用户名: 密码: 验证码:
氢在钛晶体中作用的第一原理计算和分子动力学模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来钛合金氢处理技术和理论的研究得到众多材料工作者的重视,对钛合金的氢处理工艺、氢处理后合金的力学性能、加工性能以及组织结构等方面进行了大量研究,并取得了很多成果。但对于氢致钛合金热塑性机理的研究进展相对缓慢,缺乏从电子、原子尺度上阐述氢在钛及钛合金中的作用机理,以及从物理本质上揭示氢致热塑性机理的理论研究工作。本文采用第一原理平面波赝势方法和分子动力学模拟方法系统研究了Ti-H体系的晶体结构、能量性质、原子扩散性质、弹性性质和力学性质,从电子和原子层次上揭示了氢在钛晶体中的作用机理。
     氢在钛晶体中的占位是建立合理的钛-氢晶体结构模型进而进行各种性质计算的基础,本文首先采用第一原理方法研究了氢在钛晶体中的占位。结果表明,相同氢含量的α-Ti-H和β-Ti-H晶体中,氢原子位于八面体间隙时的晶体点阵畸变程度比氢原子位于四面体间隙时小,而其溶解热绝对值比氢位于四面体间隙时大。氢原子在α-Ti和β-Ti晶体中均倾向于占据八面体间隙位置。氢原子占据α-Ti晶体的八面体间隙后,其最近邻Ti原子的3p轨道部分电子向氢原子1s轨道转移,H原子与最近邻Ti原子间的键共价性较强。氢原子改变了其最近邻钛原子的电子态密度,降低了Ti-Ti原子间成键的强度,氢在α-Ti中存在弱键效应。氢原子占据β-Ti晶体的八面体间隙后,改变了其周围钛原子的电子态密度,提高了Ti-Ti原子间的成键强度,氢在β-Ti中存在强键效应。
     原子间的相互作用势是分子动力学模拟的基础和关键。本文在EAM模型的基础上,结合Johnson的分析型EAM模型,建立了Ti-H体系的EAM作用势模型。采用Johson的分析型EAM模型确定了Ti原子的势函数表达式,给出了模型参数;提出了新的H原子的势函数表达式,通过拟合面心立方金属氢的晶格常数、结合能、体积模量的第一原理计算结果以及氢在钛中的溶解热确定了模型参数。基于此模型,采用分子动力学方法模拟计算了Ti-H晶体的结构和能量性质以及氢在α-Ti-H晶体中的溶解体积和溶解热,模拟结果验证了所建模型的合理性和可靠性。
     基于本文建立的Ti-H体系EAM模型,采用分子动力学方法研究了氢在α-Ti和β-Ti晶体中的扩散机制。氢原子在α-Ti晶体中的扩散存在各向异性,沿c轴方向扩散的激活能要小于沿基平面扩散的激活能,在基平面上的扩散机制为O-T-O扩散。氢在β-Ti晶体中的扩散机制为最近邻八面体间隙之间的直线跳跃。计算了氢在α-Ti和β-Ti晶体中的扩散激活能和频率因子,计算结果与实验结果和其它计算结果吻合较好。
     基于本文建立的Ti-H体系EAM模型,采用分子动力学方法研究了氢对α-Ti和β-Ti晶体中钛原子自扩散性质的影响。结果表明,氢降低了α-Ti晶体的单空位形成能和钛原子自扩散迁移能及激活能,提高了钛原子自扩散激系数,促进了钛原子自扩散运动。氢提高了β-Ti晶体的单空位形成能和钛原子自扩散迁移能和激活能,降低了钛原子自扩散激系数,阻碍了钛原子自扩散运动。
     计算了α-Ti-H和β-Ti-H晶体的弹性模量。结果表明,氢提高了α-Ti晶体的体弹性模量,降低了α-Ti晶体的杨氏模量和剪切模量;不同氢含量的β-Ti-H晶体的体弹性模量、杨氏弹性模量和剪切弹性模量的计算值均大于β-Ti晶体的计算值,氢提高了β-Ti晶体的弹性模量。
     基于本文建立的Ti-H体系EAM模型,采用分子动力学方法模拟了Ti和Ti-H晶体的变形行为。结果表明,α-Ti-H晶体沿c轴断裂的的拉应力临界值和沿{0001}<1210>剪切的切应力临界值随着温度的升高和氢含量的增加而下降。氢降低了α-Ti晶体的理论断裂强度和理论屈服强度。β-Ti和β-Ti-H晶体在单向拉伸应力下发生相转变,不同模拟温度下β-Ti-H晶体发生相转变的拉应力临界值均大于β-Ti,证明氢增加了β相的稳定性。氢对β-Ti-H晶体的理论屈服强度的影响与温度有关,在高温下氢提高了β-Ti晶体的理论屈服强度。
Recently a great deal of attention from many material researchers has been given to the studies on thermohydrogen processing (THP) of titanium alloys and its theory. A great lot of investigations on the procedures of THP and mechanical properties, hot workability and microstructure of titanium alloys after hydrogenation have been performed and a large number of research findings devoted to those aspects have been obtained. However, the research work on the mechanisms of hydrogen-induced thermoplasticity of titanium alloys has lagged behind the THP technology, and especially the basic research on the effects of hydrogen in titanium from the electric and atomic scale which can reveal the mechanism of hydrogen-induced thermoplasticity from physical principle is scarce. In the present work, the crystal structures, energy properties, atomic diffusion characteristics, elastic moduli and mechanical properties of Ti-H system were investigated systematically by the first-principles plane-wave pseudopotential method and molecular dynamics (MD) simulations, and the mechanism of effects of hydrogen in titanium crystal is clarified from the electric and atomic scale.
     The occupation of hydrogen in Ti crystal is the basis of constructing Ti-H crystal model to calculate its properties, so firstly it was investigated by the first-principles method. The results show that the lattice distortion and volume expansion of bothα-Ti-H andβ-Ti-H crystals with hydrogen atoms at the octahedral sites are lower than the ones with hydrogen atoms at the tetrahedral sites, and the absolute values of heat of solution of hydrogen inα-Ti-H andβ-Ti-H crystals with H atoms at the octahedral sites are higher than the ones with hydrogen atoms at the tetrahedral sites, signifying that hydrogen is inclined to occupy the octahedral site in bothα-Ti andβ-Ti crystals. It can be found that in the case of hydrogen occupying the octahedral site inα-Ti, there is a charge transfer from 3p orbit of Ti atoms which are the nearest neighbors of hydrogen to 1s orbit of hydrogen atom, and the bonds between hydrogen atom and its nearest neighboring Ti atoms are covalent. Hydrogen atom changed the density of state of Ti atoms nearest neighboring it, resulting in reduction in the interaction between Ti atoms. In the case of hydrogen occupying the octahedral site inβ-Ti, H atom changed the density of state of Ti atoms around it and enhanced the interaction between Ti atoms. The results indicated that hydrogen weakened the interatomic bonding inα-Ti and enhanced the interatomic bonding ofβ-Ti.
     Interatomic potentials are the foundation and key element for the molecular dynamics simulation. The EAM (embedded-atom method) model for Ti-H system was established based on original EAM and combined with Johnson’s analytic EAM model. The expressions of potential functions and model parameters for Ti were determined according to the analytic EAM of Johnson. The new potential function expressions for H were provided and the model parameters were determined by fitting to the lattice constant, binding energy and bulk modulus of fcc metal hydrogen and the volume of dissolution and heat of solution of hydrogen inα-Ti.
     The hydrogen diffusion inα-Ti andβ-Ti were simulated by MD with EAM potentials for Ti-H system. The results show that the hydrogen diffusion inα-Ti is anisotropy and the calculated activation energy of hydrogen diffusion along c axis is smaller than that in the basal plane. The indirect O-T-O mechanism is most favorable for hydrogen diffusion in the basal plane ofα-Ti. The simulated values of activation energy and pre-exponential factor for hydrogen diffusion inα-Ti were in good agreement with the experimental data. The direct O-O mechanism is most favorable for hydrogen diffusion inβ-Ti and the calculated activation energy and pre-exponential factor for hydrogen diffusion inβ-Ti were in agreement with the experimental data.
     The effect of hydrogen on the Ti self-diffusion characteristics inα-Ti andβ-Ti were simulated by MD with EAM potentials for Ti-H system. The calculated activation energy for Ti self-diffusion inα-Ti-H is lower than that inα-Ti, and the calculated activation energy for Ti self-diffusion inβ-Ti-H is larger than the value inβ-Ti. The results indicated that hydrogen atom decreased and increased potential barriers for Ti self-diffusion inα-Ti andβ-Ti, resulting in the enhancement and weakening in the diffusivity for Ti inα-Ti andβ-Ti, respectively.
     The elastic moduli of Ti and Ti-H crystals were calculated. The results showed that the addition of hydrogen increased the bulk modulus and decreased the Young’s and shear moduli ofα-Ti. The calculated bulk molulus, Young’s modulus and shear modulus ofβ-Ti-H crystals with different hydrogen were all higher than those ofβ-Ti, that is, the addition of hydrogen increased elastic moduli ofβ-Ti.
     The deformation behaviors of Ti and Ti-H crystals were simulated by MD method. The results show that the calculated theoretical breaking strength along c axis and the theoretical yield strength ofα-Ti-H crystals with different hydrogen concentration were all lower than the values of pureα-Ti, and moreover, they decreased with increasing hydrogen concentration and temperature. For different simulation temperatures, the critical stress for phase transition inβ-Ti-H is higher thanβ-Ti. The results indicated that hydrogen improve the stability ofβ-Ti. The effect of hydrogen on the theoretical yield strength ofβ-Ti related to the temperatures. Hydrogen enhanced the theoretical yield strength ofβ-Ti at higher temperature.
引文
1 O. N. Senkov, J .J. Jonas, F. H. Froes. Recent Advances in the Thermohydrogen Processing of Titanium Alloys. JOM. 1996, 48(7):42~47
    2 W. R. Kerr. The Effect of Hydrogen as a Temporary Alloying Element on Microstructure and tensile Properties of Ti-6Al-4V. Metall. Trans. 1985, (16A):1077~1082
    3徐振声,宫波,张彩碚,赖祖涵.氢对Ti-6Al-4V合金的高温增塑作用.金属学报. 1991, 27(4):A270~A273
    4张少卿.氢在钛合金热加工中的作用.材料工程. 1992, (2):24~29
    5 E. G. Ponyatovsky, I. O. Bashkin, O. N. Senkov. Effect of Hydrogen on Ductility and Strength of a Titanium Alloy VT20 at Temperatures from 20 to 740℃. Physics of Metals & Metallography. 1989, 68(6):122~128
    6 B. A. Kolachev, Y. B. Egorova. Hydrogen Influence on Machining of Titanium Alloys. Advances in the Science and Technology of Titanium Alloy Processing. 1997, (5):339~346
    7林莺莺,潘洪泗,李淼泉.钛合金的氢处理技术及其对超塑性的影响.材料工程. 2005,(5):60~64
    8李芳,陈业新,万晓景,王青江,刘羽寅.氢对Ti-60钛合金显微组织和高温力学性能的影响.金属学报. 2006, 42(2):143~146
    9 Y. Y. Zong, D. B. Shan, Y. Lv, B. Guo. Effect of 0.3wt.%H Addition on the High Temperature Deformation Behaviors of Ti–6Al–4V Alloy. International Journal of Hydrogen Energy. 2007, 32(16):3936~3940
    10潘志强, A. B. Bылрин,李明强,张平祥,周廉. Ti9Al合金的氢塑性效应.稀有金属材料与工程. 2003, 32(10):810~813
    11 Q. Wang, Z. H. Li, D.L. Sun. Compression Characteristic and Tensile Property in an (Alpha+Beta)-Type Titanium Alloy at High Temperature. Key Engineering Materials. 2005, 297-300:1439~1445
    12阿.阿.依里因,阿.姆.马莫诺夫.铸造钛合金的热氢处理.材料工程. 1992, (1):14~16
    13宫波,赖祖涵.用化学处理改善(α+β)型钛合金的组织和力学性能.中国有色金属学报. 1994, 4(3):87~89
    14 M. A. Murzinova, M. I. Mazurski, G. A. Salishchev, D. D. fonichev.Application of Reversible Hydrogen Alloying for Formation of Submicrocrystalline Structure in (α+β) Titanium Alloys. International Journal of Hydrogen Energy. 1997, 22(2/3):201~204
    15杜忠权,王高潮,陈玉秀.渗氢处理细化Ti-10V-2Fe-3Al合金组织及改善其超塑性性能的效果.航空学报. 1994, 15(7):882~886
    16 H. Yoshimura. Mezzoscopic Grain Refinement and Improved Mechanical Properties of Titanium Materials by Hydrogen Treatments. International Journal of Hydrogen Energy. 1997, 22(2/3):145~150
    17 T. Y. Fang, W. H. Wang. Microstructure Feature of Thermochemical Processing in a Ti-6Al-4V Alloy. Materials Chemistry and physics. 1998, 56:35~47
    18曹兴民,赵永庆,奚正平.热氢处理在铸造钛合金中的应用.铸造. 2005, 54(4):391~393
    19 R. J. Elias, H. L. Corso, J. L. Gervasoni. Fundamental Aspects of the Ti-H System: Theoretical and Experimental Behaviour. International Journal of Hydrogen Energy. 2002, 27:91~97
    20 C. L. Briant, Z. F. Wang, N. Chollocoop. Hydrogen Embrittlement of Commercial Purity Titanium. Corrosion Science. 2002, 44:1875~1888
    21曹建玲,沈保罗,高升吉等. Ti-Al-Zr合金的氢致延迟断裂行为.中国有色金属学报. 2002, (12):74~77
    22何晓,沈保罗,曹建玲等.氢对两种新型钛合金强度和塑性的影响.稀有金属材料与工程. 2003, 32(5):390~393
    23 D. F. Teter, I. M. Robertson, H. K. Birnbaum. The Effects of Hydrogen on the Deformation and Fracture ofβ-titanium. Acta Materialia. 2001, 49(20):4313~4317
    24杨长江,梁成浩,王华.钛及其合金氢脆研究现状与应用.腐蚀科学与防护技术. 2006, 18(2):122~125
    25 F. Mignot, V. Doquet, C. Sarrazin-Baudoux. Contributions of Internal Hydrogen and Room-temperature Creep to the Abnormal Fatigue Cracking of Ti6246 at High Kmax. Materials Science and Engineering A. 2004, 380:308~319
    26刘彦章,黄新泉,邱绍宇,祖小涛,康鹏. Ti-Al-Zr合金的氢致脆性研究.核动力工程. 2005, 26(5):456~460
    27 C. Q. Chen, S. X. Li, H. Zheng, L. B. Wang, K. Lu. An Investigation onStructure, Deformation and Fracture of Hydrides in Titanium with a Large Range of Hydrogen Contents. Acta Materialia. 2004, 52:3697~3706
    28 E. Conforto, D. Caillard. A Fast Method for Determining Favourable Orientation Relationships and Interface Planes: Application to Titanium–titanium Hydrides Transformations. Acta Materialia. 2007, 55:785~795
    29 U. Zwiecker, V. Schleicher. USA Patent No.2 892 742. 1959
    30 B. A. Kolachev, A. V. Mallkov, I. A. Vorobyov et al. The Effect of Hydrogen Alloying on Workability of Titanium Alloys. F. H. Froes, I. L. Caplan. Titanium’92: Science and Technology, Warrendale, 1992. TMS, 1993:861~868
    31韩明臣.钛合金的氢处理.宇航材料工艺. 1999, (1):23~27
    32 O. N. Senkov, F. H. Froes. Thermohydrogen Processing of Titanium Alloys. International Journal of Hydrogen Energy. 1999, (24):565~567
    33侯红亮,李志强,王亚军,关桥.钛合金热氢处理技术及其应用前景.中国有色金属学报. 2003, 13(3):533~549
    34 A. A. Ilyin, A. M. Mamonov, V. K. Nosov. Thermohydrogen Treatment―Science Basic and Future Application. K. S. Shin, J. K. Yoon, S. J. Kim. Proceedings of 2nd pacific rim international conference on advance materials and processing, 1994. 1995:697~705
    35 A. A. Ilyin, I. S. Polkin. A. M. Mamonov. Thermohydrogen Treatment―the Basic of Hydrogen Technology of Titanium Alloys. P. A. Blenkinsop, W. J. Evans, H, M, Flower. Titanium 95: Science and Technology, London, UK. 1995:462~469
    36 A. A. Ilyin, A. M. Mamonov. Thermalhydrogen Treatment of Cast Titanium Alloys. Materials Engineering. 1992, (1):14~16
    37马常祥,周飞,赖祖涵等. Ti-6Al-4V合金氢处理工艺的研究.中国金属学会第八届全国钛及钛合金学术交流会.上海. 1993:305~311
    38 H. Yoshimura, J. Nakahigashi. Ultra-Fine-Grain Refinement and Superplasticity of Titanium Alloys Obtained Through Protium Treatment. International Journal of Hydrogen Energy. 2002, 27:769~774
    39 D. H. Kohn, P. Ducheyne. Microstructural Refinement ofβ–Sintered and Ti-6Al-4V Porous-Coated by Temporary Alloying with Hydrogen. Journal of Materials Science. 1991, (26):534~544
    40林天辉.钛合金中的氢及其对力学性能的影响.北京科技大学博士论文. 1990:56~61
    41张浩,许嘉龙,林天辉等.氢对Ti-6Al-4V合金显微组织和超塑性变形的影响.稀有金属材料与工程. 1991, 20(5):52~57
    42韩潇.氢处理对TC4钛合金组织和热变形行为的影响.哈尔滨工业大学硕士论文. 2004: 20~50
    43吴涛.基于人工神经网络TC4合金的高温流变应力.哈尔滨工业大学硕士论文. 2004:17~28
    44赖静.含氢BT20合金热变形流变应力和组织演变的ANN模型.哈尔滨工业大学硕士论文. 2006: 18~54
    45 J. Nakahigashi, H. Yoshimura. Ultra-fine grain and tensile properties of titanium alloys obtained through protium treatment. Journal of Alloys and Compounds. 2002, 330:384~388
    46杨扬.氕处理法制备细晶粒、超细晶粒钛合金及其机械性能研究.稀有金属与硬质合金. 2005, 33(1):57~60
    47 H. Yoshimura, J. Nakahigashi. Ultra-fine-grain Refinement and Superplasticity of Titanium Alloys Obtained through Protium Treatment. International Journal of Hydrogen Energy. 2002, 27(7-8):769~774
    48 M. A. Murzinova, G. A. Salischev, D. D. Afonichev. Formation of Nanocrystalline Structure in Two-phase Titanium Alloy by Combination of Thermohydrogen Processing with Hot Working. International Journal of Hydrogen Energy. 2002, 27(7/ 8):775~782
    49 Y. Song, Z. X.Guo, R. Yang. Influence of Interstitial Elements on the Bulk Modulus and Theoretical Strength ofα-titanium: A First-principles Study. Philosophical Magazine A. 2002, 82(7):1345~1359
    50 R. Hempelmann, D. Richter, B. Stritzker. Optic Phonon Modes and Super-Conductivity in a Phase (Ti, Zr)-(H, D) Alloy. J Phys F. 1982, 12(1):79~82
    51 A. V. Panin, V. V. Rybin, S. S. Ushkov, M. S. Kazachenok. Effect of Hydrogen Treatment on Mechanical Behavior of Titanium with Various Structural States. Physical Mesomechanics. 2003, 6:17~24.
    52崔昌军,彭乔.钛及钛合金的氢渗过程研究.稀有金属材料与工程. 2003, 32,(12):1011~1014
    53黄刚,曹小华,龙兴贵.钛-氢体系的物理化学性质.材料导报. 2006, 20(10):128~134
    54 O. N. Senkov, B. C. Chakoumakos, J. J. Jonas, F. H. Froes. Effect of Temperature and Hydrogen Concentration on the Lattice Parameter of BetaTitanium. Materials Research Bulletin. 2001, 36:1431~1440
    55 J. E. Costa, D. Banerjee. J. C. Williams. Hydrogen Effects inβ-titanium Alloys. R. R. Boyer, H. W. Rosenberg. Beta Titanium Alloys in 1980’s, TMS-AIME. Warrendale Press, 1983:69~83
    56 H. Namakura, M. Koiwa. Hydrogen Precipation in Titanium. Acta Metall. 1984, 32(1):1799~1804
    57 D. Guay, R. Schulz, M. E. Bonneau. Neutron and in Situ X-Ray Investigation of Hydrogen Intake in Titanium-Based Cubic Alloys. Chem. Mater. 1999,11(11):3220~3225
    58 V. Bhosle, E. G. Baburaj, M. Miranova, K. Salama. Dehydrogenation of TiH2. Materials and Engineering A. 2003, 356:190~199
    59康强,张彩碚,赖祖涵,宁小光. Ti-H合金共析转变产物的形态和结构.金属学报. 1995, 31(A 6): 241~247
    60王宇,王佩璇,张建伟等.纯钛吸氢后的微观结构研究.稀有金属. 1995, 19(5):348~351
    61王宇,王佩璇,姚玉琴等.亚稳钛氢化物的透射电镜研究.稀有金属. 1996, 20(3):348~351
    62 J. I. Qazi, O. N. Senkov, J. Rahim, F. H. Froes. Kinetics of Martensite Decomposition in Ti-6Al-4V-xH Alloys. Materials Science and Engineering. 2003, (A359):137~149
    63 D. V. Schur, S. Y. U. Zaginaichenko, V. M. Adejev et al. Phase Transformations in Titanium Hydrides. Int. J. Hydrogen Energy. 1996, 21(11):1121~1125
    64张勇,张少卿,陶春虎.氢对锻态Ti-25Al-10Nb-3V-1Mo合金热压缩行为的影响.中国有色金属学报. 1996,6(1):84~87
    65 Y. Zhang, S. Q. Zhang. Hydrogenation Characteristics of Ti-6Al-4V Cast Alloy and Its Microstructural Modification by Hydrogen Treatment. International Journal of Hydrogen Energy.1997, 22(2):161~168
    66 M. Niinomi, B. Gong et al. Fracture Characteristics of Ti-6Al-4V and Ti-5Al-2.5Fe with Refined Microstructure Using Hydrogen. Metallurgical and Materials Transactions .1995, 26(A):1141~1151
    67 Y. X. Chen, X. J. Wan. The Kinetics of Hydrogen Diffusion in Ti3Al-Based Alloy. Journal of Shanghai University. 1997, 1(3):249~251
    68 A. Takaski, Y. Furuya, K. Ojima, Y. Taneda. Hydrogen Solubility of Two-phase(Ti3Al+TiAl) Titanium Aluminides. Scripta Materialia. 1995, 32(11):1759~1764
    69陈业新,万晓景.氢对Ti3Al基合金组织和性能的影响.上海大学学报(自然科学版). 1997, 3(6):628~632
    70何晓.含氢的新型钛合金的疲劳行为研究.四川大学博士学位论文. 2003:28~35
    71 R. J. Wasilewski, G. L. Kehl. Diffusion of Hydrogen in Titanium. Metallurgia. 1954, 50:225~230
    72 T. P. Papazoiglou, M. T. Hepworth. Diffusion of Hydrogen inα-titanium. Trans Met Soc Alme. 1968, 242:682~687
    73 O. S. Abdul-Hamid, R. M Latanision. A. W. Thompson, N. R. Moody. Hydrogen Effect in Materials. TMS. 1996, 21:205~210
    74曹兴明.热氢处理对钛合金组织和性能影响的研究.西安建筑科技大学硕士论文. 2005:25
    75 M. Hein, A. Bals, A. F. Privalov, H Wipf. Gorsky Effect Study of H And D Diffusion in V And Ti at High H(D) Concentrations. Journal of Alloys and Compounds. 2003, 356:318~321
    76 P. A. Sundaram, E. Wessel, H. Clemens, et al. Determination of the Diffusion Coefficient of Hydrogen in Gamma Titanium Aluminides during Electrolytic Charging. Acta Materialia. 2000, 48:1005~1019
    77 K. Suardi, E. Hamzah, A. Ourdjini, V. C. Venkatesh. Effect of Heat Treatment on the Diffusion Coefficient of Hydrogen Absorption In Gamma-Titanium Aluminide. Journal of Materials Processing Technology. 2007, 185:106~112
    78 A. R. Troiano, The role of hydrogen and other interstitial in the mechanical behavior of metals. Trans. ASM.1960, 34:54~60
    79万晓景.钛合金氢脆机理的实验验证.孙文川等.钛科学与工程-第七届全国钛及钛合金学术交流论文集,长沙, 1990.中南大学工业出版社, 1991:365~370
    80 D. Setoyama, J. Matsunaga, H. Muta, et al. Characteristics of Titanium–Hydrogen Solid Solution. Journal of Alloys and Compounds. 2004,85:156~159
    81张勇,丁力,张强基,牟方明,翟国良,赵鹏骥.钛和氘化钛的电子谱特征.真空科学与技术. 1995, 15(3):152~156
    82 O. N. Senkov, M. Dubois, J .J. Jonas. Elastic Module of Titanium-HydrogenAlloys in the Temperature Range 20℃to 1100℃. Metallurgical and Materials Transactions A. 1996, 27A:3963~3970
    83 P. A. Sundaram, D. Basu, R. W. Steinbrech. Effect of Hydrogen on the Elastic Modulus and Hardness of Gamma Titanium Aluminides. Scripta Materialia. 1999, 41(8):839~845
    84 M. Ruales, D. Martell, F. Vazquez, F.A. Just, P.A. Sundaram. Effect of Hydrogen on the Dynamic Elastic Modulus of Gamma Titanium Aluminide. Journal of Alloys and Compounds. 2002, 339:156~161
    85赵林若,张少卿,颜鸣臬.氢对Al和V在β纯Ti中扩散的影响.材料科学进展. 1990, 4(3):237~240
    86褚武扬.氢损伤和滞后断裂.冶金工业出版社, 1988:275~285
    87曹名洲,杨柯,万晓景.氢对钛合金位错速度应力指数的影响.金属学报. 1987, 1(23A):92~93
    88 O. N. Senkov, J. J. Jonas.Effect of Hydrogen Content on the Deformation Behavior of Titanium-Hydrogen Alloys. P. A. Blenkinsop, W. J. Evans, H, M, Flower. Titanium 95: Science and Technology, London, UK. 1995:1026~1033
    89 O. N. Senkov, J. J. Jonas. Dynamic Strain Aging and Hydrogen-Induced Softening in Alpha Titanium. Metallurgical and Materials Transactions. 1996, 27A:1877~1887
    90程大勇.金属材料弹性性质与电子结构的第一原理计算.中国科学院金属研究所博士论文. 2001:5
    91熊志华,孙振辉.雷敏生.基于密度泛函理论的第一原理平面波赝势法.江西科学. 2005, 23(1):1~4
    92严辉,杨巍,宋雪梅,吕广宏.第一原理方法在材料科学中的应用.北京工业大学学报. 2004, 30(2):210~213
    93 A. Y. Liu, M. L. Cohen. Prediction of New Low Compressibility Solid. Science. 1989, (245):841~842
    94 Y. J. Hao, X. R. Chen, H. L. Cui, Y. L. Bai. First-Principles Calculations of Elastic Constants of c-BN. Physic B. 2006, 382:118~122
    95杨锐,王元明,赵越,刘实,王隆保.合金化对TiH2体模量作用的第一原理研究.原子能科学技术. 2002, 36(4/5):416~419
    96 C. Jiang, D. J. Sordelet, B. Gleeson. Effects of Pt on the elastic Properties of B2 NiAl: a Combined First-Principles and Experimental Study. Acta Materialia. 2006, 54:2361~2369
    97胡艳军,彭平,李贵发等. NiAl力学性质合金化效应的第一原理计算.中国有色金属学报. 2006, 16(1):47~53
    98欧阳义芳,曾凡江,王陆阳,陶小马. Al-Zr二元合金的第一原理计算.广西大学学报(自然科学版). 2007, 32(1):35~37
    99 A. Pasquarllo, M. S. Hybertsen, R. Car. Interface Structure between Silicon and Its Oxide by First-principles Molecular Dynamic. Nature. 1998, (396):59~60
    100 Y. C. Zhou, Z. M. Sun, X. H. Wang and S. Q. Chen. Electronic Structure and Chemical Bonding of Ti3SiC2, Ti3GeC2 and Ti3AlC2. J. Phys. Condens. Matter. 2001, 13(4):10001~100010
    101 Y. C. Zhou, X. H. Wang and. Z. M. Sun. Electronic Structure and Bonding Properties in Ti3AlC2. J. Mater. Chem. 2001, 11(9):2335~2339
    102章永凡,林伟,王文峰,李俊钱. 3d过渡金属碳化物相稳定性和化学键的第一原理研究.化学学报. 2004, 62(11)1041~1048
    103 A. Kinaci, M. K. Aydinol. Ab Initio Investigation of FeTi-H System. International Journal of Hydrogen Energy. 2006, in press
    104陈律,彭平,李贵发等. L10-TiAl金属间化合物Mn, Nb合金化电子结构的计算.航空材料学报. 2005, 25:15~19
    105 M. Marlo, V. Milman. Density-functional Study of Bulk and Surface Properties of Titanium Nitride Using Different Exchange-correlation Functionals. Physical Review B. 2000, 62(4):2899~2907
    106 D. J. Siegel and J. C. Hamilton. First-principles Study of the Solubility, Diffusion, and Clustering of C in Ni. Physical Review B. 2003, (68):094105-1~094105-7
    107杨春,余毅,李言荣,刘永华.温度对ZnO/Al2O3( 0001)界面的吸附、扩散及生长初期模式的影响.物理学报. 2005, 54(12):5907~5913
    108 M. Krcmar, C. L. Fu, A. Janotti, R. C. Reed. Diffusion Rates of 3d Transition Metal Solutes in Nickel by First-Principles Calculations. Acta Materialia. 200, 53(5):2369~2376
    109 V. B. Deyirmenjian, V. Heine, M. C. Payne et al. Ab Initio Atomistic Simulation of the Strength of Detective Aluminum and Tests of Empirical Force Models. Physical Review B. 1995, 52(21):15191~15207
    110邵秀琴,朱俊,赵伟.用第一原理计算硅单空位缺陷.武汉科技学院学报. 2001, 14(32):1~4
    111陈丽娟,侯柱锋,朱梓忠,杨勇. LiAl中空位形成能的第一原理计算.物理学报. 2003, 52(9):2229~2234
    112 M. Krcmar, C. L. Fu. Point Defect Structures of Yal2 and Zrco2 Laves Phase Compounds by First-Principles Calculations. Intermetallics. 2007, 15:20~25
    113 D. Raabe. Computational Materials Science. WILEY-VCH Verlag CmbH. 1998:74~77
    114王丽,边秀房,李辉.金属Cu液固转变及晶格生长的分子动力学模拟.物理化学学报. 2006, 16(9):825~829
    115舒小林.金属间化合物物理性能、点缺陷及扩散的改进分析型EAM模型研究.湖南大学博士论文. 2001:16~17
    116 V. Yamakov, D. Wolf, S. R. Phillpot et al. Dislocation Processes in the Deformation of Nanocrystalline Aluminium by Molecular-Dynamics Simulation. Nature materials. 2002, (1):1~4
    117李明,褚武扬,高克玮,乔利杰.铝单晶中位错交割过程的分子动力学模拟.金属学报. 2003, 39(10):1099~1104
    118 Y. W. Zhang,T. C. Wang, Lattice Instability at a Fast Moving Crack Tip. Journal of Applied Physics. 1996, 89(8):4332
    119文玉华,周富信,刘曰武,周承恩.纳米晶铜单向拉伸变形的分子动力学模拟.力学学报. 2002, 34(1):29~36
    120肖时芳,邓辉球,陈曙光,胡望宇.纳米多晶Ni微观结构与力学性能的分子动力学模拟.中国有色金属学报, 2004, 14(7):1178~1181
    121陈芳芳,张海峰,胡壮麒.过冷及非晶态Cu扩散性质的分子动力学模拟.金属学报. 2004, 40(7):731~735
    122 M. Shiga, M. Yamaguchi, H. Kaburaki. Structure and Energetics of Clean and Hydrogenated Ni Surfaces and Symmetrical Tilt Grain Boundaries Using the Embedded-Atom Method. Physical review B. 2003, 68:245402-1~245402-8
    123 H. Q. Deng, W. Y. Hu, X. L. Shu, B. W. Zhang. Analytic Embedded-atom Method Approach to Studying the Surface Segregation of Al-Mg Alloys. Applied Surface Science. 2004, (221):408~414
    124 M. Parrinello, A. Rahman. Polymorphic Transitions in Single Crystals: A New Molecular Dynamics Method. Journal of Applied Physics. 1981, 52(21):7182~7190
    125张永伟,王自强.分子动力学在研究材料力学行为中的应用进展.力学进展. 1996, 26(1):14~27
    126 W. Zhong, Y. Cai, D. Tománek. Comuputer Simulation of Hydrogen Embittlement in Metals. Nature. 1993, 362(6419):435~437
    127周国辉,周富信,赵雪丹等.氢促进位错发射的分子动力学模拟.中国科学(E). 1998, 28(1):1~5
    128李忠吉,李金许,褚武扬,王燕斌,乔利杰.氢促进纯镍位错发射分子动力学模拟及试验证明.金属学报. 2002, 38(1):17~22
    129杨仕清,张文旭,彭斌,蒋洪川,王毫才.氢在Nd晶体中行为的分子动力学模拟.原子与分子物理学报. 2000, 17(2):279~282
    130肖海霞,邓辉球,胡望宇.氢在Ni(511)台阶面的吸附与解离研究.化学物理学报. 2005, 18(6):1048~1052
    131 M. D. Segall, P. Lindan, M. J. Probert, C. Pickard, P. Hasnip, S. Clark, M. Payne. First-Principles Simulation: Ideas, Illustrations and the CASTEP Code. J. Phys.: Condens Matter. 2002, 14: 2717~2744
    132 P. Hohenberg and W. Kohn. Inhomogeneous Electron Gas. Phys. Rev. B. 1964, 136: 864~871
    133 W. Kohn, L. J. Sham. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. A. 1965, 140: 1133~1138
    134 J. P. Perdew, A. Zunger. Self-interaction Correction to Density-functional Approximations for Many-electroy systems. Phys. Rev. B. 1981, (23):5048
    135 J. P. Perdew, J. A. Chevary, S. H. Vosko, et al. Atoms, Molecules, Solids, and Surfaces: Applications of the Generalized Gradient Approximation for Exchange and Correlation. Phys. Rev. B. 1992, 46(11):6671~6687
    136 J. P. Perdew, K. Burke, M. Ernzerhof. Generalized Gradient Approximation Made Simple. Physical Review Letters. 1996, 77 (18):3865~3868
    137 H. J. Monkhorst, J. D. Pack. Special Points for Brillouin-Zone integrations. Phys. Rev. B. 1976, 13(12):5188~5192
    138文玉华,朱如曾,周富信,王崇愚.分子动力学模拟的主要技术.力学进展. 2003, 33(1):65~73
    139 M. S. Daw, M. I. Baskes. Embedded-atom Method: Derivation and Application to Impurities, Surfaces, and Ather Defects in Metals. Physical Review B. 1984, (29):436~443
    140 S. M. Foiles, M. I. Baskes, M. S. Daw. Embedded-atom-method Function for the Fcc Metals Cu, Ag, Ni, Pd, Pt and Their Alloys. Physical Review B, 1986,33(12): 7983~7991
    141胡望宇,张邦维,黄伯云.分析型EAM模型的发展现状和展望.稀有金属材料与工程. 1999, 28(1):1~4
    142 Y. F. Ouyang, B. W Zhang, S. Z. Liao, Z. P. Jin. Simple Analytic Embedded Atom Potentials for HCP Metals. Trans. Nonferrous Metals. Soc. China. 1999, 9(3);586~592
    143 W. Y. Hu, X. L. Shu, B. W. Zhang. Point-defect Properties in Body-centered Cubic Transition Metals with Analytic EAM Interatomic Potentials. Computational Material Science. 2002, (23):175~189
    144 D. Vanderbilt. Soft Self-Consistent Pseudopotentials in a Generalized Eigenvalue Formalism. Phys. Rev. B. 1990, 41:7892~7895
    145 B. G. Pfrommer, M. Cote, S. G. Louie, M. L. Cohen. Relaxation of Crystals with the Quasi-Newton Method. J. Comput. Phys. 1997, 131:133~140
    146 H. W. King. Crystal Structures of the Elements at 25. Bullitin of Alloy Diagram. 1981, 2: 402~407
    147 C. P. Liang, H. R. Gong. Fundamental Influence of Hydrogen on Various Properties ofα-Titanium. International Journal of Hydrogen Energy. 2010, 35:3812~3816
    148 X. W. Zhou, H. N. G. Wadley, R. A. Johnson, D. J. Larson, et al. Atomic Scale Structure of Sputtered Metal Multilayers. Acta mater. 2001, 49:4005~4015
    149张邦维,胡望宇,舒小林.嵌入原子方法理论及其在材料科学中的应用.湖南大学出版社, 2003:189~213
    150 J. E. Angelo, N. R. Moody, M. I. Baskes. Trapping of Hydrogen to Lattice Defects in Nickel. Modelling Simul. Mater. Sci. Eng. 1995, (3):289~307
    151 M. Sigalas, N. C. Bacalis, A. C. Switendick. Total-Energy Calculations of Solid H, Li, Na, K, Rb, and Cs. Phys. Rev. B. 1990, 42(18):11637~11643
    152 M. Ruda, D. Farkas, J. Abriata. Embedded-atom Interatomic Potentials for Hydrogen in Metals and Intermetallic Alloys. Phys. Rev. B. 1996, 54(14):9765~9774
    153 M. K?ppers, C. Herzig, M. Friesel, Y. Mishin. Intrinsic Self-Diffusion and Substitutional Al Diffusion inα-Ti. Acta Mater. 1997, 45(10):4181~4191
    154 O. L. Bacq, F. Willaime. Unrelaxed Vacancy Formation Energies in Group-ⅣElements Calculated by the Full-Potential Linear Muffin-Tin Orbital Method:Invariance with Crystal Structure. Phys. Rev. B. 1999, 59(3):8508~8515
    155 G. Neumann, V. Tolle. Self-Diffusion in Body-centred Cubic Metals: Analytic of Experimental Data. Philosophical Magazine A. 1990, 61(4):563~578
    156 J. M. Sanchez, D. D. Fortaine. Model for Anomalous Self-Diffusion in Group-ⅣB Tansition Metals. Physical Review Letters. 1975, 35(4):227~230
    157 G. Vogl, W. Perty, T. Flottmann, A. Heiming. Direct Determination of the Self-Diffusion Mechanism in bccβ-Titanium. Phys. Rev. B. 1989, 39(8):5025~5034
    158 J. G. Berryman. Bounds and Self-Consistent Estimates for Elastic Constants of Random Polycrystals with Hexagonal, Trigonal, and Tetragonal Symmetries. Journal of the Mechanics and Physics of Solids. 2005, 53(10): 2141~2173
    159 E. S. Fisher, C. J. Renken. Single-Crystal Elastic Moduli and the hcp→bcc Transformation in Ti, Zr, and Hf. Physical Review. 1964, 135(2A):482~494
    160李佰强.含氢TA1钛合金热变形行为和弹性模量的研究.哈尔滨工业大学本科论文. 2007:33~38
    161 M. Marlo, V. Milman. Density-Functional Study of Bulk and Surface Properties of Titanium Nitride Using Different Exchange-Correlation Functionals. Phys. Rev. B. 2000, 62(4):2899~2907

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700