [6]J. Zhu, F. Chen, J. Zhang, H. Chen, M. Anpo, J. Photochem. Photobiol. A 180 (2006) 196-201.
    [7]W. Choi, A. Termin, M.R. Hoffmann, J. Phys. Chem.98 (1994) 13669-13679.
    [8]R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293 (2001) 269-271.
    [9]Y. Kuroda, T. Mori, K. Yagi, N. Makihata, Y. Kawahara, M. Nagao, S. Kittaka, Langmuir 21 (2005) 8026-8034.
    [10]S.U.M. Khan, M. Al_Shahry, W.B.J. Ingler, Science 297 (2002) 2243-2245.
    [11]W.J. Ren, Z.H. Ai, F.L. Jia, L.Z. Zhang, X.X. Fan, Z.G. Zou, Appl. Catal. B:Environ.69 (2007) 138-143.
    [12]R. Asahi, T. Morikawa, T. Ohwaki, A. Aoki, Y. Taga, Science 293 (2001) 269-293.
    [13]H. Irie, Y. Watanabe, K. Hashimoto, Chem. Lett.32 (2003) 772-773.
    [14]T. Ohno, T. Tsubota, K. Nishijima, Z. Miyamoto, Chem. Lett.33 (2004) 750-751.
    [15]D. Li, H. Haneda, S. Hishita, N. Ohashi, Chem. Mater.17 (2005) 2588-2595.
    [16]D. Li, H. Haneda, S. Hishita, N. Ohashi, Chem. Mater.17 (2005) 2596-2602.
    [17]Y. Cong, J.L. Zhang, F. Chen, M. Anpo, J. Phys. Chem. C 111 (2007) 6976-6982.
    [18]H.Q. Sun, Y. Bai, Y.P. Cheng, W.Q. Jin, N.P. Xu, Ind. Eng. Chem. Res.45 (2006) 4971-4976.
    [19]M.H. Zhou, J.G. Yu, J. Hazard. Mater.152 (2008) 1229-1236.
    [20]C. Lettmann, K. Hildenbrand, H. Kisch, W. Macyk, W.F. Maier, Appl. Catal. B:EnViron.32 (2001)215-218.
    [21]S. Sakthivel, M. Janczarek, H. Kisch, J. Phys. Chem. B 108 (2004) 19384-19387.
    [22]R. Bacsa, J. Kiwi, T. Ohno, P. Albers, V. Nadtochenko, J. Phys. Chem. B 109 (2005) 5994-6003.
    [23]K. Kobayakawa, Y. Murakami, Y. Sato, J. Photochem. Photobiol. A:Chem.170 (2005) 177-179.
    [24]Oxford Dictionary of Biochemistry and Molecular Biology, Oxford University Press (2006) 76.
    [25]T. Douglas, E. Strable, D. Willits, A. Aitouchen, M. Libera, M. Young, AdV. Mater.14 (2002) 415-421.
    [26]T. Douglas, D.P.E. Dichson, S. Betteridge, J. Charnoch, C.D. Garner, S. Mann, Science 269 (1995)540-543.
    [27]A. Ahmad, P. Mukherjee, D. Mandal, S. Senapati, M.I. Khan, R. Kumar, M. Sastry, J. Am. Chem. Soc.124(2002)12108-12109.
    [28]Q. Lu, F. Gao, S. Komarneni, J. Am. Chem. Soc.126 (2004) 54-55.
    [29]X.Y. Chen, X.F. Zhang, C.W. Shi, X.L. Li, Y.T. Qian, Solid State Commun.134 (2005) 613-615.
    [30]C. Barglik-Chory, C. Remenyi, H. Strohm, G. Muller, J. Phys. Chem. B 108 (2004) 7637-7640.
    [31]B. Zhang, X.C. Ye, W. Hou, Y. Zhao, Y. Xie, J. Phys. Chem. B 110 (2006) 8978-8985.
    [32]B. Zhang, X.C. Ye, W. Dai, W.Y. Hou, Y. Xie, Chem-Eur. J.12 (2006) 2337-2342.
    [33]J.W. Tang, H.D. Quan, J.H. Ye, Chem. Mater.19 (2007) 116-122.
    [34]B. Halliwell, J.M.C. Gutteridge, Free Radicals in Biology and Medicine. Oxford University Press (1999).
    [35]R.A. Spurr, H. Myers, Anal. Chem.29 (1957) 760-762.
    [36]C.S. Gopinath, S.G. Hegde, A.V. Ramaswamy, S. Mahapatra, Mater. Res. Bull.37 (2002) 1323-1325.
    [37]E. Papirer, R. Lacroix, J.B. Donnet, G. Nanse, P. Fioux, Carbon 33 (1995) 63-65.
    [38]L. Zang, R.V. Koka, Mater. Chem. Phys.57 (1998) 23-26.
    [39]D. Chen, Z.Y. Jiang, J.Q. Geng, Q. Wang, D. Yang, Ind. Eng. Chem. Res.46 (2007) 2741-2746.
    [40]X. Chen, C. Burda, J. Phys. Chem. B 108 (2004) 15446-15449.
    [41]H.X. Li, X.Y. Zhang, Y.N. Huo, J. Zhu, Environ. Sci. Technol.41 (2007) 4410-4414.
    [42]T. Umebayashi, T. Yamaki, S. Yamamoto, A. Miyashita, S. Tanala, T. Sumita, K. Asai, J. Appl. Phys.93(2003)5156-5160.
    [43]M. Sathish, B. Viswanathan, R.P. Viswanath, C.S. Gopinath, Chem. Mater.17 (2005) 6349-6353.
    [44]L.K. Randeniya, A. Bendavid, P.J. Martin, E.W. Preston, J. Phys. Chem. C 111 (2007) 18334-18340.
    [45]N.C. Saha, H.G. Tompkins, J. Appl. Phys.72 (1992) 3072-3079.
    [46]E. Gyorgy, A. Perez del Pino, P. Serra, J.L. Morenza, Surf. Coat. Technol.173 (2003) 265-269.
    [47]K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Pure Appl. Chem.57 (1985) 603-619.
    [48]F. Huguenin, V. Zucolotto, A.J.F. Carvalho, Chem. Mater.17(26) (2005) 6739-6745.
    [49]H. Yamashita, M. Honda, M. Harada, Y. Ichihashi, M. Anpo, T. Hirao, N. Itoh, N. Iwamoto, J. Phys. Chem. B 102(1998) 10707-10711.
    [50]A. Sclafani, J.M. Herrmamm, J. Phys. Chem.100 (1996) 13655-13661.
    [51]M.C. Yan, F. Chen, J.L. Zhang, M. Anpo, J. Phys. Chem. B 109 (2005) 8673-8678.
    [52]B. Ohtani, K. Iwai, H. Kominami, T. Matsuura, Y. Kera, S. Nishimoto, Chem. Phys. Lett.242 (1995)315-319.
    [53]Y.L. Li, T. Ishigaki, J. Phys. Chem. B 108 (2004) 15536-15542.
    [54]K. Yanagisawa, J. Ovenstone, J. Phys. Chem. B 103 (1999) 7781-7787.
    [1]M.A. Fox, M.T. Dulay, Chem. ReV.93 (1993) 341-357.
    [2]M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev.95 (1995) 69-96.
    [3]A. Fujishima, T.N. Rao, D.A. Tryk, J. Photochem. Photobiol. C:Photochem. Rev.1 (2000) 1-21.
    [4]P. Saritha, C. Aparna, V. Himabindu, Y. Anjaneyulu, J. Hazard. Mater.149 (2007) 609-614.
    [5]Z. Zhang, C.C. Wang, R. Zakaria, J. Phys. Chem. B 102 (1998) 10871-10878.
    [6]J. Zhu, F. Chen, J. Zhang, H. Chen, M. Anpo, J. Photochem. Photobiol. A 180 (2006) 196-201.
    [7]J. Zhu, Z. Deng, F. Chen, J. Zhang, H. Chen, M. Anpo, J. Huang, L. Zhang, Appl. Catal., B 62 (2006) 329-334.
    [8]A. Di Paola, G. Marci, L. Palmisano, M. Schiavello, K. Uosaki, S. Ikeda, B. Ohtani, J. Phys. Chem. B 106 (2002) 637-645.
    [9]R. Nakamura, T. Tanaka, Y. Nakato, J. Phys. Chem. B 108 (30) (2004) 10617-11062.
    [10]S. Klosek, D. Raftery, J. Phys. Chem. B 105 (2001) 2815-2819.
    [11]T. Sreethawong, Y. Suzuki, S. Yoshikawa, Int. J. Hydrogen Energ.30 (2005) 1053-1054.
    [12]A. Kudo, M. Sekizawa, Chem. Commun. (2000) 1371-1372.
    [13]D.W. Jing, Y.J. Zhang, L.J. Guo, Chem. Phy. Lett.415 (2005) 74-78.
    [14]S.D. Sharma, D. Singh, K.K. Saini, C. Kant, V. Sharma, S.C. Jain, C.P. Sharma, Applied Catalysis A:General 314 (2006) 40-46.
    [15]Y.R. Uhma, S.H. Wooa, W.W. Kima, S.J. Kimb, Chang Kyu Rheea, J. Magn. Magn. Mater 781 (2006)304-311.
    [16]P. Toneguzzo, G. Viau, O. Acher, F. Fievet-Vincent, F. Fievet, Adv. Mater.10 (1998) 1032.
    [17]F. Gracia, J.P. Holgado, L. Contreras, Thin Solid Films 429 (2003) 84-90.
    [18]C. Feldmann, Adv. Funct. Mater.13 (2003) 101-107.
    [19]C. Moreno-Castilla, F.J. Maldonado-Ho'dar, A.F. Pe'rez-Cadenas, Langmuir 19 (2003) 5650-5655.
    [20]X.F. Liu, R.H. Yu, J. Appl. Phys.102 (2007) 083917.
    [21]K. Nagaveni, M.S. Hegde, N. Ravishankar, G.N. Subbanna, G. Madras, Langmuir 20 (2004) 2900-2907.
    [22]J. Li, H.C. Zeng, J. Am. Chem. Soc.129 (2007) 15839-15847.
    [23]L.K. Randeniya, A. Bendavid, P.J. Martin, E.W. Preston, J. Phys. Chem. C 111 (2007) 18334-18340.
    [24]J.K.Zhou, Y.X. Zhang, X.S. Zhao, A.K. Ray, Ind. Eng. Chem. Res.45 (2006) 3503-3511.
    [25]W. Kohn, L.J. Sham, Phys. Rev.140 (1965) 1133-1138
    [26]Y. Wang, J.P. Perdew, Phys. Rev. B 44 (1991) 13298-13307.
    [27]G. Kresse, J. Furthmuller, Phys. Rev. B 54 (1996) 11169-11186.
    [28]P.E. Blochl, Phys. Rev. B 50 (1994) 17953-17979.
    [29]L.A. Errico, M. Weissmann, M. Renteria, Physica Status Solidi B-Basic Solid State Physics 241 (2004) 2399-2403.
    [30]M.S. Park, S.K. Kwon, B.I. Min, Phys. Rev. B 65 (2002) 161201(R).
    [31]Y. Wang, D.J. Doren, Solid State Comm 136 (2005) 142-146
    [32]Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S. Koshihara, H. Koinuma, Science 291 (2001) 854-856.
    [33]Y. Yu, J.C. Yu, C.Y. Chan, Y.K.. Che, J.C. Zhao, L. Ding, W.K.. Ge, P.K. Wong, Appl. Catal. B 61 (2005) 1-11.
    [34]T.L. Thompson, J.T.J. Yates, Chem. Rev.106 (2006) 4428-4453.
    [35]C. Adan, A. Bahamonde, M. Fernandez-Garcia, A. Martinez-Arias, Appl. Catal. B 72 (2007) 11-17.
    [36]C. Feldmann, Adv. Mater.13 (2001) 1301-1303.
    [1]A. Fujishima, K. Honda, Nature 238 (1972) 37-38.
    [2]M. Adachi, Y. Musuke Murata, J. Takao, J.T. Jiu, M. Sakamoto, F.M. Wang, J. Am. Chem. Soc. 126(2004) 14943-14949.
    [3]A.L. Linsebigler, G.Q. Lu, J.T. Yates, Jr, Chem. ReV.95 (1995) 735-738.
    [4]R. Cai, Y. Kubota, T. Shuin, H. Sakai, K. Hashimoto, A. Fujishima, Cancer Res.52 (1992) 2346-2348.
    [5]R. Cai, K. Hashimoto, K. Itoh, Y. Kubota, A. Fujishima, Bull. Chem. Soc. Japan 64 (1991) 1268-1273.
    [6]Y. Chihara, K. Fujimoto, H. Kondo, Y. Moriwaka, T. Sasahira, Y. Hirao, H. Kuniyasu, Pathobiology 74 (2007) 353-358.
    [7]J. Xu, Y. Sun, J. Huang, C. Chen, G. Liu, Y. Jiang, Y. Zhao, Z. Jiang, Bioelectrochem 71 (2007) 217-222.
    [8]Y. Kubota, C. Niwa, T. Ohnuma, Y. Ohko, T. Tatsuma, T. Mori, A. Fujishima, J. Photochem. Photobiol. A, Chem.141 (2001)225-230.
    [9]W.C.W. Chan, S.M. Nie, Science 281 (1998) 2016-2018.
    [10]D.R. Larson, W.R. Zipfel, R.M. Williams, S.W. Clark, M.P. Bruchez, F.W. Wise, W.W. Webb, Science 300 (2003) 1434-1436.
    [11]S. Yamaguchi, H. Kobayashi, T. Narita, K. Kanehira, S. Sonezaki, Y. Kubota, S. Terasaka, Y. Iwasaki, Photochem Photobiol 86 (2010) 964-971.
    [12]H. Kisch, L. Zang, C. Lange, W.F. Maier, C. Antonius, D. Meissner, Angew. Chem., Int. Ed.37 (1998)3034-3036.
    [13]R. Asahi, T. Morikawa, K. Aoki, Y. Taga, Science (2001) 269-271.
    [14]D. Duonghong, E. Borgarello, M. Gratzel, J. Am. Chem. Soc.103 (1981) 4685-4690.
    [15]X.T. Hong, Z.P. Wang, W.M. Cai, F. Lu, J. Zhang, Y.Z. Yang, N. Ma, Y.J. Liu, Chem. Mater.17 (2005)1548-1552.
    [16]G. Liu, Z.G. Chen, C.L. Dong, Y.N. Zhao, F. Li, G.Q. Lu, H.M. Cheng, J. Phys. Chem. B 110 (2006) 20823-20828.
    [17]S. Tojo, T. Tachikawa, M. Fujitsuka, T. Majima, J. Phys. Chem. C 112 (2008) 14948-14954.
    [18]W.Y. Su, Y.F. Zhang, Z.H. Li, L. Wu, X.X. Wang, J.Q. Li, X.Z. Fu, Langmuir 24 (2008) 3422-3428.
    [19]Y.L. Su, Y.T. Xiao, X. Fu, Y.R. Deng, F.B. Zhang, Materials Research Bulletin 44 (2009) 2169-2173.
    [20]D. Pasqui, A. Rossi, F. Di-Cintio, R. Barbucci, Biomacromolecules 8 (2007) 3965-3972.
    [21]C. Feldman, H.O. Jungk, Angew. Chem., Int. Ed.40 (2001) 359-362.
    [22]C. Feldman, C. Metzmacher, J. Mater. Chem.11 (2001) 2603-2606.
    [23]F. Tang, L.F. Zhang, J. Zhu, Z.P. Cheng, X.L. Zhu, Ind. Eng. Chem. Res.48 (2009) 6216-6223.
    [24]D. Aurbach, I. Weissman, A. Schechter, Langmuir 12 (1996) 3991-4007.
    [25]I.M. El-Nahhal, N.M. El-Ashgar, M.M. Chehimi, Micropor. Mesopor. Mat 65 (2003) 299-310.
    [26]W.R. Salaneck, H.R. Thomas, R.W. Bigelow, C.B. Duke, E.W. Plummer, A.J. Heeger, A.G. MacDiarmid, J. Chem. Phys.72 (1980) 3674-3678.
    [27]G. Liu, W. Jaegermann, J. He, V. Sundstrom, L. Sun, J. Phys. Chem. B 106 (2002) 5814-5819.
    [28]S. Hashimoto, A. Murata, T. Sakurada, A. Tanaka, J. Surf. Anal.9 (2002) 459-468.
    [29]N.C. Saha, H.C. Tomkins, J. Appl. Phys.72 (1992) 3072-3079.
    [30]Y.F. Gao, K. Koumoto, Cryst. Growth. Des.5 (2005) 1983-2017.
    [31]J.-P. De'ry, E.F. Borra, A.M. Ritcey, Chem. Mater.20 (2008) 6420-6426.
    [32]S. Herrwerth, T. Rosendahl, C. Feng, J. Fick, W. Eck, M. Himmelhaus, R. Dahint, M. Grunze, Langmuir 19 (2003) 1880-1887.
    [33]K.Q. Luo, S.X. Zhou, L.M. Wu, G.X. Gu, Langmuir 24 (2008) 11497-11505.
    [34]Z.C. Orel, A. Anz'lovar, G. Draz'ic', M.Z. igon, Cryst. Growth. Des.7 (2007) 453-458.
    [35]N.-P. Huang, G. Csucs, K. Emoto, Y. Nagasaki, K. Kataoka, M. Textor, N.D. Spencer, Langmuir 18(2002)252-258.
    [36]T. Wan, F. Feng, Y.-C. Wang, Polym. Bull.56 (2006) 413-426.
    [37]K. Nakamoto,4th Chemical Industry Press:Beijing (1991) p 251.
    [38]J. Wan, W. Cai, X. Meng, E. Liu, Chem. Commun. (2007) 5004-5006.
    [39]X. Jia, D. Chen, X. Jiao, S. Zhai, Chem. Commun. (2009) 968-970.
    [40]B. Ding, J. Kim, E. Kimura, S. Shiratori, Nanotechnology 15 (2004) 913-919.
    [41]M.A. Hamon, J. Chen, H. Hu, Y. Chen, M.E. Itkis, A.M. Rao, P.C. Eklund, R.C. Haddon, Adv. Mater.11 (1999)834-840.
    [42]L.F. Liao, C.F. Lien, D.L. Shieh, M.T. Chen, J.L. Lin, J. Phys. Chem. B 106 (2002) 11240-11245.
    [43]T. Arita, K.-i. Moriya, T. Yoshimura, K. Minami, T. Naka, T. Adschiri, Ind. Eng. Chem. Res.49 (2010)9815-9821.
    [44]C.G. Li, Y. Zhao, F.F. Li, Z. Shi, S.H. Feng, Chem. Mater.22 (2010) 1901-1907.
    [45]C. Feldmann, Adv. Funct. Mater.13 (2003) 101-104.
    [46]E. Galoppini, Coord. Chem. Rev.248 (2004) 1283-1297.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700