用户名: 密码: 验证码:
污泥性质对自生动态膜形成与污染的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自生动态膜生物反应器(Self-forming dynamic membrane bioreactor, SFDMBR)利用过滤初期在廉价微网基材上自然吸附/沉积形成自生动态膜(SFDM)取得与微滤膜近似的泥水分离效果,构成新型低成本膜生物反应器,具有广阔的应用前景。SFDM的形成和污染是制约SFDMBR运行成本和能耗的重要参数。作为SFDM的主要构成成分,活性污泥性质的变化会对SFDM的形成和污染产生重要影响。
     本文选取了20种不同性质的活性污泥,在两台平行运行的反应器中开展批式过滤实验,考察了12种污泥性质对SFDM的形成时间(Tf)、过滤阻力(Rsm)及其污染倾向(kR)的影响。所研究的污泥性质包括:胞外聚合物(Extracellular polymeric substance, EPS)及构成EPS的蛋白质(Protein, EPSp)和多糖(Polysaccharide, EPSC)的含量及二者的比值(EPSp/EPSc)、污泥的颗粒粒径分布(Particle size distribution, PSD)、相对疏水性(Relative hydrophobic, RH)、溶解性微生物产物(soluble microbial products, SMP)、比好氧速率(Specific oxygen uptake rate, SOUR)、污泥粘度(Viscosity)、污泥毛细吸收时间(Capillary suction time)、污泥沉积指数(SVI)及污泥表面电荷(Zeta potential)。利用SPSS对实验结果进行统计分析。研究结果表明:污泥的EPS浓度与污泥的SOUR显著负相关(rp=-0.751),与viscosity正相关(rp=0.560),这两个性质主要受污泥的EPS。浓度的影响(rp=-0.709;0.684),EPS的浓度还与Zeta potential负相关(rp=-0.520),与SVI显著正相关(rp=0.736),这两个性质主要受EPSp浓度的控制(rp=-0.767;0.672)。因此,在研究污泥性质对SFDM的形成与污染的影响时,将EPS浓度及其他与EPS无关的污泥性质作为独立因素进行分析。
     结果表明:污泥的PSD与Tf显著正相关(rp=-0.808),与Rsm显著负相关(rp=-0.690)。除PSD外,污泥的RH与Tf负相关(rp=-0.578),这表明,污泥颗粒愈大,疏水性越强,SFDM越易形成;且污泥的颗粒越大,SFDM的过滤阻力越小。污泥的EPS与kR呈正相关关系(rp=0.723),其中,污泥的EPSc浓度与kR正相关(rp=0.760),而EPSp与之无关。表明污泥的EPS浓度,具体为EPSc浓度增加,SFDM的污染程度加重。虽然污泥的EPSp浓度与kR无关,但是EPSp也是SFDM的污染物质之一。除此之外,污泥的viscosity与kR显著正相关(rp=0.801),SOUR与kR负相关(rp=-0.642),后者相关系数的绝对值略低于前者。由于这二者与污泥的EPS和EPS。浓度相关,且粘度与kR的相关系数最高,因此,污泥的粘度可以作为SFDM污染程度的指示参数。
Recently, a low-cost membrane bioreactor (MBR), termed self-forming dynamic membrane bioreactor (SFDMBR), has emerged as an innovative and cost-effective wastewater treatment system. The basic idea is to utilize the filtration modules made of cheap coarse-pore materials such as non-woven fabric, nylon mesh, and industrial filter-cloth instead of microfiltration (MF)/ultrafiltration (UF) membranes to reduce capital cost, and take advantage of the self-forming dynamic membranes (SFDMs) (i.e. initial "desired" sludge layers developed on the coarse-pore materials) to achieve required solid-liquid separation efficiency. Since the development of SFDM is essentially a result of sludge deposition/adsorption on coarse-pore materials, the characteristics of SFDM including formation and fouling are reasonably expected to be significantly affected by sludge properties.
     This study investigated the impacts of sludge properties on the formation time (Tf), filtration resistance (Rsm) and fouling propensity (KR) of SFDM. Sludge properties includes the extracellular polymeric substances (EPS) content which is considered as the sum of polysaccharides (EPSc) and protein (EPSp), soluble microbial products (SMP) content, particle size distribution (PSD), relative hydrophobicity (RH), zeta potential, specific oxygen uptake rate (SOUR), dynamic viscosity, capillary suction time(CST) and sludge volume index (SVI). Statistical analyses were conducted to determine the effects of sludge properties on each SFDM characteristic. The results showed EPS content presents positive/negative correlations with SOUR, Zeta potential, viscosity and SVI with rp=-0.751,-0.520,0.560,0.736, respectively. Especially, EPSc content was the major factor affecting SOUR and viscosity of the sludge (rp=-0.709; 0.684) while EPSp content affecting Zeta potential and SVI (rp=-0.767; 0.672). As a result, the EPS content and other sludge properties except these four should be considered as independent factors to conduct this study.
     In the sequent study, it is found that PSD was the major factor affecting both SFDM formation rate and filtration resistance with rp=-0.808; -0.690, P=0.000; 0.001, respectively, while RH displayed as a sub-factor affecting SFDM formation time (rp=-0.578; P=0.052). The EPS content contributed to SFDM fouling propensity (rp=0.723, P=0.000). In particular, increasing EPSc concentration (rp=0.760, P=0.000) could result in serious SFDM fouling while no correlation was found between EPSP and SFDM fouling propensity. The SFDM formation and fouling mechanisms was proposed based on these analyses. In addition, dynamic viscosity demonstrated a considerably positive correlation with SFDM fouling propensity (rp=0.801, P=0.004) while SOUR appeared a relatively lower negative correlation (rp=-0.642, P=0.032). Consequently, dynamic viscosity could be chosen as an indicator for examining SFDM fouling.
引文
[1]孟凡刚.膜生物反应器膜污染行为的识别与表征[D].大连:大连理工大学,2007.
    [2]陈刚.中国水资源利用效率的区域差异研究[D].大连:大连理工大学,2009.
    [3]Shannon M. A., Bohn P. W., Elimelech M., Georgiadis J. G., Marinas B. J., Mayes A. M.. Science and technology for water purification in the coming decades [J]. Nature,2008,452(7185): 301-310.
    [4]Smith J.. The status of membrane bioreactor technology [J]. Trends Biotechnol,2008,26(2): 109-116.
    [5]陈龙祥,由涛,张庆文,洪厚胜.膜生物反应器研究与工程应用进展[J].水处理技术,2009,35(10):16-20.
    [6]沈悦啸,王利政,莫颖慧,黄霞,文湘华.膜生物反应器的最新研究进展[J].中国给水排水,2010,12:22-27.
    [7]Huang X., Xiao K., Shen Y.. Recent advances in membrane bioreactor technology for wastewater treatment in China [J]. Front. Environ. Sci. Engin., China,2010,4(3):245-271.
    [8]Wang Z., Wu Z., Mai S., Yang C, Wang X., An Y, Zhou Z. Research and applications of membrane bioreactors in China:Progress and prospect [J]. Sep. Purif. Technol.,2008,62(2): 249-263.
    [9]吴志超,田陆梅,王旭,王志伟.动态膜-生物反应器处理城市污水的运行特性研究[J].环境污染与防治,2008,30(5):47-50.
    [10]Wang C, Yang F., Meng F., Zhang H., Xue Y, Fu G. High flux and antifouling filtration membrane based on non-woven fabric with chitosan coating for membrane bioreactors [J]. Bioresour. Technol.,2010,101(14):5469-5474.
    [11]Cao D., Chu H., Jin W, Dong B.. Characteristics of the biodiatomite dynamic membrane (cake layer) for municipal wastewater treatment [J]. Desalination,2010,250(2):544-547.
    [12]Le-Clech P., Chen V., Fane, Tony A.G.. Fouling in membrane bioreactors used in wastewater treatment[J]. J. Membr. Sci.,2006,284 (1-2):17-53.
    [13]Wang Z., Wu Z.. A Review of Membrane Fouling in MBRs:Characteristics and Role of Sludge Cake Formed on Membrane Surfaces [J]. Sep. Sci. Technol.,2009,44(15):3571-3596.
    [14]Meng F., Chae S., Drews A., Kraume M., Shin H., Yang F.. Recent advances in membrane bioreactors (MBRs):Membrane fouling and membrane material [J]. Water Res.,2009,43(6): 1489-1512.
    [15]李占臣,史密伟,朱晓磊,王路光.膜生物反应器的研究与进展[J].环境与可持续发展,2007,(6):28-30.
    [16]杨小丽,王世和.膜生物反应器研究现状与展望[J].污染防治技术,2002,15(4):28-30.
    [17]毛玉红,李杰,王亚娥.膜生物反应器研究及应用现状与存在问题探讨[J].甘肃科技,2004,20(9):98-99.
    [18]刘末娥,蔡肖邦,陈益堂.膜技术在污水治理及回用中的应用[M].北京:化学工业出版社,2004.
    [19]赵学辉,戴海平,范运双.新型膜生物反应器及膜污染的研究进展[J].工业水处理,2009,29(3):8-11.
    [20]薛罡,何圣兵,刘亚男.膜法单元水处理技术[M].北京:中国建筑工业出版社,2008.
    [21]Stephenson T,Judd S.,Jefferson B.,Brindle K.著;张树国,李咏梅译.Membrane bioreactors for wastewater treatment(中文版)[M].北京:化学工业出版社,2003.
    [22]岑运华.膜生物反应器在污水处理中的应用[J].水处理技术,1991,17(5):318-323.
    [23]林哲,赵庆祥,陆美红,祁世民,翟亚连.膜分离活性污泥法的研究[J].城市环境和城市生态,1994,7(1):6-11.
    [24]樊耀波,王菊思,姜兆春.膜-生物反应器净化石油化工污水的研究[J].环境科学学报,1997,17(1):68-74.
    [25]王伟国,李日强,王爱英.序批式膜生物反应器处理生活污水污染物去除特性研究[J].水处理技术,2010,36(11):96-99.
    [26]李雅婕.新型一体式膜生物反应器处理高氨氮低废水的研究[J].水处理技术,2010,36(8):84-87.
    [27]郑宏林,俞三传,周勇,高从堦.中空纤维帘式与平板式膜组件在浸没式MBR中的对比试用研究[J].水处理技术,2009,35(3):73-76.
    [28]王小佳,姜维,李继香,夏四清.抽停比和膜组件放置方式对MBR膜污染的影响[J].中国给水排水,2010,26(17):69-72.
    [29]林红军,陆晓峰,段伟,沈飞.膜生物反应器中膜过滤特征及膜污染机理的研究[J].环境科学,2006,27(12):2511-2517.
    [30]蔡文,骆建明.浸入式膜生物反应器中水回用工程应用[J].环境科学研究,2010,23(12):1553-1558.
    [31]李明波,卢爱平,孙伟,曹建云,常利军,张来泉.膜生物反应器工艺处理高稠油炼制废水中试研究[J].水工业市场,2010,10:54-56.
    [32]李晓波,胡保安,顾平.动态膜分离技术研究进展[J].膜科学与技术,2007,27(4):91-95.
    [33]叶茂盛,张捍民,杨凤林,崔霞.动态膜-生物反应器中新型预涂剂的抗污染特性研究[J].环境科学,2007,28(11):2494-2499.
    [34]Ye M.,Zhang H.,Wei Q.,Lei H.,Yang F.,and Zhang X..Study on the suitable thickness of a PAC-precoated dynamic membrane coupled with a bioreactor for municipal wastewater treatment[J].Desalination,2006,194(1-3):108-120.
    [35]Al-Malack M.H.,Anderson G.K..use of MnO2 as a dynamic membrane with crossflow microfiltration:slow membraning technique [J]. Desalination,1997,109(1):15-24.
    [36]Fan B., Huang X.. Characteristics of a self-Forming dynamic membrane coupled with a bioreactor for municipal wastewater treatment. Environ. Sci. Technol.,2002.36(23):5245-5251.
    [37]李俊,李方,卓琳云,奚旦立.动态膜的形成机理及其水处理性能研究[J].高校化学工程学报,2006,20(5):837-842.
    [38]许莉.陶瓷膜的应用及动态过滤性能研究[J].流体机械,1996,24(2):11-14.
    [39]王锦,王晓昌.超滤动态膜的类型及其数学模型[J].西安建筑科技大学学报,2001,33(3):236-249.
    [40]Marcinkowsky A. E., Krauss K. A., Phillips H. O., Johnson J. S., Shor A. J.. Hyperfiltration studies. IV. Salt rejection by dynamically formed hydrous oxide membranes [J]. J. Am. Chem. Soc,1996,88 (24):5744-5746.
    [41]Kiso Y., Jung Y. J., Ichinari T., Park M., Kitao T., Nishimura K., Min K. S.. Wastewater treatment performance of a filtration bio-reactor equipped with a mesh as a filter material [J]. Water Res.,2000,34(17):4143-4150.
    [42]Chang W. K., Hu A. Y., Horng R.Y., Tzou W. Y. Membrane bioreactor with nonwoven fabrics as solid-liquid separation media for wastewater treatment [J]. Desalination,2007,202(1-3): 122-128.
    [43]Yamini S., Malini B.. Treatment of distillery effluent in a membrane bioreactor (MBR) equipped with mesh filter [J]. Sep. Purif. Technol.,2008,63(2):278-286.
    [44]Duan J. Zhang H., Wang J., Yang F.. Performance of a novel dynamic membrane bioreactor in treating synthetic domestic wastewater [J]. Desalin. Water Treat.,2010,13(1-3):393-399.
    [45]初里冰,李书平.动态膜生物反应器的过滤性能及运行特性研究[J].工业水处理,2006,26(4):66-69.
    [46]傅大放,林玉姣.几种不同基材动态膜生物反应器污泥层性质分析[J].化工学报,2008,59(10):2596-2600.
    [47]张建,邱宪锋,高宝玉,张成禄,刘冬梅,靖玉明.逆出水方向曝气反冲洗在动态膜生物反应器中的应用[J].环境科学,2007,28(6):1241-1244.
    [48]闫晗,柳丽芬,杨凤林,张扬.用动态膜技术回收半导体加工中的含硅废水[J].膜科学与技术,2010,30(5):89-93.
    [49]周彦,濮文虹,杨昌柱,章北平.自生生物动态膜反应器处理低碳氮比污水的研究[J].环境污染与防治,2007,29(4):293-296.
    [50]邱宪锋,张建,高宝玉,张成禄,陈欢.内循环动态膜生物反应器处理生活污水[J].中国环境科学,2007,27(2):165-168.
    [51]吴春英,吴盈禧,夏俊林,黄霞.动态膜生物反应器的运行稳定性及其影响因素研究[J].中国给水排水,2009,25(21):21-25.
    [52]Ren X., Shon H. K., Jang N., Lee Y. G, Bae M, Cho K., Kim I. S.. Novel membrane bioreactor (MBR) coupled with a nonwoven fabric filter for household wastewater treatment [J]. Water Res.,2010,44(3):751-760.
    [53]Fuchs W., Resch C, Kernstock M., Mayer M., Schoeberl P., Braun R.. Influence of operational conditions on the performance of a mesh filter activated sludge process [J]. Water Res., 2005,39(5):803-810.
    [54]梁娅,董滨,周增炎,屈计宁.自生动态膜生物反应器曝气方式的影响[J].水处理技术,2007,33(3):36-41.
    [55]孙丰凯,张建,张成禄,李超,李燕,陈素红.三维滤布自生动态膜-生物反应器运行特征[J].环境工程,2009,27(6):35-37.
    [56]刘艳鹏,杨凤林,柳丽芬,王婵婵.膜生物反应器中新型无纺布膜过滤特性及膜污染特征[J].环境工程学报,2009,3(5):844-848.
    [57]Chu H., Cao D., Dong B., Qiang Z.. Bio-diatomite dynamic membrane reactor for micro-polluted surface water treatment [J]. Water Res.,2010,44(5):1573-1579.
    [58]范彬,黄霞,文湘华,于妍.微网生物动态膜过滤性能的研究[J].环境科学,2003,24(1):91-96.
    [59]Zhang J., Han X., Jiang B., Qiu X., Gao B.. A hybrid system combining self-forming dynamic membrane bioreactor (SFDMBR) with coagulation process for advanced treatment of bleaching effluent from straw pulping process [J]. Desalin. Water Treat.,2010,18(1-3):212-216.
    [60]郭冀峰,王荣昌,夏四清.复合式自生动态膜生物反应器处理表面活性剂废水[J].中国给水排水,2008,24(1):13-16,21.
    [61]Flemming H. C, Wingender J.. Relevance of microbial extracellular polymeric substances (EPSs). Part I. Structural and ecological aspects [J], Water Sci. Technol.,2001,43 (6):1-8.
    [62]Morgan J. W., Forster C. F., Evison L. M.. A comparative study of the nature of biopolymers extracted from anaerobic and activated sludges [J]. Water Res.,1990,24(6):743-750.
    [63]Liu H., Herbert H. P. Fang. Extraction of extracellular polymeric substances (EPS) of Sludges[J]. J. Biotechnol.,2002,95(3):249-256.
    [64]Rudd T., Sterrit R. M., Lester J. W.. Extraction of extracellular polymers from activated sludge [J]. Biotechnol. Lett.,1983,5(5):327-332.
    [65]Urbain V., Block J. C, Manem J.. Bioflocculation in activated sludge:analytical approach [J]. Water Res.,1993,27(5):829-838.
    [66]刘锐,黄霞,范彬,藤本真由美,钱易.膜—生物反应器中溶解性微生物产物的研究进展[J].环境污染治理技术与设备,2002,3(1):1-7.
    [67]Yeom I. T., Lee K. R., Choi Y. G, Kim H. S., Lee Y.. Evaluation of a membrane bioreactor system coupled with sludge pretreatment for aerobic sludge digestion [J]. Environ. Technol.,2007, 28(7):723-730.
    [68]Itonaga T., Kimura K., Watanabe Y. Influence of suspension viscosity and colloidal particles on permeability of membrane used in membrane bioreactor (MBR) [J]. Water Sci. Technol.,2004,50(12):301-309.
    [69]Wicaksana F, Fane A.G., Chen V, Fibre movement induced by bubbling using submerged hollow fibre membranes [J]. J. Membr. Sci.,2006,271(1-2):186-195.
    [70]Germain E., Stephenson T.. Biomass characteristics, aeration and oxygen transfer in membrane bioreactors:their interrelations explained by a review of aerobic biological processes [J]. Rev. Environ. Sci. Bio/Technol.,2005,4(4):223-233.
    [71]Cabassud C, Masse A., Espinosa-Bouchot M., Sperandio M.. Submerged membrane bioreactors:interactions between membrane filtration and biological activity, in: Proceedings of the Water Environment-Membrane Technology Conference, Seoul, Korea,2004.
    [72]Bae T. H., Tak T. M.. Interpretation of fouling characteristics of ultrafiltration membranes during the filtration of membrane bioreactor mixed liquor [J]. J. Membr. Sci.2005,264(1-2): 151-160.
    [73]Jang N., Ren X., Choi K., Kim I.S.. Comparison of membrane biofouling in nitrification and denitrification for the membrane bio-reactor (MBR). in:Proceedings of the IWA on Aspire, Singapore,2005.
    [74]Jang N. J., Trussell R. S., Merlo R. P., Jenkins D., Hermanowicz S.W., Kim I. S.. Exocellular polymeric substances molecular weight distribution and filtration resistance as a function of food to microorganism ratio in the submerged membrane bioreactor [J], in: Proceedings of the International Congress on Membranes and Membrane Processes (ICOM), Seoul, Korea,2005.
    [75]Wu J., Huang X.. Effect of mixed liquor properties on fouling propensity in membrane bioreactors [J]. J. Membr. Sci.,2009,342(1-2):88-96.
    [76]Meng F., Zhang H., Yang F., Zhang S. Li Y, Zhang X.. Identification of activated sludge properties affecting membrane fouling in submerged membrane bioreactors [J]. Sep. Purif. Technol.,2006,51(1):95-103.
    [77]Li J., Yang F., Li Y, Wong F. S., Chua H. C, Impact of biological constituents and properties of activated sludge on membrane fouling in a novel submerged membrane bioreactor [J]. Desalination.2008,225(1-3):356-365
    [78]Yu S., Zhao F., Zhang X., Jing G, Zhen X.. Effect of components in activated sludge liquor on membrane fouling in a submerged membrane bioreactor [J]. J. Environ. Sci.,2006,28(5): 897-902.
    [79]Kornboonraksa T., Lee S. H.. Factors affecting the performance of membrane bioreactor for piggery wastewater treatment [J]. Bioresour. Technol.,2009,100(12):2926-2932.
    [80]Frolund B., Palmgren R., Keiding K., Nielsen P. H.. Extraction of extracellular polymers from activated sludge using a cation exchange resin [J]. Water Res.,1996,30(8):1749-1758.
    [81]Wilen B., Jin B., Lant P.. The influence of key chemical constituents in activated sludge on surface and flocculating properties [J]. Water Res.,2003,37(9):2127-2139.
    [82]Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J.. Protein measurement with the Folin phenol reagent [J]. J. Biol. Chem.,1951,193(1):265-275.
    [83]Raunkjer A., Jacobsen T. H., Nielseno P. H.. Measurement of pools of Protein, Carbohydrate and lipid in domestic wastewater [J]. Water Res.,1994,28(2):251-262.
    [84]Rand, M. C, Greenberg, A. E., Taras, M. J.. American Public Health Association. Standard methods for the examination of water and wastewater,20th ed [M]. Washington, D.C., American Public Health Association.1998.
    [85]Nguyen T. T., Guo W., Ngo H. H., Vigneswaran S.. A new combined inorganic-organic flocculant (CIOF) as a performance enhancer for aerated submerged membrane bioreactor [J]. Sep. Purif. Technol.,2010,75(2):204-209.
    [86]薛薇SPSS统计分析方法及应用[M].北京:电子工业出版社.2004:236-238.
    [87]刘美,王湛.胞外聚合物对膜污染的影响[J].水处理技术,2007,33(10):7-13.
    [88]Tsuneda S., Aikawa H., Hayashi H., Yuasa A., Hirata A.. Extracellular polymeric substances responsible for bacterial adhesion onto solid surface [J]. FEMS Microbiol. Lett.,2003, 223(2):287-292.
    [89]徐红亮,武小鹰,郑平.胞外多聚物及其对废水生物处理的影响[J].环境科学与技术,2005,28:121-122,124.
    [90]Liu Y, Herbert H. P. Fang. Influences of extracellular polymeric substances (EPS) on flocculation, settling, and dewatering of activated sludge [J]. Water Sci. Technol.,2003,33(3): 237-273.
    [91]Jia X. S., Herbert H. P. Fang. Furumai H.. Surface Charge and Extracellular Polymer of Sludge In the Anaerobic Degradation Process [J]. Water Sci. Tech.,1996,34(5):309-316.
    [92]Sponza D. T.. Extracellular polymer substances and physicochemical properties of flocs in steady-and unsteady-state activated sludge systems [J]. Process Biochem.,2002,37(9):983-998.
    [93]Khan S. J., Visvanathan C. Influence of mechanical mixing intensity on a biofilm structure and permeability in a membrane bioreactor [J]. Desalination,2008,231(1-3):253-267.
    [94]Lee W., Kang S., Shin H.. Sludge characteristics and their contribution to microfiltration in submerged membrane bioreactors [J]. J. Membr. Sci.,2003,216(1-3):217-227.
    [95]Liao B. Q., Allen D.G., Droppo I. G, Leppard G. G, Liss S. N.. Surface properties of sludge and their role in bioflocculation and settleability [J]. Water Res.,2001,35(2):339-350.
    [96]Liss S. N., Droppo I. G, Flannigan D. T., Leppard G. G. Floc architecture in wastewater and natural riverine systems [J]. Environ. Sci. Technol.,1996,30(2):680-686.
    [97]Li X., Yang S.. Influence of loosely bound extracellular polymeric substances (EPS) on the flocculation, sedimentation and dewaterability of activated sludge [J]. Water Res.,2007,41(5): 1022-1030.
    [98]Poxon T. L., Darby J. L.. Extracellular polyanions in digested sludge:measurement and relationship to sludge dewaterability [J]. Water Res.,1997,31(4):749-758.
    [99]Hwang B. K., Lee W. N., Yeon K. M., Park P. K., Lee C. H., Chang S., Drews A., Kraume M.. Correlating TMP Increases with Microbial Characteristics in the Bio-Cake on the Membrane Surface in a Membrane Bioreactor [J]. Environ. Sci. Technol.,2008,42 (11):3963-3968.
    [100]Morgan J. W., Forster C. F., Evison L.. A comparative study of the nature of biopolymers extracted from anaerobic and activated sludge [J]. Water Res.,1990,24(6):743-750.
    [101]Jorand F., Boue-Bigne F., Block J.C., Urbain V.. Hydrophobic/hydrophilic properties of activated sludge exopolymeric substances [J]. Water Sci. Technol.,1998,37(4-5):307-315.
    [102]Wu Z., Wang Z., Zhou Z., Yu G, Gu G. Sludge rheological and physiological characteristics in a pilot-scale submerged membrane bioreactor [J]. Desalination,2007,212(1-3):152-164.
    [103]Jin B., Wilen B. M., Lant P.. Impacts of morphological, physical and chemical properties of sludge flocs on dewaterability of activated sludge [J]. Chem. Eng. J.,2004,98(1-2):115-126.
    [104]Wu Z., Wang Q., Wang Z., Ma Y., Zhou Q., Yang D.. Membrane fouling properties under different filtration modes in a submerged membrane bioreactor [J]. Proc. Biochem.,2010,45(10): 1699-1706.
    [105]Hwang K. J., Chen H. C, Tsai M. H.. Analysis of Particle Fouling in Constant-Pressure Submerged Membrane Filtration [J]. Chem. Eng. Technol.,2010,33(8):1327-1333.
    [106]Meng F., Zhang H., Yang F., Liu L.. Characterization of cake layer in submerged membrane bioreactor [J]. Environ. Sci. Technol.,2007,41(11):4065-4070.
    [107]Bae T. H., Tak T. M.. Interpretation of fouling characteristics of ultrafiltration membranes during the filtration of membrane bioreactor mixed liquor [J]. J. Membr. Sci.,2005,264(1-2): 151-160.
    [108]Chang I. S., Lee C. H.. Membrane filtration characteristics in membrane-coupled activated sludge system-the effect of physiological states of activated sludge on membrane fouling [J]. Desalination,1998,120(3):221-233.
    [109]Ji J., Qiu J., Wai N., Wong F. S., Li Y.. Influence of organic and inorganic flocculants on physical-chemical properties of biomass and membrane-fouling rate [J]. Water Res.,2010,44(5): 1627-1635.
    [110]Jin Y. L., Lee W. N., Lee C. H., Chang I. S., Huang X. Swaminathan T.. Effect of DO concentration on biofilm structure and membrane filterability in submerged membrane bioreactor [J]. Water Res.,2006,40(15):2829-2836.
    [111]Nuengjamnong C, Kweon J. H., Cho J., Ahn K. H., Polprasert C. Influence of Extracellular Polymeric Substances on Membrane Fouling and Cleaning in a Submerged Membrane Bioreactor [J]. Colloid J.,2005,67(3):351-356.
    [112]Chu H., Li X.. Membrane Fouling in a Membrane Bioreactor (MBR):Sludge Cake Formation and Fouling Characteristics [J]. Biotechnol. Bioeng.,2005,90(3):323-331.
    [113]Lee D. Y., Li Y. Y, Noike T., Ch G. Behavior of extracellular polymers and bio-fouling during hydrogen fermentation with a membrane bioreactor [J]. J. Membr. Sci.,2008,322(1): 13-18.
    [114]Ng H. Y., Tan T. W., Ong S. L.. Membrane Fouling of Submerged Membrane Bioreactors: Impact of Mean Cell Residence Time and the Contributing Factors [J]. Environ. Sci. Technol., 2006,40(8):2706-2713.
    [115]Wang Z., Wu Z., Tang S.. Extracellular polymeric substances (EPS) properties and their effects on membrane fouling in a submerged membrane bioreactor [J]. Water Res.,2009,43(9): 2504-2512.
    [116]Chu L., Li S.. Filtration capability and operational characteristics of dynamic membrane bioreactor for municipal wastewater treatment [J]. Sep. Purif. Technol.,2006,51(2):173-179.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700