用户名: 密码: 验证码:
江苏油田庄2断块阜一、阜二段储层精细地质模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
储层精细地质研究能够指导庄2断块的方案调整和挖潜工作,具有十分重要的意义。以庄2断块阜一、阜二段储层为研究对象,运用储层地质学、层次分析法等理论和方法,进行地层精细划分与对比;分析微型构造的类型和特征,总结微型构造组合模式与油井生产的关系;论述沉积微相的类型、特征、沉积模式和演化过程;研究储层建筑结构,揭示孔隙度、渗透率等参数在纵向、平面、各微相内的分布特征;建立储层非均质模型,剖析储层非均质性的影响因素,探讨储层非均质性与剩余油分布的关系。主要取得了以下的研究成果和认识:
     (1)系统地进行了地层划分与对比,重新调整了砂层组界限。
     (2)微型构造类型有小断鼻、小阶地、小挠曲;微型构造的组合模式有顶底双凸型、顶凸底平型、顶底双斜面型。具有顶底双凸型、顶凸底平型组合模式的油井累计油水比大,含水率低,生产情况好。
     (3)阜一段为三角洲前缘亚相沉积,分为前缘席状砂、河口坝、水下分流河道、水下分流间湾微相。阜二段为滨浅湖亚相沉积,发育砂坝、生物滩、鲕粒滩、灰质滩和滨浅湖泥微相;鲕粒滩和生物滩的含油性较好,生物滩挖掘潜力较大。
     (4)阜一段、阜二段发育25种类型岩相和9种结构要素。在三维空间上,砂体多呈多层式连通方式。结构要素的组合模式分为千层饼状结构模式和拼合结构模式。
     (5)水下分流河道砂体的渗透率呈正韵律分布模式,孔隙度呈均匀韵律分布模式,含油性呈正韵律分布模式;河口坝砂体的渗透率呈反韵律分布模式,孔隙度呈反韵律—均匀韵律分布模式,含油性呈均匀韵律分布模式。河口坝砂体的孔隙度、渗透率最大,水下分流河道和砂坝的稍小些,砂坝体的含油饱和度最大;水下分流间湾和前缘席状砂微相砂体的孔渗性和含油性最差。
     (6)成岩作用主要包括压实、胶结、交代、溶解和溶蚀作用等。碎屑岩的孔隙主要为粒间孔,其次为粒内孔和裂缝孔隙。总结出大孔粗喉型等5种微观孔隙结构类型。各小层层内夹层发育的数量和规模较小;层间非均质性呈中等—较强程度,全区隔层发育较好;平面非均质性总体呈中等非均质程度。沉积微相、成岩作用和长期注水开发影响储层非均质性。剩余油主要分布于呈弱非均质性的区域。
Fine geologic research can guide program regulation and excavating work, it has very important meaning. Using reservior geology, analytical hierarchy process, and other methods and theories, the formation is subdivided and correlated finely. The type and character of micro-structure, and the relation between combinational style of micro-structure and oil well production is analysed. The reservior architecture, distribution character of porosity and permeability in machine direction, plane, and each microfacies, is researched. The heterogeneous reservior model is established, and affecting factors are studyed, and the relation between reservior heterogeneity and the distribution of remaing oil is researched too. The following researching results and cognition are acquired mainly.
     (1) The formation is subdivided and correlated systematically, and the boundary of the sandstone series is regulated.
     (2) The type of micro-structure is small faulted structural nose, small terrace, and small twist. The combinational style of micro-structure is bi-convex, convex up and plain down, and bi-plain.For the oil well in the combinational style of bi-convex, and convex up and plain down, the integrating ratio to oil and water of it is great, the rate of containing water is low, the condition of production is well.
     (3) There is delta front intrafacies in Fu1 Member, and it is subdivided to frontal sand sheet, mouth bar, distributary channel underwater, bay between distributary channels underwater. There is offshore -shallow lacustrine intrafacies in Fu2 Member, and organic beach, oolitic beach, calcareous beach, sandy bar in shallow lake, and mud in offshore–shallow lake are subdivided from it. The nature of containing oil of organic beach and oolitic beach is better, and the digging potential of organic beach is greater.
     (4) There are 25 kinds of lithofacies, 9 kinds of architecture elements are identified in the 1st and 2nd member of Funing Formation. In three-dimensional space, the sand body presents connection of multilayer. The combination model of architecture elements is divided into structure model of thousand-layer pancake and matching.
     (5) The permeability of distributary channel underwater sand presents distribution model of positive rhythm, and porosity does distribution model of uniform rhythm, and the nature of containing oil does distribution model of positive rhythm. The permeability of mouth bar sand presents distribution model of opposite rhythm, and porosity does distribution model of opposite -uniform rhythm, and the nature of containing oil does distribution model of uniform rhythm. The permeability and porosity of mouth bar sand is the maximal, those of distributary channel underwater sand and sandy bar sand is smaller a little, the nature of containing oil of sandy bar sand is the maximal. The permeability, porosity, and nature of containing oil of bay between distributary channels underwater and frontal sand sheet sand is the worst.
     (6) Compaction, cementation, alternation, dissolution, and denudation mainly consists of diagenesis. The pore of conglomerate is the pore mainly between granule, and the pore inside granule and the pore as fracture is secondary. Megalospore and throat, and other 4 type of pore structure in microscope are generalized. The number and scale of interbed in every sublayer is small relatively. Interlayer heterogeneity presents middle to strong degree, and barrier bed develops well relatively in the whole area. Plane heterogeneity presents middle degree. Reservoir heterogeneity is affected by sedimentary microfacies, lithogenesis, and long-term waterflood. Remaining oil mainly distributes in the area that presents herterogeneit?? weak level.
引文
[1]李兴国.油层微型构造影响油井生产的控制作用[J].石油勘探与开发, 1987, 14(2):53-59.
    [2]陈清华,李阳.曲流河储层微型构造图编制的新方法[J].油气地质与采收率, 2005, 12(4):17-19.
    [3]章凤奇,陈清华,陈汉林.储集层微型构造作图新方法[J].石油勘探与开发, 2005, 32(5):91-93.
    [4]李继红,陈清华.孤岛油田馆陶组油层微型构造研究[J].西北地质, 2001, 34(2):54-58.
    [5]侯建国,高建,张志龙,等.五号桩油田桩74断块特低渗砂岩油藏微构造模式及其开发特征[J].石油大学学报, 2005, 29(3):1-4.
    [6]高瑞祺,蔡希源.松辽盆地油气田形成条件与分布规律[M].北京:石油工业出版社, 1997:1-200.
    [7]于广流,周锋德.泌阳凹陷双江地区核三段l、皿、IV砂组沉积微相研究[J].天然气地球科学, 2002, 13(1):78-79.
    [8] Mail A D.Architectural—elements analysis: A new method of facies analysis applied to fluvial deposites[J]. Earth Science Reviews, 1985,(22):261-308.
    [9]兰朝利,李继亮,陈海泓.冲积沉积构造单元分析法综述[J].地质论评, 1999, 45(6): 603-612.
    [10]兰朝利,吴峻,张为民,等.冲积沉积构型单元分析法——原理及其适用性[J].地质科技情报, 2001, 20(2):37-40.
    [11]刘子晋.对砂岩油藏水诜后岩石孔隙结构的探讨[J].石油勘探与开发, 1980, 7(2):53-58.
    [12]黄福堂.油田注水开发过程中储层岩石表面性质变化因素研究[J].石油勘探与开发, 1985, 12(3):45-50.
    [13]黄思静.杨永林.单钰铭,等.注水开发对砂岩储层孔隙结构颢响[J].中国海上油气(地质), 2000, 14(2):122-128.
    [14]杨少春.储层非均质性定量研究新方法[J].石油大学学报(自然科学版), 2000, 24(1):53-56.
    [15]杨少春,杨兆林,胡红波.熵权非均质综合指数算法及应用[J].石油大学学报(自然科学版), 2004, 28(1):18-21.
    [16]杨少春,胡红波,杨兆林.储层非均质定量表征软件的开发[J].计算机应用研究, 2004, 26(5):28-34.
    [17]尹寿鹏.储层渗透率非均质性参数研究[J].国外油气勘探, 1998,10(6):694-701.
    [18]吴胜和,熊琦华.油气储层地质学[M].北京:石油工业出版社,1998:35-41.
    [19]赵澄林,朱平,陈方鸿.高邮凹陷高分辨率层序地层学及储层研究[M].北京:石油工业出版社, 2001:2-4.
    [20]陆先亮,束青林,曾祥平,等.孤岛油田精细地质研究[M].北京:石油工业出版社, 2005:3-13.
    [21]隋军,吕晓光.大庆油田河流—三角洲相储层研究[M].北京:石油工业出版社, 2000:36-40.
    [22]李兴国.对油层微构造的补充说明[J].石油勘探与开发, 1993, 20(1):82-89.
    [23]李兴国.油层微构造新探[J].石油勘探与开发, 1996, 23(3):80-86.
    [24]李兴国.油层微构造影响油井生产机理研究[J].成都理工学院学报, 1998, 25(2):285-288.
    [25]李兴国.陆相储层沉积微相与微型构造[M].北京:石油工业出版社,2000:3-40.
    [26]李兴国.应用微型构造和储层沉积微相研究油层剩余油分布[J].油气采收率技术, 1994, 1(1):68-80.
    [27]李延平,陈树民,宋永忠,等.大庆长垣及以东泉三、四段扶杨油层浅水湖泊-三角洲体系沉积特征[J].大庆石油地质与开发, 2005, 24(5):13-15.
    [28]宋春晖,方小敏,师永民,等.青海湖现代三角洲沉积特征及形成控制因素[J].兰州大学学报, 2001, 37(3):112-119.
    [29]党夯,赵虹,李文厚,等.安塞油田延长组长6油层组沉积微相特征[J].天然气地球科学, 2002, 13(1):78-79.
    [30]姜在兴.沉积学[M].北京:石油工业出版社, 2003:375-390.
    [31]赵澄林.油区岩相古地理[M].东营:石油大学出版社, 2001:295-307.
    [32] Christopher Houser, Brian Greenwood. Hydrodynamic and sediment transport within the inner surf of zone a lacustrine multiple-barred nearshore[J].Marine eology, 2005, 218(4):37-63.
    [33]朱筱敏,信荃麟,张晋仁.断陷湖盆滩坝储集体沉积特征及沉积模式[J].沉积学报, 1994, 12(2):20-27.
    [34]陈世悦,杨剑萍,操应长.惠民凹陷西部下第三系沙河街组两种滩坝沉积特征[J].煤田地质与勘探, 2000, 28(3):1-3.
    [35]伊强,周京津,郭志远,等.惠民凹陷沙河街组滨浅湖碎屑滩坝沉积特征[J].西部探矿工程, 2006(增刊): 213-214.
    [36]邱旭明,刘玉瑞,傅强.苏北盆地上白垩统—第三系层序地层与沉积演化[M].北京:地质出版社, 2006:96-106.
    [37]赵澄林,朱平,陈方鸿.高邮凹陷高分辨率层序地层学及储层研究[M].北京:石油工业出版社, 2001:8-35.
    [38] Miall A D. The Geology of Fluvial Deposits[M]. Berlin:Springer Verlag, 1996: 75-178
    [39] Miall A D. Architecture element analysis, a new method of facies analysis applied to fluvial deposits[J]. Earth Science Review. 1985, 22: 261-268.
    [40] Miall A D. Architectural-elements and bounding surfaces in fluvial deposits: anatomy of theKayenta Formation (Lower Jurassic), Southwest Colorado[J]. Sedimentary Geology, 1988(55): 233-262.
    [41] Allen J. R. L. Study in fluviatile sedimentation: six cyclothems from the lower Old Red Sandstone. Anglowelsh basin[J].Sedimentology.1964, 3:163-198.
    [42]姚光庆,马正.储层描述尺度与储层地质模型分级[J].石油实验地质, 1994, 16(4):5-9.
    [43]焦养泉.碎屑岩储集层物性非均质性的层次结构[J].石油与天然气地质, 1998, 19(2):21-25.
    [44]穆龙新,贾爱林,陈亮,等.储层精细研究方法——国内外露头储层和现代沉积及精细地质建模研究[M].北京:石油工业出版社, 2000:10-25.
    [45]刘建民.沉积结构单元在油藏研究中的应用[M].北京:石油工业出版社, 2003:30-32.
    [46]邱旭明,刘玉瑞,傅强.苏北盆地上白垩统—第三系层序地层与沉积演化[M].北京:地质出版社, 2006:116-128.
    [47]黄文科,戴俊生,窦之林.胜坨油田储层砂体建筑结构分析[J].西南石油大学学报, 2007, 29(3):32-35.
    [48]郭长春,李阳.建筑结构对河流相储层的控制作用——以孤东油田七区西馆陶组上段为例[J].油气地质与采收率, 2007, 14(2):31-34.
    [49]马世忠,王一博,崔义,等.油气区水下分流河道内部建筑结构模式的建立[J].大庆石油学院学报, 2006, 30(5):1-3.
    [50]何文祥,吴胜和,唐义疆,等.河口坝砂体构型精细解剖[J].石油勘探与开发, 2005, 32(5):43-45.
    [51]戴启德,纪友亮.油气储层地质学[M].石油大学出版社, 1996:15-28.
    [52]裘怿楠,陈子琪.油藏描述[M].北京:石油工业出版社, 1996:66-77.
    [53]方少仙,侯方浩.储层地质学[M].东营:石油大学出版社, 1998:180.
    [54]陆先亮,束青林,曾祥平,等.孤岛油田精细地质研究[M].北京:石油工业出版社, 2005:154-156.
    [55]钟大康,陈景山,林维澄.新开地区油气储层物性影响因素评价[J].西南石油学院学报, 1998, 20(1):21-22.
    [56]李存贵,徐守余.长期注水开发油藏的孔隙结构变化规律[J].石油勘探与开发, 2003, 30(2):94-96.
    [57]周建林,刘静,杨少春.胜坨油田坨28断块沙河街组二段储层非均质性定量研究[J].高校地质学报, 2002, 8(4):437-438.
    [58]何炎,殷军,吴念胜.储层非均质性描述的地质统学方法[J].西南石油学报, 2001, 23(3):13-15.
    [59] Mial A D. Reservior Heterogeneity in Fluvial Sandstones[J].AAPG Bulletin, 1988, 72(6):682-697.
    [60] Moraes, Marco AS. Diagenesis and microcopic heterogeneity of lacustrine deltaic and turbiditic sandstone reservoirs(Lower Cretaceous), Potiguar Basin, Brazil[J]. AAPG, 1991, 75(11):1758-1771.
    [61]赵春森,翟云芳,张大为.油藏非均质性的定量描述方法[J].石油学报, 1999, 20(5):39-42.
    [62]张兴平,衣英杰,夏冰,等.利用多种参数定量评价储层层间非均质性[J].油气地质与采收率, 2004, 11(1):56-57.
    [63] Sibley M. J.Reservoir Modeling and Simulation of a Middle Eastern Carbonate Reservoir[J]. SPE Reservoir Engineering, 1995, 13(1):75-81.
    [64]束青林.孤岛油田馆陶组河流相储层隔夹层成因研究[J].石油学报, 2006, 27(3):100-103.
    [65]柳成志,张雁.砂岩储层隔夹层的形成机理及分布特征——以萨中地区PI2小层曲流河河道砂岩为例[J].天然气工业, 2006, 26(7):15-17.
    [66]侯加根,焦巧平,幸华刚等.大港段六拨油田网状河沉积及储层非均质性研究[J].石油实验地质, 2003, 25(4): 399-402.
    [67]宋万超,孙焕泉,孙国.油藏开发流体动力地质作用——以胜坨油田二区为例[J].石油学报, 2002, 23(3):52-55.
    [68]李阳.储层流动单元模式及剩余油分布规律[J].石油学报, 2003, 24(3):52-55.
    [69]杨少春,周建林.胜坨油田二区高含水期三角洲储层非均质特征[J].石油大学学报, 2001, 25(1):37-41.
    [70]汪立君,陈新军.储层非均质性对剩余油分布的影响[J].地质科技情报, 2003, 22(2):71-73.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700