用户名: 密码: 验证码:
丝状菌对活性污泥性质及自生动态膜过滤性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
污泥膨胀是活性污泥处理工艺常见的问题之一,自生动态膜生物反应器(Self-forming dynamic membrane bioreactor, SFDMBR)也不例外。SFDMBR利用过滤初期混合液中的颗粒、胶体以及溶解性有机物在廉价微网基材上的自然吸附/沉积形成自生动态膜(Self-forming dynamic membranes, SFDMs)取得与微滤膜近似的泥水分离效果。因此,SFDM的性质是影响SFDMBR过滤性能的关键因素。而活性污泥作为SFDM的主要成分,其性质的变化必然会对SFDM的性质产生重要影响。丝状菌作为活性污泥的主要组成部分,其含量的多少也必然会影响活性污泥的一些重要性质,从而影响SFDM的过滤性能。因此有必要研究丝状菌对活性污泥性质以及SFDM过滤性能的影响,为SFDMBR的应用和推广提供重要的理论依据。
     采用统计分析的方法研究丝状菌与活性污泥12个基本性质之间的线性关系,了解丝状菌对活性污泥性质的影响。所研究的污泥基本性质包括颗粒平均粒径(Volume moment mean diameter, Dvm)、颗粒分型维数(Fractal dimension, Df)、相对疏水性(Relative hydrophobic, RH)、胞外聚合物(Extracellular polymeric substance, EPS)、多糖(Polysaccharide, EPSc)、蛋白(Protein, EPSp)、蛋白与多糖的比例(EPSp/EPSc)、粘度(Viscosity)、比好氧速率(Specific oxygen uptake rate, SOUR)、污泥表面电荷(Zeta potential)、污泥沉积指数(SVI)、挥发性物质比例(MLVSS/MLSS)、研究结果表明:丝状菌含量与活性污泥的比耗氧速率(rp=0.966,P=0.000)、颗粒平均粒径(rp=0.82,P=0.02)和粘度(rp=0.765,P=0.045)呈较强的正相关性;与EPSp/EPSc (rp=-0.781,P=0.038)呈较强的负相关性;与颗粒分形维数(rp=-0.733,P=0.061)呈较弱的负相关性。其中比耗氧速率与EPSp/EPSc(rp=-0.781,P=0.038)呈较强负相关性,说明丝状菌含量的增加能够提高污泥活性,且污泥活性的提高导致污泥中多糖的相对含量增加。同时在活性污泥性质中颗粒平均粒径,颗粒的分形维数,EPSp/EPSc以及粘度是影响SFDM过滤特性的重要因素。
     用所选取的7种不同丝状菌含量的污泥,在SFDMBR中开展批式短期过滤实验,考察不同丝状菌含量污泥对SFDM过滤性能的影响。研究结果表明:无论丝状菌含量多少,SFDMBR运行稳定时都能达到较好的出水效果,出水浊度≤1.5NTU。丝状菌含量是影响稳定运行时SFDMs出水通量和阻力的关键因素。相对于丝状菌含量适宜(FI=2, FI=3,FI=4)的污泥形成的SFDMs,丝状菌缺乏(FI=0, FI=1)和过多(FI=5,FI=6)的污泥形成的SFDMs,出水通量较小且过滤阻力较大。污泥中丝状菌含量适宜时,出水通量较大,过滤阻力较小,运行效果较好。根据SFDMBR的过滤特性,可将其过滤过程分为三个阶段:形成阶段,初期快速污染阶段和稳定过滤阶段。且污泥中丝状菌含量的多少影响着SFDM形成时间以及污染速率,说明丝状菌在SFDM的过滤过程中起重要作用。
     为了进一步深入分析丝状菌影响SFDM过滤性能的原因,本文进一步分析了不同丝状菌含量污泥形成的SFDM的性质。研究结果表明:丝状菌指数与SFDM的压缩性(rp=0.901,P=0.006)和Dvm (rp=0.947, P=0.001)之间存在较强的正相关性,与EPSp/EPSc (rp=-0.825, P=0.022)和Dr(rp=-0.795.P=0.033)之间存在较强的负相关性。丝状菌对SFDM性质的影响主要表现在三方面:物质组成,颗粒组成以及SFDM的结构。SFDM主要由多糖、蛋白以及混合液中颗粒粒径相对较大的物质组成。且随着丝状菌含量的增加SFDM中多糖的相对含量和颗粒粒径随着增加,分形维数减小。当污泥中丝状菌含量缺乏(FI=0, FI=1)时,形成的SFDMs结构紧凑密实,而当污泥中丝状菌含量过多(FI=5,FI=6)时,形成的SFDMs结构致密且厚度大,不利于SFDMs的过滤;当污泥中丝状菌含量正常(FI=2,FI=3,FI=4)时,形成的SFDMs具有一定网状结构,有利于SFDMs的过滤。因此,在SFDMBR运行过程中,应当控制丝状菌的生长情况,提高SFDM的过滤性能。
Sludge bulking in biological wastewater treatment processes often occurs and there is no exception in self-forming dynamic membrane bioreactor (SFDMBR). SFDMBR take advantage of the self-forming dynamic membranes (SFDMs)(i.e. initial "desired" sludge layers developed on the coarse-pore materials) to achieve required solid-liquid separation efficiency. Since the characteristics of SFDM are the significant factors affecting the filtration performance. The characteristics of SFDM are reasonably expected to be significantly affected by sludge properties, which is an important part of SFDM. As the main component of activated sludge, the content of filamentous bacteria is bound to influence some important properties of the activated sludge, thus affecting the filtration characteristics of SFDM. It is necessary to study the effects of filamentous bacteria on the activated sludge properties and the filtration characteristics of self-forming dynamic membranes (SFDMs) to provide important theoretical basis of the application and promotion of SFDMBR.
     In order to understand the influence of filamentous bacteria on the activated sludge properties, the twelve sludge properties were systematical investigated. Sludge properties includes volume moment mean diameter (Dvm), fractal dimension (Df), relative hydrophobic (RH), extracellular polymeric substance (EPS), polysaccharide (EPSc), protein (EPSp), EPSp/EPSc, viscosity, specific oxygen uptake rate (SOUR), zeta potential, sludge settlement index (SVI) and MLVSS/MLSS. The results showed that filamentous bacteria density had a strong positive effect on SOUR (rp=0.966, P=0.000), Dvm (rp=0.82, P=0.02) and viscosity (rp=0.765, P=0.045), but had a strong negative effect on EPSp/EPSc (rp=-0.781, P=0.038) and a moderate negative effect on Df (rp=-0.767, P=0.044). SOUR was correlated inversely to EPSp/EPSc (rp=-0.781, P=0.038), which indicated that the increase of filamentous bacteria content can improve the activity of sludge, leading to the increase in relative content of polysaccharide. In these characteristics of activated sludge, Dvm, viscosity, EPSp/EPSc and Df were the predominant factors affecting on the filtration characteristics of SFDM.
     This paper researched the influence of filamentous bacteria on the filtration characteristics of SFDM by a series of short-term filtration experiments about activated sludge with different filamentous bacteria density (FI) in SFDMBR. The results showed that the effluent turbidity was not affected by filamentous bacteria density, and when the SFDMBR run stable, the effluent turbidity was below1.5NTU. Filamentous bacteria content is the predominant factors affecting on the effluent flux and resistance of SFDMs. Relative to the SFDMs formed by the sludge with appropriate filamentous bacteria (FI=2, FI=3, FI=4), the SFDMs formed by the sludge with little filamentous bacteria (FI=0, FI=1) or excessive filamentous bacteria (FI=5, FI=6) had better filtration performance, the effluent flux is larger, the filtration resistance is small. According to the filtration characteristics of SFDMs, the filtration process could be divided into three stages:rapid formation stage, rapid growth stage and steady stage, and they changed as the concentrations of filamentous bacteria, indicating filamentous bacteria play an important role in the filtration process of SFDM.
     To further understand the reasons that caused these results, the characteristics of SFDM also were studied. And the results indicated that filamentous bacteria density had a strong positive effect on compressibility (rp=0.901, P=0.006) and Dvm (rp=0.947, P=0.001) of SFDM, but had a strong negative effect on EPSp/EPSc (rp=-0.825, P=0.022) and a moderate negative effect on D,(rp=-0.795, P=0.033). Filamentous bacteria mainly affected SFDM in three aspects:the type of material, particle composition and the structure of SFDM. Protein and polysaccharide was the main component of SFDMs regardless of FI, but the filamentous bacteria density had a strong relation with EPSp/EPSc whether in mixture or in SFDM. The SFDMs were made up of relatively large particle in sludge suspension. The structure of SFDMs formed by the sludge with little filamentous bacteria (FI=0, FI=1) was compact and dense; The structure of SFDMs formed by the sludge with excessive filamentous bacteria (FI=5, FI=6) was thickness and non-porous; the strueture of SFDMs formed by the sludge with appropriate filamentous bacteria (FI=2, FI=3, FI=4) was net and porous, which is better to filter. So in the filtration process, the growth of filamentous bacteria should be controlled to improve the filtration performance of SFDM.
引文
[1]祁泉淞.我国水资源现状及其水资源管理中的问题和对策[J].中国水运(下半月),2008,8(2):180-181.
    [2]雷川华,吴运卿.我国水资源现状、问题与对策研究[J].节水灌溉,2007,(4):41-43.
    [3]Smith J, The status of membrane bioreactor technology [J]. Trends Biotechnol,2008,26(2): 109-116.
    [4]Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Marinas BJ, Mayes AM. Science and technology for water purification in the coming decades [J]. Nature,2008,452(7185): 301-310.
    [5]陈龙祥,由涛,张庆文,洪厚胜.膜生物反应器研究与工程应用进展[J].水处理技术,2009,35(10):16-20.
    [6]Le-Clech P, Chen V, Fane TAG. Fouling in membrane bioreactors used in wastewater treatment [J]. Journal of Membrane Science,2006,284(1-2):17-53.
    [7]Wang ZW, Wu ZC, Mai SH, Yang CF, Wang XH, An Y, Zhou Z. Research and applications of membrane bioreactors in China:Progress and prospect [J]. Separation and Purification Technology,2008,62(2):249-263.
    [8]Huang X, Xiao K, Shen Y. Recent advances in membrane bioreactor technology for wastewater treatment in China [J]. Front. Environment Science Engineering, China,2010, 4(3):245-271.
    [9]Fan B, Huang X. Characteristics of a self-Forming dynamic membrane coupled with a bioreactor for municipal wastewater treatment [J]. Environment Science Technology,2002, 36:5251-5245.
    [10]Zhou XH, Shi HC, Cai Q, He M, Wu YX. Function of self-forming dynamic membrane and biokinetic parameters' determination by microelectrode [J]. Water Research,2008,42: 2369-2376.
    [11]Meng F, Chae SR, Drews A, Kraume M, Shin HS, Yang F. Recent advances in membrane bioreactors (MBRs):Membrane fouling and membrane material [J]. Water Research,2009,43:1489-1512.
    [12]Liang S, Zhao T, Zhang J, Sun F, Liu C, Song L. Determination of fouling-related critical flux in self-forming dynamic membrane bioreactors:Interference of membrane compressibility [J]. Journal of Membrane Science,2012,390:113-120.
    [13]Ersahin ME, Ozgun H, Dereli RK, Ozturk I, Roest K, van Lier JB. A review on dynamic membrane filtration:Materials, applications and future perspectives [J]. Bioresource Technology,2012,122:196-206.
    [14]Sephenson T, Judd S, Jesserson B. Membrane bioreactors for wastewater treatement [J]. London:IWA Publish,2000:4.
    [15]Brockmann M. Seyfried CF. Sludge activity under the conditions of crossllow microfiltration [J]. Water Science and Technology,1997,35(10):173-181.
    [16]Yamamoto K, Hiasa M, Mahmood T. Direct solid liquid separation using hollow fiber membrane in an activated sludge aeration tank [J]. Water Science and Technology,1989, 21(1):43-54.
    [17]顾国维,何义亮.膜生物反应器在污水处理中的研究和应用[M].北京:化学工业出版社,2002.
    [18]Smith C, DiGregorio D, Talcott R. The use of ultrafiltration membranes for activated sludge separation [J]. Proceedings of the 24th Annual Purdue Industrial Waste Conference, 1969,
    [19]樊耀波,王菊思.水与废水处理中的膜生物反应器技术[J].环境科学,1995,16(5):27-29.
    [20]Yang WB, Cicek N, Ilg J. State-of-the-art of membrane bioreactors:Worldwide research and commercial applications in North America [J]. Journal of Membrane Science,2006, 270(1-2):201-211.
    [21]孟凡刚.膜生物反应器膜污染行为的识别与表征.[博士学位论文].大连:大连理工大学,2007.
    [22]王宏杰.气水交替膜生物反应器处理生活污水的效能研究.[博士学位论文].哈尔滨:哈尔滨工业大学,2010.
    [23]尹艳华,徐文国,赵毅,王连军,徐复铭,陈育红.膜生物反应器处理餐饮废水的试验研究及经济核算[J].工业水处理,2004,24(1):30-32.
    [24]徐元勤,从广‘治,刘德滨,崔学刚,韩宏大.膜生物反应器用于城市污水处理与回用的试验研究[J].膜科学与技术,2003,23(3):46-48.
    [25]杨宗政,孙永军,庞金钊.普通活性污泥膜生物反应器处理洗车废水的应用研究[J].环境污染与防治,2003,25(2):104-106.
    [26]李超,孟庆波.应用膜生物反应器处理焦化污水[J].工业水处理,2005,25(4):37-39.
    [27]王媛媛,贾文璟,杨轶,王超阳.膜生物反应器处理含油废水研究进展[J].化工时刊,2007,21(9):50-53.
    [28]曾萍,吴志超,张鹏,顾国维.膜生物反应器处理高氨氮有机废水的研究[J].水处理技术,2004,30(4):202-204.
    [29]沈树宝,陈英文,夏明芳,范俊,邹敏,胡永红.仿生膜生物反应器处理高浓度有机农药废水的研究[J].工业水处理,2003,23(3):40-43.
    [30]白晓慧,陈英旭.一体式膜生物反应器处理医药化工废水的试验[J].环境污染与防治,2000,22(6):19-21.
    [31]吴志超,金玉兰,顾国维.应用膜生物反应器处理药酒废水的启动试验初探[J].环境科学与技术,2005,28(2):85-87+119.
    [32]陈兆波,张景成,任月明,呼冬雪.膜生物反应器处理中药废水的污泥特性研究[J].哈尔滨工程大学学报,2005,26(2):259-263.
    [33]张颖,李力,杨振刚,顾平.膜生物反应器用于处理医院污水[J].中国给水排水,2005,21(2):83-85.
    [34]贾海涛,杨开,贾之辉.应用膜生物反应器处理电镀厂废水的研究[J].环境科学与技术,2003,26(2):38-39+41-65.
    [35]季明.膜生物反应器深度处理碱法草浆中段废水研究.[博L学位论文].济南:山东大学,2009.
    [36]李静,高玉杰,任继春.膜生物反应技术与制浆造纸废水处理[J].黑龙江造纸,2003,(4):46-47.
    [37]胡维超.膜生物反应器处理造纸废水的研究[J].工业水处理,2009,29(3):36-39.
    [38]陈梅雪,王菊思,樊耀波,王怡中.两种膜生物反应器处理印染废水的比较[J].中国给水排水,2002,18(7):42-44.
    [39]Adham S, Gagliardo P, Boulos L, Oppenheimer J, Trussell R. Feasibility of the membrane bioreactor process for water reclamation [J]. Water Science and Technology, 2001,43(10):203-209.
    [40]杨小丽,王世和.膜生物反应器研究现状与展望[J].污染防治技术,2002,15(4):28-30.
    [41]李占臣,史密伟,朱晓磊,王路光.膜生物反应器的研究与进展[J].环境与可持续发展,2007,(6):28-30.
    [42]叶茂盛.工业滤布抗污染动态膜的制备、表征及性能研究.[博士学位论文].大连:大连理工大学,2008.
    [43]Wang Z, Wu Z. A Review of Membrane Fouling in MBRs:Characteristics and Role of Sludge Cake Formed on Membrane Surfaces [J]. Separation and Purification Technology, 2009,44(15):3571-3596.
    [44]赵学辉,戴海平,范运双.新型膜生物反应器及膜污染的研究进展[J].工业水处理,2009,29(3):8-11.
    [45]薛罡,何圣兵,刘亚男.膜法单元水处理技术[M].北京:中国建筑工业出版社,2008.
    [46]李晓波,胡保安,顾平.动态膜分离技术研究进展[J].膜科学与技术,2007,27(4):91-95.
    [47]叶茂盛,张捍民,杨凤林,崔霞.动态膜-生物反应器中新型预涂剂的抗污染特性研究[J].环境科学,2007,28(11):2494-2499.
    [48]Ye M, Zhang H, Wei Q, Lei H, Yang F, Zhang X. Study on the suitable thickness of a PAC-precoated dynamic membrane coupled with a bioreactor for municipal wastewater treatment [J]. Desalination,2006,194(1-3):108-120.
    [49]Al-Malack MH, Anderson GK. Use of MnO2 as a dynamic membrane with crossflow microfiltration:slow membraning technique [J]. Desalination,1997,109(1):15-24.
    [50]Ren X, Shon HK, Jang N, Lee YG, Bae M, Lee J, Cho K, Kim IS. Novel membrane bioreactor (MBR) coupled with a nonwoven fabric filter for household wastewater treatment [J]. Water Research,2010,44(3):751-760.
    [51]邱宪锋,张建,高宝玉,张成禄,陈欢.内循环动态膜生物反应器处理生活污水[J].中国环境科学,2007,27(2):165-168.
    [52]吴春英,吴盈禧,夏俊林,黄霞.动态膜生物反应器的运行稳定性及其影响因素研究[J].中国给水排水,2009,25(21):21-25.
    [53]Fuchs W, Resch C, Kernstock M, Mayer M, Schoeberl P, Braun R. Influence of operational conditions on the performance of a mesh filter activated sludge process [J]. Water Research,2005,39(5):803-810.
    [54]梁娅,董滨,周增炎,屈计宁.自生动态膜生物反应器曝气方式的影响[J].水处理技术,2007,33(3):36-38.
    [55]Satyawali Y, Balakrishnan M. Treatment of distillery effluent in a membrane bioreactor (MBR) equipped with mesh filter [J]. Separation and Purification Technology, 2008,63(2):278-286.
    [56]傅大放.林玉姣.几种不同丛材动态膜生物反应器污泥层性质分析[J].化工学报,2008,59(10):2596-2600.
    [57]刘艳鹏,杨凤林,柳丽芬,王婵婵.膜生物反应器中新型无纺布膜过滤特性及膜污染特征[J].环境工程学报,2009,3(5):844-848.
    [58]Chu HQ, Cao DW, Dong BZ, Qiang ZM. Bio-diatomite dynamic membrane reactor for micro-polluted surface water treatment [J]. Water Research,2010,44(5):1573-1579.
    [59]Zhao YJ, Tan Y, Wong FS, Fane AG, Xu NP. Formation of dynamic membranes for oily water separation by crossflow filtration [J]. Separation and Purification Technology,2005, 44(3):212-220.
    [60]Zhang JA, Han XL, Jiang B, Qiu XF, Gao BY. A hybrid system combining self-forming dynamic membrane bioreactor with coagulation process for advanced treatment of bleaching effluent from straw pulping process [J]. Desalination and Water Treatment,2010, 18(1-3):212-216.
    [61]Yoshiaki Kiso. wastewater treatment Performance of a filtration bio-reactor equipped with a mesh as a filter material [J]. Water Research,2000,34(17):4143-4150.
    [62]Lee W. Kang S, Shin H, Sludge characteristics and their contribution to microfiltration in submerged membrane bioreactors,Journal of Membrane Science,2003,216:217-227.
    [63]范彬,黄霞.动态膜生物反应器处理生活污水的研究[J].环境科学,2002,23(6):51-56.
    [64]范彬,黄霞.微网生物动态膜过滤性能的研究[J].环境科学,2003,24(1):91-97.
    [65]范彬,黄霞.出水水头对自生生物动态膜过滤性能的影响[J].环境科学2003.24(5):65-69.
    [66]高松.周增炎,高廷耀.自组生物动态膜在污泥截留中的应用研究[J].净水技术2005,24(1):14-17
    [67]Liu HB, Yang CZ, Pu WH, Zhang JD. Formation mechanism and structure of dynamic membrane in the dynamic membrane bioreactor [J]. Chemical Engineering Journal, 2009,148(2-3):290-295.
    [68]Chu LB, Li S. Filtration capability and operational characteristics of dynamic membrane bioreactor for municipal wastewater treatment [J]. Separation and Purification Technology.2006,51(2):173-179.
    [69]王锦.王晓昌.超滤动态膜的炎型及其数模型[J].西安建筑科技大学学报、2001,33(3):236-249.
    [70]Urbain V, Block JC, Manem J. Bioflocculation in activated sludge:analytical approach [J]. Water Research,1993,27(5):829-838.
    [71]Cabassud C, Masse A, Espinosa-Bouchot M, Sperandio M. Submerged membrane bioreactors:interactions between membrane filtration and biological activity[M]. in: Proceedings of the Water Environment-Membrane Technology Conference, Seoul, Korea, 2004.
    [72]Bae TH, Tak TM. Interpretation of fouling characteristics of ultrafiltration membranes during the filtration of membrane bioreactor mixed liquor [J]. Journal of Membrane Science,2005,264(1-2):151-160.
    [73]Jang N, Ren X, Choi K, Kim IS. Comparison of membrane biofouling in nitrification and denitrification for the membrane bio-reactor (MBR) [M]. in:Proceedings of the IWA on Aspire, Singapore,2005.
    [74]Wu J, Huang X. Effect of mixed liquor properties on fouling propensity in membrane bioreactors [J]. Journal of Membrane Science,2009,342(1-2):88-96.
    [75]Meng F, Zhang H, Yang F, Zhang S, Li Y, Zhang X. Identification of activated sludge properties affecting membrane fouling in submerged membrane bioreactors [J]. Separation and Purification Technology,2006,51(1):95-103.
    [76]Li J, Yang F, Li Y, Wong FS, Chua HC, Impact of biological constituents and properties of activated sludge on membrane fouling in a novel submerged membrane bioreactor [J]. Desalination,2008,225(1-3):356-365
    [77]Yu S, Zhao F, Zhang X, Jing G, Zhen X. Effect of components in activated sludge liquor on membrane fouling in a submerged membrane bioreactor [J]. Journal of Environment Science,2006,28(5):897-902.
    [78]Kornboonraksa T, Lee SH. Factors affecting the performance of membrane bioreactor for piggery wastewater treatment [J]. Bioresource Technology,2009,100(12):2926-2932.
    [79]Palm JC, Jenkins D, Parker DS. Relationship between organic loading, dissolved oxygen concentration and sludge process [J]. JWPCF,1980,52(10):2484-2506
    [80]崔和平,彭永臻,周利,高春娣,付振强.关于污泥膨胀研究的现状与展望.(给水排水教研室)1997.
    [81]Krhutkova O, Ruzickova I, Wanner J. Microbial evaluation of activated sludge and alamentous population at eight Czech nutrient removal activated sludge plants during year 2000 [J], Water Science Technology,2002,46:471-478.
    [82]Choi JG, Bae TH, Kim JH.The behavior of membrane fouling initiation on the cross flow membrane bioreactor system. Journal of Membrane Scienee,2002,203 (1-2):103-111.
    [83]Li J, Li Y, Ohandja DG, Yang F, Wong FS. Chua HC. Impact of filamentous bacteria on properties of activated sludge and membrane-fouling rate in a submerged MBR [J]. Separation and Purification Technology,2008,59(3):238-243.
    [84]Meng F, Yang F, Xiao J, Zhang H, Gong Z. A new insight into membrane fouling mechanism during membrane filtration of bulking and normal sludge suspension [J]. Journal of Membrane Science,2006,285:159-165.
    [85]杨造燕,匡志花,顾平等.膜生物反应器无剩余污泥排放的研究[J].城市环境与城市生态,1999,12(1):16-18
    [86]张颖,任南琪,王爱杰等.一体式膜生物反应器处理蛋白类废水研究[J].化学工程,2002,30(1):42-44
    [87]MeCarthy AA, Shea DG, Murray NT. Effect of cell morphology on dead end filtration of the dimorphic yeast marxianus var. marxianus NRRLy2415 [J]. Biotechnology Progress, 1998,14(2):279-285
    [88]王勇,孙寓妓,黄霞.丝状菌对膜一生物反应器中膜污染过程的影响[J].中国环境科学2004,24(2):247-251
    [89]Jenkins D, Richard MG. and Daigger GT. Manuel on the causes and control of activated sludge bulking and foaming [M]. Lafayette, CA:Ridgeline Press.1986.
    [90]Eikelboom DH, van Bujisen HJJ. Microscopic sludge investigation manual. The Netherlands:TNO Institute for Environmental Hygiene,1983.
    [91]Wilen B, Jin B, Lant P. The influence of key chemical constituents in activated sludge on surface and flocculating properties [J]. Water Research,2003,37(9):2127-2139.
    [92]Nguyen TT. Guo W, Ngo HH, Vigneswaran S. A new combined inorganic-organic flocculant (CIOF) as a performance enhancer for aerated submerged membrane bioreactor [J]. Separation and Purification. Technology,2010,75(2):204-209.
    [93]Rand MC, Greenberg AE, Taras MJ. American public health association, standard methods for the examination of water and wastewater,20th ed [M]. Washington, DC, American Public Health Association.1998.
    [94]Frolund B, Palmgren R, Keiding K, Nielsen PH. Extraction of extracellular polymers from activated sludge using a cation exchange resin [J]. Water Research,1996,30(8):1749-1758.
    [95]薛薇SPSS统计分析方法及应用[M].北京:电子工业出版社,2004,236-238.
    [96]Witzig R, Manz W, Rosenberger S, Kruger U, Kraume M, Szewzyk U. Microbiological aspects of a bioreactor with submerged membranes for aerobic treatment of municipal wastewater [J]. Water Research,2002,36:394-402.
    [97]Kim J, DiGiano FA. Fouling models for low-pressure membrane systems [J]. Separation and Purification Technology,2009,68:293-304.
    [98]Urbain V, Block JC, Manem J. Bioflocculation in activated sludge:an analytic approach [J]. Water Research,1993,27(5):829-838.
    [99]Dignac MF, Urbain V, Rybacki D, Bruchct A,Snidaro D, Scribe P. Chemical description of extracellular polymers implication on activated sludge floe structure [J]. Water Science and Technology,1998,38(8):45-53.
    [100]Nwyenys E, Baeyens J, Dewil R,Heyder BD. Advanced sludge treatment affects extracellular polymeric substances to improve activated sludge dewatering[J]. I lazard Mat, 2004, 106(B):83-92.
    [101]Keiding K, Nielsen PH. Desorption of organic macromolecules from activated sludge effect of ionic composition [J]. Water Research,1997,31(7):1665-1672.
    [102]Forster CF, Clarke AR. The production of polymer from activated sludge by ethanolic extraction and its relation to treatment plant operation [J].Water Pollut. Control,1983,82: 430-433.
    [103]Liu H, Fang HHP. Extraction of extra cellular polymeric substances (EPS) of sludge [J]. Journal of Biotechnology,2002,95:249-256.
    [104]Nagaoka H. Nitrogen removal by submerged membrane separation activated sludge [J]. Process Water Science and Technology,1999,39(8):107-114
    [105]Meng F, Zhang H, Yang F. Effect of filamentous bacteriaon membrane fouling in submerged membrane bioreactor [J]. Journal of Membrane Science,2006,272(1-2): 161-168
    [106]Hwang BK, Lee WN, Yeon KM, Park PK, Lee CH, Chang S, Drews A, Kraume M. Correlating tmp increases with microbial characteristics in the bio-cake on the membrane surface in a membrane bioreactor [J]. Environment Science Technology,2008,42 (11): 3963-3968.
    [107]Parker DS, Kaufman WJ, Jenkins D. Floc breakup in turbulent flocculation processes [J]. Proceedings of ASCE,1972,98:79-99.
    [108]Liang S, Qu L, Meng F, Han X, Zhang J, Effect of sludge properties on the filtration characteristics of self-forming dynamic membranes (SFDMs) in aerobic bioreactors: Formation time, filtration resistance, and fouling propensity. Journal of Membrane Science [J],2013,436:186-194.
    [109]Judd S. The MBR Book:Principles and Applications of Membrane Bioreactors in Water and Wastewater Treatment [M], Elsevier, Oxford,2006.
    [110]Li J, Li Y, Ohandja DG, Yang F, Wong FS, Chua HC. Impact of filamentous bacteria on properties of activated sludge and membrane-fouling rate in a submerged MBR [J]. Separation and Purification Technology,2008,59:238-243.
    [111]Meng F, Yang F, Xiao J, Zhang H, Gong Z. A new insight into membrane fouling mechanism during membrane filtration of bulking and normal sludge suspension [J]. Journal of Membrane Science,2006,285:159-165.
    [112]Metzger U. Le-Clech P, Stuetz RM,Frimmel FH. Chen V. Characterisation of polymeric fouling in membrane bioreactors and the effect of different filtration modes [J]. Journal of Membrane Science,2007,301(1-2):180-189.
    [113]Zhang XY, Wang ZW,Wu ZC,Lu FH,Tong J, Zang LL. Formation of dynamic membrane in an anaerobic membrane bioreactor for municipal wastewater treatment [J]. Chemical Engineering Journal,2010,165(1):175-183.
    [114]Kumar M, Adham SS, Pearce WR. Investigation of seawater reverse osmosis fouling and its relationship to pretreatment type [J]. Environmental Science & Technology,2006,40(6): 2037-2044.
    [115]Cho JW, Amy G, Pellegrino J, Yoon YM. Characterization of clean and natural organic matter (NOM) fouled NF and UF membranes, and foulants characterization [J]. Desalination,1998.118(1-3):101-108.
    [116]Jarusutthirak C, Amy G,Croue JP. Fouling characteristics of wastewater effluent organic matter (EfOM) isolates on NF and UF membranes [J]. Desalination,2002,145(1-3): 247-255.
    [117]Wu Z,Wang Q, Wang Z, Ma Y. Zhou Q, Yang D. Membrane fouling properties under different filtration modes in a submerged membrane bioreactor [J]. Process Biochemical, 2010,45(10):1699-1706.
    [118]Hwang KJ, Chen HC, Tsai MH. Analysis of particle fouling in constant-pressure submerged membrane filtration [J]. Chemical Engineering Technology,2010,33(8): 1327-1333.
    1119] Meng F, Yang F, Fouling mechanisms of detlocculated sludge, normal sludge, and bulking sludge in membrane bioreaclor [J]. Journal of Membrane Science,2007,305:48-56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700