用户名: 密码: 验证码:
光纤光栅传感与光纤光栅激光器的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光纤光栅是一种重要的光纤型无源器件,它在光纤传感、微波光子学以及光纤通信技术等领域有着重要的应用,得到了广泛的研究和产业关注。本文针对光纤光栅在光纤传感领域的两个重要研究方向(光纤光栅传感器的设计制作以及传感信号的解调和复用)以及基于光纤光栅的DBR光纤激光器的应用技术进行了研究。
     本文首先简介了光纤光栅出现的研究背景;介绍了光纤光栅传感技术并对其研究热点进行了分析和说明;介绍了光纤光栅激光器的应用情况。
     接着介绍了光纤光栅的物理模型和基本理论工具(包括射线理论,耦合模理论和传输矩阵算法);简介了几种主要的光纤光栅类型,并通过模拟计算分析了它们的光谱特性;介绍了几种常见的光纤光栅制作方法以及本论文中所使用的光纤光栅制作系统。
     然后设计并通过实验验证了两种基于光纤光栅复合结构的光纤光栅传感器:研究基于光纤布拉格光栅法布里-珀罗腔的高分辨率传感器,并通过一个扫频单纵模半导体激光器实现了其传感信号的低成本快速解调;研究了倾斜光纤光栅(TFBG)与长周期光纤光栅(LPG)之间的包层模耦合特性,并实现了基于LPG-TFBG复合结构的振动传感器。
     接下来提出了几种光纤布拉格光栅传感器的解调和复用技术:研究了基于低相干反射计的FBG传感器解调技术,分别通过不同拓扑结构实现了FBG传感器的复用,实现了基于结合低相干复用和空分复用的混合复用FBG多参量传感网络,并进行了甲烷浓度、温度、应力等多种参量的测量实验;提出了基于微波光子滤波器的FBG传感器解调与复用方案并进行了实验验证;研究了基于频谱受限的FDML光纤激光器的FBG传感器解调与复用系统的原理,并利用该系统实现了相同波长的低反射率FBG传感器的解调与复用,搭建了结合拉曼放大的频谱受限FDML光纤激光器,并将其用于长距离传感。
     最后在两种不同的光纤上制作出了短腔布拉格反射式(DBR)光纤激光器。其中在细芯掺铒光纤上制作的短腔DBR光纤激光器因具有很低的偏振拍频频率而适用于光纤传感,通过实验研究了其在水听器和高灵敏度弯曲传感器中的应用,并通过二次曝光技术实现了偏振拍频频率可调;在保偏掺铒光纤上制作的短腔DBR光纤激光器具有很高的偏振拍频频率而适用于高频微波源,实验中获得了频率高达46.66 GHz的高频微波信号,并通过频率上/下转换技术实现了高频微波信号的低频测量。
Fiber gratings, as key passive fiber components, have received great research interest both academically and industrially because of their widely applications in fiber sensors, microwave photonics, and optical fiber communications, etc. This thesis mainly focuses on the study of fiber grating sensors and their interrogating and multiplexing technology, fiber Bragg grating based distributed Bragg reflector fiber lasers and their applications in sensing and microwave generation.
     Firstly, a brief overview of the background and evolution of fiber grating technology is given. Fiber grating sensing technology and recent research topics in this area are introduced. And the applications of fiber grating-based lasers are also summarized.
     Then, a brief introduction on the physical model and basic analysis tools of fiber gratings is given, including grating diffraction, coupled-mode theory and transfer matrix method. Several kinds fiber gratings in common use are introduced and their typical spectra are given with simulation results. The basic techniques for fiber gratings fabrication are summarized and the fabrication system used in this thesis is introduced.
     After that, two novel designs of fiber grating sensors are proposed and experimentally demonstrated. A fiber Bragg grating (FBG) Fabry-Perot based fiber sensor with ultrahigh resolution is studied and low cost interrogation with fast speed is achieved by employing a tunable single-longitudinal-mode semiconductor laser diode; then, the cladding modes recoupling between tilted FBGs (TFBGs) and long period gratings (LPGs) are investigated and a vibration sensor is achieved based on hybrid LPG-TFBG.
     Then, the interrogating and multiplexing techniques of FBG sensors are studied. Interrogating and multiplexing of FBG sensors with different topology based on optical low-coherent reflectometry is demonstrated. A multi-parameter FBG sensing network with over 40 FBG sensors is achieved by the combination of low-coherent multiplexing technique and spatial division multiplexing technique. And experiments on methane concentration, temperature and strain sensing are carried out with this sensing network. A microwave photonic filter based FBG sensing system is proposed, and its interrogating and multiplexing capability is studied experimentally. FBG sensors system based on a spectrum-limited Fourier domain mode-locking fiber laser is developed. Interrogating and multiplexing of low reflective FBG sensors with the same Bragg wavelengths is demonstrated with this system. And by incorporating a Raman amplifier, long distance sensing application is achieved.
     Finally, short cavity distributed Bragg reflector (DBR) fiber lasers are fabricated in two different types of erbium doped fibers. The DBR fiber lasers fabricated in a thin core erbium doped fiber have very low polarization beat frequency and thus they are suitable for sensing applications. Ultrasonic hydrophone and highly sensitive bending sensor based on this kind of fiber lasers are demonstrated experimentally. Tuning of the beat frequency is achieved by additional UV side-irradiating at the laser cavity. DBR fiber lasers fabricated in a polarization maintained erbium doped fiber have very high polarization beat frequency and thus can be used for high frequency microwave signal generation. A microwave with a high frequency of 46.66 GHz is generated experimentally, which is measured at a lower frequency through frequency up/down conversion technique.
引文
1. K. C. Kao, and G. A. Hockham, Dielectric-Fibre Surface Waveguides for Optical Frequencies, Proceedings of the Institution of Electrical Engineers-London,1966,113 (7):1151-1158.
    2. F. P. Kapron, D. B. Keck, and R. D. Maurer, Radiation Losses in Glass Optical Waveguides, Applied Physics Letters,1970,17 (10):423-425.
    3. T. Miya, Y. Terunuma, T. Hosaka, and T. Miyashita, Ultimate Low-Loss Single-Mode Fiber at 1.55 μm, IEE Electronics Letters,1979.15 (4):p.106-108.
    4. 乐孜纯,Optical Networks:A practical Perspective,2nd Edition,2004,北京,机械工业出版社,107-112.
    5.廖延彪,光纤光学.2000,北京:清华大学出版社,112-118.
    6. C. R. Giles, and E. Desurvire, Modeling erbium-doped fiber amplifiers, Journal of Lightwave Technology,1991,9 (2):271-283.
    7. E. Desurvire, J. R. Simpson, and P. C. Becker, High-gain erbium-doped traveling-wave fiber amplifier, Optics Letters,1987,12 (11):888-890.
    8. R. J. Mears, L. Reekie, I. M. Jauncy, and D. N. Payne, High gain rare-earth doped fibre amplifier at 1.54 μm, Optical Fiber Communications (OFC 87) (Reno, NV),1987, paper W12.
    9. C. M. Lawson, P. M. Kopera, T. Y. Hsu, and V. J. Tekippe, In-line single-mode wavelength division multiplexer/demultiplexer, IEE Electronics Letters,1984,20 (23): 963-964.
    10. K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. C. Cutler, J. W. Goodman, and H. J. Shaw, Optical Fiber Delay-Line Signal Processing, IEEE Transactions on Microwave Theory and Techniques,1985,33 (3):193-210.
    11. H. L. An, X. Z. Lin, E. Y. B. Pun, and H. D. Liu, Multi-wavelength operation of an erbium-doped fiber ring laser using a dual-pass Mach-Zehnder comb filter, Optics Communications,1999,169(1-6):159-165.
    12. M. A. Mirza, and G. Stewart, Theory and design of a simple tunable Sagnac loop filter for multiwavelength fiber lasers, Applied Optics,2008,47 (29):5242-5252.
    13. K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, Photosensitivity in Optical Fiber Waveguides-Application to Reflection Filter Fabrication, Applied Physics Letters,1978, 32 (10):647-649.
    14. T. Erdogan, Fiber grating spectra, Journal of Lightwave Technology,1997,15 (8): 1277-1294.
    15. G. Meltz, W. W. Morey, and W. H. Glenn, Formation of Bragg gratings in optical fibers by a transverse holographic method, Optics Letters,1989,14 (15):823-826.
    16. R. Kashyap, J. R. Armitage, R. Wyatt, S. T. Davey, and D. L. Williams, All-fibre narrowband reflection gratings at 1500 nm, IEE Electronics Letters,1990,26 (11): 730-732.
    17. P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres, IEE Electronics Letters,1993,29 (13):1191-1193.
    18. R. M. Atkins, P. J. Lemaire, T. Erdogan, and V. Mizrahi, Mechanisms of enhanced UV photosensitivity via hydrogen loading in germanosilicate glasses, IEE Electronics Letters, 1993,29 (14):1234-1235.
    19. K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask, Applied Physics Letters,1993,62 (10):1035-1037
    20. D. Z. Anderson, V. Mizrahi, T. Erdogan, and A. E. White, Production of in-fibre gratings using a diffractive optical element, IEE Electronics Letters,1993,29 (6): 566-568.
    21. J. N. Blake, B. Y. Kim, and H. J. Shaw, Fiber-optic modal coupler using periodic microbending, Optics Letters,1986,11 (3):177-179.
    22. F. Bilodeau, K. O. Hill, B. Malo, D. C. Johnson, and I. M. Skinner, Efficient, narrowband LP01 implies/implied by LP02 mode convertors fabricated in photosensitive fibre:spectral response, IEE Electronics Letters,1991,27 (8):682-683.
    23. A. M. Vengsarkar, J. R. Pedrazzani, J. B. Judkins, and P. J. Lemaire, Long-period fiber-grating-based gain equalizers, Optics Letters,1996,21 (5):336-338.
    24. V. Bhatia, and A. M. Vengsarkar, Optical fiber Long-period grating sensors, Optics Letters,1996,21 (9):692-694.
    25. A. Othonos and K. Kalli, Fiber Bragg Gratings:Fundamentals and Applications in Telecommunications and Sensing, Artech House,1999.
    26. B. Culshaw, and A. Kersey, Fiber-Optic Sensing:A Historical Perspective, Journal of Lightwave Technology,2008,26 (9):1064-1078.
    27. C. R. Giles, Lightwave Applications of Fiber Bragg Gratings, Journal of Lightwave Technology,1997,15 (8):1391-1401.
    28. W. J. Tomlinson, Evolution of Passive Optical Component Technologies for Fiber-Optic Communication Systems, Journal of Lightwave Technology,2008,26 (9):1046-1063.
    29. H. N. Li, D. S. Li, and G. B. Song, Recent applications of fiber optic sensors to health monitoring in civil engineering, Engineering Structures,2004,26 (11):1647-1657.
    30. T. H. T. Chan, L. Yu, H. Y. Tam, Y. Q. Ni, S.Y. Liu. W. H. Chung and L. K. Cheng, Fiber Bragg grating sensors for structural health monitoring of Tsing Ma bridge: Background and experimental observation, Engineering Structures,2006,28 (5), 648-659.
    31.杨跃轮,光纤传感器在军事上的应用,信息化研究,2010年第36卷第5期,页码:1-12.
    32. M. D. Marazuela, M. C. Moreno-Bondi, Fiber-optic biosensors - an overview, Analytical and Bioanalytical Chemistry,2002,372 (5-6):664-682.
    33. M. P. Delisa, Z. Zhang, M. Shiloach, S. Pilevar, C. C. Davis, J. S. Sirkis, and W. E. Bentley, Evanescent Wave Long-Period Fiber Bragg Grating as an Immobilized Antibody Biosensor, Analytical Chemistry,2000,72 (13):2895-2900.
    34. K. Zhou, X. Chen, L. Zhang, and I. Bennion, High-sensitivity optical chemsensor based on etched D-fibre Bragg gratings, IEE Electronics Letters,2004,40 (4):232-233.
    35. G. A. Ball, W. W. Morey, and W. H. Glenn, Standing-wave monomode erbium fiber laser, IEEE Photonics Technology Letters,1991,3 (7):613-615.
    36. J. Capmany, and D. Novak, Microwave photonics combines two worlds, Nature Photonics,2007,1 (6):319-330.
    37. J. Capmany, B. Ortega, and D. Pastor, A Tutorial on Microwave Photonic Filters, Journal of Lightwave Technology,2006,24 (1):201-229.
    38. J. P. Yao, Microwave Photonics, Journal of Lightwave Technology,2009,27 (3): 314-335.
    39. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, Fiber grating sensors, Journal of Lightwave Technology,1997, 15(8):1442-1463.
    40. A. D. Kersey, T. A. Berkoff, Fiber-optic Bragg-grating differential-temperature sensor, IEEE Photonics Technology Letters,1992,4(10):1183-1185.
    41. A. D. Kersey, T. A. Berkoff, W. W. Morey, High-resolution fibre-grating based strain sensor with interferometric wavelength-shift detection, IEE Electronics Letters,1992, 28 (3):236-238.
    42. M. G. Xu, L. Reekie, Y. T. Chow, and J. P. Dakin, Optical in-Fiber Grating High-Pressure Sensor, IEE Electronics Letters,1993,29(4):398-399.
    43. T. Guo, L. Y. Shao, H. Y. Tam, P. A. Krug, and J. Albert, Tilted fiber grating accelerometer incorporating an abrupt biconical taper for cladding to core recoupling, Optics Express,2009,17 (23):20651-20660.
    44. T. Guo, A. Ivanov, C. K. Chen, and J. Albert, Temperature-independent tilted fiber grating vibration sensor based on cladding-core recoupling, Optics Letters,2008,33 (9): 1004-1006.
    45. B. O. Guan, H. Y. Tam, and S. Y. Liu, Temperature-independent fiber Bragg grating tilt sensor, IEEE Photonics Technology Letters,2004,16(1):224-226.
    46. W. S. Liu, Tu. Guo, Allan C. Wong, H. Y. Tam, and S. L. He, Highly sensitive bending sensor based on Er3+-doped DBR fiber laser,Optics Express,2010,18 (17): 17834-17840.
    47. Y. P. Wang, and Y. J. Rao, Long period fibre grating torsion sensor measuring twist rate and determining twist direction simultaneously, IEE Electronics Letters,2004, 40(3):164-165.
    48. N. E. Fisher, P. J. Henderson, and D. A. Jackson, The interrogation of a conventional current transformer using an in-fibre Bragg grating. Measurement Science & Technology,1997,8(10):1080-1084.
    49. G. Thursby, B. Culshaw, and W. J. Staszewski, Acousto-ultrasonic sensing using fiber Bragg gratings. Smart Materials & Structures,2003,12 (1):122-128.
    50.丁金妃,光纤光栅折射率传感技术研究,杭州,浙江大学,2006年。
    51. R. Falciai, A. G. Mignani, and A. Vannini, Long period gratings as solution concentration sensors, Sensors and Actuators B:Chemical,2001,74 (1-3):74-77.
    52. A. D. Kersey, Optical fiber sensors for permanent downwell monitoring applications in the oil and gas industry, IEICE Transactions on Electronics,2000, E83-C (3):400-404.
    53. M. G. Shlyagin, S. V. Miridonov, V. V. Spirin, and J. Mendieta, Fiber Bragg grating sensor for liquid hydrocarbon detection, Proc. SPIE,2000,4074:108-115.
    54. D. Reilly, A. J. Willshire, G. Fusiek, P. Niewczas, and J. R. McDonald, A Fiber-Bragg-Grating-Based Sensor for Simultaneous AC Current and Temperature Measurement, IEEE Sensors Journal,2006,6 (6):1539-1542.
    55. J. Mora, A. Diez, J. L. Cruz, and M. V. Andtres, A magnetostrictive sensor interrogated by fiber gratings for DC-current and temperature discrimination, IEEE Photonics Tecnology Letters,2000,12(12):1680-1682.
    56. H. Y. Tam, S. Y. Liu, B. O. Guan, W. H. Chung, T. H. T. Chan, and L. K. Cheng, Fiber Bragg grating sensors for structural and railway applications,Proc. SPIE,2004.5634: 85-97.
    57. Y. J. Rao, D. A. Jackson, D. J. Web, L. Zhang, and I. Bennion, In-fiber Bragg-grating temperature sensor system for medical applications,Journal of Lightwave Technology, 1997,15(5):779-784.
    58. N. E. Fisher D. J. Webb, C. N. Pannell, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, and I. Bennion, Medical ultrasound detection using fiber Bragg gratings, Proc. SPIE,1999,3541:27-32.
    59. A. Cusano, P. Pilla, L. Contessa, A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and G. Guerra, High-sensitivity optical chemosensor based on coated long-period gratings for sub-ppm chemical detection in water, Applied Physics Letters,2005,87, 234105.
    60.于秀娟,余有龙,张敏,廖延彪,光纤光栅传感器在航空航天复合材料/结构健康监测中的应用,激光杂志,2006年第27卷第1期,1-3。
    61. A. Ezbiri, S. E. Kanellopoulos, and V. A. Handerek, High resolution instrumentation system for fibre-Bragg grating aerospace sensors, Optics Communications,1998, 150(1-6):43-48.
    62. D. Betz, L. Staudigel, and M. N. Trutzel, Test of a Fiber Bragg Grating Sensor Network for Commercail Aircraft Structures, Proc. OFS-16,2002,55-58.
    63. R. Willsch, Application of optical fiber sensors:technical and market trends, Proc. SPIE,2000,4074:24-31
    64. P. Ferraro, and G. D. Natale, On the possible use of optical fiber Bragg gratings as strain sensors for geodynamical monitoring, Optics and Lasers in Engineering,2002, 37(2-3):115-130.
    65. L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. H(?)iby, and O. Bang, Photonic crystal fiber long-period gratings for biochemical sensing, Optics Express,2006.14(18): p.8224-8231.
    66. X. D. Fan,I. M. White, S. I. Shopova, H. Y. Zhu, J. D. Suter, and Y. Z. Sun, Sensitive optical biosensors for unlabeled targets:A review, Analytica Chimica Acta,2008,620 (1-2):8-26.
    67. D. R. Chen, W. S. Liu, M. Jiang, and S. L. He, High resolution strain/temperature sensing system based on a high finesse fiber cavity and time-domain wavelength demodulation, Journal of Lightwave Technology,2009,27 (13):2477-2481.
    68. J. M. Corres, I. del Villar, I. R. Matias, and F. J. Arregui, Fiber-optic pH-sensors in long-period fiber gratings using electrostatic self-assembly, Optics Letters,2007,32 (1): 29-31.
    69. L. Rindorf and O. Bang, Highly sensitive refractometer with a photonic crystal-fiber long-period grating, Optics Letters,2008,33 (6):563-565.
    70. A. D. Kersey, T. A. Berkoff and W. W. Morey, Multiplexed fiber Bragg grating strain sensor system with a fiber Fabry-Perot wavelength filter, Optics Letters,1993,18 (16): 1370-1372.
    71. B. Lissak, A. Arie, and M. Tur, Highly sensitive strain measurements by locking lasers to fiber Bragg gratings, Optics Letters,1998,23 (24):1930-1932.
    72. A. D. Kersey, T. A. Berkoff and W. W. Morey, Fiber optic Bragg grating sensor with drift-compensated high-resolution interferometric wavelength shift detection, Optics Letters,1993,18 (1):72-74
    73. L. A. Ferreira, J. L. Santos, and F. Farahi, Pseudoheterodyne demodulation technique for fiber Bragg grating sensors using two matched gratings, IEEE Photonics Technology Letters,1997,9 (4):487-489.
    74. M. A. Davis, A. D. Kersey, All-fibre Bragg grating strain-sensor demodulation technique using a wavelength division coupler, IEE Electronics Letters,1994,30 (1): 75-77.
    75. G. Gagliardi, M. Salza, S. Avino, P. Ferraro, and P. De Natale, Probing the Ultimate Limit of Fiber-Optic Strain Sensing, Science,2010,330 (6007):1081-1084.
    76. T. A. Berkoff, and A. D. Kersey, Fiber Bragg grating array sensor system using a bandpass wavelength division multiplexer and interferometric detection, IEEE Photonics Technology Letters,1996,8 (11):1522-1524.
    77. R. S. Weis, A. D. Kersey, and T. A. Berkoff, A four-element fiber grating sensor array with phase-sensitive detection, IEEE Photonics Technology Letters,1994,6 (12): 1469-1471.
    78. Y. J. Rao, A. B. Lobo Ribeiro, D. A. Jackson, L. Zhang, and I. Bennion, Combined Spatial-Multiplexing and Time-Division-Multiplexing Scheme for Fiber Grating Sensors with Drift-Compensated Phase-Sensitive Detection, Optics Letters,1995.20 (20):2149-2151.
    79. H. Dobb, K. Kalli and D. J. Webb, Temperature-insensitive long period grating sensors in photonic crystal fibre, IEE Electronics Letters,40 (11):657-658.
    80. J. H. Luo, B. Liu, G. Y. Kai, S. Yuan, and X. Y. Dong, Temperature Insensitive wheel-type FBG pressure sensor, Proc. of SPIE,2006,6595:65953U.
    81. H. J. Patrick, J. M. Williams, A. D. Kersey, J. R. Pedrazzani, and A. M. Vengsarkar, Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination, IEEE Photonics Technology Letters,1996,8 (9):1223-1225.
    82. T. H. Maiman, Stimulated optical radiation in ruby, Nature,1960,187 (4736):439-440.
    83. E. Snitzer, Optical Maser Action of Nd+3 in a Barium Crown Glass. Physics Review Letters,1961,7(12):444-446.
    84. C. J. Koester, and E. Snitzer, Amplification in a fiber laser,Applied Optics,1964.3 (10): 1182-1186.
    85. J. Stone, CW Raman fiber amplifier,Applied Physics Letters,1975,26 (4):163-165.
    86. S. B. Poole, D. N. Payne, and M. E. Fermann, Fabrication of low-loss optical fibres containing rare-earth ions, IEE Electronics Letters,1985,21(17):737-738,.
    87. S. B. Poole, D. N. Payne, R. J. Mears, M. E. Fermann. and R.I. Laming, Fabrication and characterization of low-loss optical fibers containing rare-earth ions, Journal of Lightwave Technology,1986,4 (7):870-877.
    88. I. P. Alcock, A. C. Tropper, A. I. Ferguson, and D. C. Hanna, Q-switched operation of a Neodymium-doped monomode fibre laser, IEE Electronics Letters,1986,22(2):84-85.
    89. J. D. Kafka, T. Baer, and D. W. Hall, Mode-locked erbium-doped fiber laser with soliton pulse shaping, Optics Letters,1989,14(22):1269-1271.
    90. G. A. Ball and W. W. Morey, Compression-tuned single-frequency Bragg grating fiber laser, Optics Letters,1994,19 (23):1979-1981.
    91. J. L. Archambault, and S. G. Grubb, Fiber Gratings in Lasers and Amplifiers, Journal of Lightwave Technology,1997,15(8):1378-1390.
    92. J. T. Kringlebotn, J.-L. Archambault, L. Reekie, and D. N. Payne, Er3+:Yb3+-codoped fiber distributed-feedback laser, Optics Letters,1994,19(24):2101-2103.
    93. D. R. Chen, H. Y. Fu, W. S. Liu, Y. Z. Wei and S. L. He, Dual-wavelength single-longitudinal-mode erbium-doped fibre laser based on fibre Bragg grating pair and its application in microwave signal generation, IEE Electronics Letters,2008,44 (7):961-963.
    94. X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R.F. Wu, and J. Zhang, Single-Longitudinal-Mode Erbium-Doped Fiber Ring Laser Based on High Finesse Fiber Bragg Grating Fabry-Perot Etalon, IEEE Photonics Technology Letters,2008,20 (12):976-978.
    95. H. Y. Fu, X. W. Shun, C. B. Mou, L. Zhang, S. L. He, and I. Bennion, Transversal Loading Sensor Based on Tunable Beat Frequency of a Dual-Wavelength Fiber Laser, IEEE Photonics Technoloty Letters,2009,21(14):987-989.
    96. X. Chen, Z. Deng, and J. Yao, Photonic Generation of Microwave Signal Using a Dual-Wavelength Single-Longitudinal-Mode Fiber Ring Laser, IEEE Transactions on Microwave Theory and Techniques,2006,54 (2):804-809.
    97. G. Das, and J. W. Y. Lit, L-band multiwavelength fiber laser using an elliptical fiber, IEEE Photonics Technology Letters,2002,14 (5):606-608.
    98. D. S. Moon, U. C. Paek, and Y. Chung, Multi-wave length lasing oscillations in an erbium-doped fiber laser using few-mode fiber Bragg grating. Optics Express,2004, 12(25):6147-6152.
    99. Y. G. Han, C. S. Kim, J. U. Kang, U. C. Paek, and Y. Chung, Multiwavelength Raman fiber-ring laser based on tunable cascaded long-period fiber gratings, IEEE Photonics Technology Letters,2003,15 (3):383-385.
    100.刘颖刚,乔学光,贾振安,白燕,邵敏,基于AJL的波长可调谐环形掺铒光纤激光器,光学精密工程,2006年,第14卷,第5期,页码:811-815。
    101.G.A. Ball, and W. W. Morey, Continuously tunable single-mode erbium fiber laser, Optics Letters,1992,17(6):420-422.
    102.Y. Nasu, and S. Yamashita, Multiple phase-shift superstructure fibre Bragg grating for DWDM systems, IEE Electronics Letters,2001,37 (24):1471-1472.
    103.M. Born and E. Wolf, Principles of Optics,7th ed. New York:Pergamon,1987, sec. 8.6.1.
    104.A. Yariv, Coupled-mode theory for guided-wave optics, IEEE Journal of Quantum Electronics,1973, QE-9 (9):919-933.
    105.J. Albert, K.O. Hill, B. Malo, S. Theriault, F. Bilodeau, D. C. Johnson, and L. E. Erickson. Apodisation of the spectral response of fibre Bragg gratings using a phase mask with variable diffraction efficiency, IEE Electronics Letters,1995,31(3): 222-223.
    106.B. Malo, S. Theriault, D. C. Johnson, F. Bilodeau, J. Albert, and K. O. Hill. Apodised in-fibre Bragg grating reflectors photoimprinted using a phase mask, IEE Electronics Letters,1995,31(3):223-225.
    107.F. Ouellette, Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides, Optics Letters,1987,12(10):847-849.
    108.B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, Long periodic superstructure Bragg gratings in optical fibres, IEE Electronics Letters,1994,30(19):1620-1622.
    109.J. L. Yang, S. C. Tjin, and N. Q. Ngo, Multiwavelength Tunable Fiber Ring Laser Based on Sampled Chirp Fiber Bragg Grating, IEEE Photonics Technology Letters, 2004,16(4):1026-1028.
    110.F. Ouellette, P. A. Krug, T. Stephens, G. Dhosi, and B. J. Eggleton, Broadband and WDM Dispersion Compensation Using Chirped Sampled Fiber Bragg Gratings, IEE Electronics Letters,1995,31(11):899-900.
    111.V. Bhatia, Properties and Applications of Fiber Gratings, SPIE,2001,4417:154-160.
    112.T. Guo, H. Y. Tam, P. A. Krug, and J. Albert, Reflective tilted fiber Bragg grating refractometer based on strong cladding to core recoupling, Optics Express,2009,17 (7): 5736-5742.
    113.C. Dix, and P. F. Mckee, High accuracy electron-beam grating lithography for optical and optoelectronic devices, Journal of Vacuum Science and Technology,1992,10(6): 2667-2669.
    114.J. E. Curran, Production of surface patterns by chemical plasma etching. Journal of Physics E,1981,14(4):393-407.
    115.P. E. Dyer, R. J. Farley, and R. Giedl, Analysis and Application of 0/1 order Talbot Interferometer for 193 nm laser Grating Formation, Optics Communications,1996.129 (1-2):98-108.
    116.K. O. Hill, B. Malo, K. A. Vineberg, F. Bilodeau, D. C. Johnson, and I. Skinner, Efficient mode conversion in telecommunication fibre using externally written gratings, IEE Electronice Letters,1990,26 (16):1270-1272.
    117.李宏男,任亮,结构健康监测光纤光栅传感技术,北京,中国建筑工业出版社,2008年.
    118.A. P. Zhang, L. Y. Shao, J. F. Ding, and S. L. He, Sandwiched Long-Period Gratings for Simultaneous Measurement of Refractive Index and Temperature, IEEE Photonics Technology Letters,2005,17 (11):2397-2399.
    119.S. W. James, M. L. Dockney, and R. P. Tatam, Simultaneous independent temperature and strain measurement using in-fiber Bragg grating sensors, IEE Electronics Letters, 199632(12):1133-1134.
    120.D. Paladino, G. Quero, C. Caucheteur, P. Megret, and A. Cusano, Hybrid fiber grating cavity for multi-parametric sensing, Optics Express,2010,18(10):10473-10486.
    121.Y. O. Barmenkov, D. Zalvidea, S. Torres-Peiro, J. L. Cruz, and M. V. Andres, Effective length of short Fabry-Perot cavity formed by uniform fiber Bragg gratings, Optics Express,2006,14(14):6394-6399.
    122.L. Rindorf, and O. Bang, Sensitivity of photonic crystal fiber grating sensors: biosensing, refractive index, strain, and temperature sensing, Journal of Optical Society of America B,2008,25(3):310-324.
    123.B. L. Danielson, and C. D. Whittenberg, Guided-wave reflectometry with micrometer resolution, Applied Optics,1987,26(14):2836-2842.
    124.U. Wiedmann, P. Gallion and G. H. Duan, A generalized approach to optical low-coherence reflectometry including spectral filtering effects, Journal of Lightwave Technology,1998,16(7):1343-1347.
    125.Z. G. Guan, D. R. Chen, and S. L. He, Coherence Multiplexing of Distributed Sensors Based on Pairs of Fiber Bragg Gratings of Low Reflectivity, Journal of Lightwave Technology,2007,25(8):2143-2148.
    126.R. M. Lopez, V. V. Spirin, M. G. Shlyagin, S.V. Miridonov, G. Beltran, E. A. Kuzin, A, and Marquez Lucero, Coherent optical frequency domain reflectometry for interrogation of bend-based fiber optic hydrocarbon sensors, Optical Fiber Technology, 2004,10(1):79-90.
    127.M. Y. W. Chia, B. Luo, M. L. Lee, and E. J. Z. Hao, Radio over multimode fibre transmission for wireless LAN using VCSELs, IEE Electronics Letters,2003,39 (15): 1143-1144.
    128.J. Li, S. Fu, K. Xu, J. Zhou, P. Shum, J. Wu, and J. Lin, Photonic-assisted microwave frequency measurement with higher resolution and tunable range, Optics Letters,2009, 34(6):743-745.
    129.H. Chi, X. Zou, and J. Yao, An Approach to the Measurement of Microwave Frequency Based on Optical Power Monitoring. IEEE Photonics Technology Letters,2008,20(14): 1249-1251.
    130.R. A. Minasian, Photonic Signal Processing of High-Speed Signals Using Fiber Gratings, Optical Fiber Technology,2000,6(2):91-108.
    131.H. Y. Fu, W. Zhang, C. B. Mou, X. W. Shu, L. Zhang, S. L. He, and I. Bennion, High-Frequency Fiber Bragg Grating Sensing Interrogation System Using Sagnac-Loop-Based Microwave Photonic Filtering, IEEE Photonics Technology Letters,2009,21(8):519-521.
    132.X. Y. Dong, L. Y. Shao, H. Y. Fu, H. Y. Tam, and C. Liu, Intensity-modulated fiber Bragg grating sensor system based on radio-frequency signal measurement, Optics Letters,2008,33(5):482-484.
    133.Herman A. Haus, Mode-Locking of Lasers, IEEE Journal on Selected Topics in Quantum Electronics,2000,6(6):1173-1185.
    134.L. J. Wang, Y. K. Su, A. Agarwal, and P. Kumar, Polarization Insensitive Widely Tunable All-Optical Clock Recovery Based on AM Mode-Locking of a Fiber Ring Laser, IEEE Photonics Technology Letters,2000,12(2):211-213.
    135.M. W. Phillips, A. I. Ferguson, and D. C. Hanna, Frequency-modulation mode locking of a Nd3+-doped fiber laser, Optics Letters,1989,14(4):219-221.
    136.E. J. Greer and K. Smith, All-optical FM mode-locking of fiber laser, IEE Electronics Letters,1992,28(18):1741-1743.
    137.R. Huber, M. Wojtkowski, and J. G. Fujimoto, Fourier domain mode locking (FDML): a new laser operating regime and applications for optical coherence tomography, Optics Express,2006,14(8):3225-3237.
    138.D. R. Chen, M. P. Fok, C. Shu and S. L. He, Fiber Bragg Grating Interrogation for a Sensing System Based on a Continuous-Wave Fourier Domain Mode Locking Fiber Laser, Conference on Lasers and Electro-Optics (CLEO),2008, paper CMJ5.
    139.Y. Zhang, B. O. Guan, and H. Y. Tam, Ultra-short distributed Bragg reflector fiber laser for sensing applications, Optics Express,2009,17(12):10050-10055.
    140.K. P. Koo, and A. D. Kersey, Bragg Grating-Based Laser Sensors Systems with Interferometric Interrogation and Wavelength Division Multiplexing, Journal of Lightwave Technology,1995,13(7):1243-1249.
    141.邵理阳,光纤光栅器件及传感应用研究,杭州,浙江大学,2008年。
    142.K. Krakenes, and K. Blotekjaer, Sagnac interferometer for underwater sound detection: noise properties, Optics Letters,1989,14(20):1152-1154.
    143.N. Takahashi, K. Yoshimura, S. Takahashi, and K. Imamura, Development of an optical fiber hydrophone with fiber Bragg grating, Ultrasonics,2000,38(1-8):581-585.
    144.K. S. Chiang, H. L. W. Chan, and J. L. Gardner, Detection of high-frequency ultrasound with a polarization-maintaining fiber, Journal of Lightwave Technology, 1990,8(8):1211-1217.
    145.B. O. Guan, H. Y. Tam, S. T. Lau, and L. W. Chan, Ultrasonic Hydrophone Based on Distributed Bragg Reflector Fiber Laser, IEEE Photonics Technology Letters,2005, 16(1):169-171.
    146.L. Y. Shao, S. T. Lau, X. Y. Dong, A. P. Zhang, H. L. W. Chan, H. Y. Tam, and S. L He, High Frequency Ultrasonic Hydrophone Based on a Cladding-Etched DBR Fiber Laser, IEEE Photonics Technology Letters,2008,20(8):548-550.
    147.C. Y. Lin, L. A. Wang, and G. W. Chem, Corrugated long-period fiber gratings as strain, torsion, and bending sensors, Journal of Lightwave Technology,2001,19(8): 1159-1168.
    148.G. M. H. Flockhart, W. N. MacPherson, J. S. Barton, and J. D. C. Jones, L. Zhang and I. Bennion, Two-axis bend measurement with Bragg gratings in multicore optical fiber, Optics Letters,2003,28(6):387-389.
    149.M. J. Gander, W. N. MacPherson, R. McBride, J. D. C. Jones, L. Zhang, I. Bennion, P. M. Blanchard, J. G. Burnett, and A. H. Greenaway, Bend measurement using Bragg gratings in multicore fibre, IEE Electonics Letters,2000,36(2):120-121.
    150.D. Donlagic, and B. Culshaw, Propagation of the Fundamental Mode in Curved Graded Index Multimode Fiber and Its Application in Sensor Systems, Journal of Lightwave Technology,2000,18(3):334-342.
    151.K. Watanabe, K. Tajima, and Y. Kubota, Macrobending characteristics of a hetero-core splice fiber optic sensor for displacement and liquid detection, IEICE Transactions on Electronics,2000, E83-C (3):309-314.
    152.A. M. Smith, Birefringence induced by bends and twists in single-mode optical fiber, Applied Optics,1980,19(15):2606-2611.
    153.R. Ulrich, S. C. Rashleigh, and W. Eickhoff, Bending-induced birefringence in single-mode fibers, Optics Letters,1980,5(6):273-275.
    154.S. C. Rashleigh, Origins and control of polarization effects in single-mode fibers. Journal of Lightwave Technology,1983, LT-1(2):312-331.
    155.J. Sun, J. Qiu, and D. Huang, Multiwavelength erbium-doped fiber lasers exploiting polarization hole burning, Optics Communications,2000,182(1-3):193-197.
    156.J. J. Zayhowski, Limits imposed by spatial hole burning on the single-mode operation of standing-wave laser cavities, Optics Letters,1990,15(8):431-433.
    157.J. J. O'Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, Optical generation of very narrow linewidth millimetre wave signals, IEE Electronics Letters,1992,28(25): 2309-2311.
    158.J. Sun, Y. T. Dai, X. F. Chen, Y. J. Zhang and S. Z. Xie, Stable Dual-Wavelength DFB Fiber Laser with Separate Resonant Cavities and Its Application in Tunable Microwave Generation, IEEE Photonics Technology Letters,2006,18(24):2587-2589.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700