用户名: 密码: 验证码:
超高压处理蛋白质和多糖胶体特性的变化及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超高压处理技术是一种新型的食品加工和保藏技术,作为这一技术应用的基础,人们不仅要了解超高压处理对食品中微生物和酶的影响,而且应知道超高压处理后食品有关特性的变化。蛋白质和多糖是食品的两类主要成分,并体现出重要的功能特性。本文以豆浆,大豆分离蛋白、乳粉、明胶等蛋白质胶体和卡拉胶、琼胶、果胶等多糖胶体为对象,在≤500MPa、常温、0~30min的条件下,研究超高压处理后胶体有关理化性质的变化,以认识和总结其规律。
     结果表明:豆浆的浊度在>200MPa压力处理后略有下降,但沉降稳定性和热稳定性均提高,油脂、pH和糖分对这种变化有影响。超高压处理使得大豆分离蛋白的溶解性明显改善。扫描电镜的观察显示,压力处理后豆浆和大豆分离蛋白中的蛋白质颗粒的粒径下降,而脂肪球增大。超高压处理后,豆浆和大豆分离蛋白溶液的粘度增加,这主要是蛋白质颗粒降解、浓度增加所致;乳粉溶液处理后也有类似的变化。超高压处理后大豆蛋白溶液的粘弹性也相对提高,其中豆浆的弹性在≤200MPa增加,之后降低。对蛋白质结构的化学分析和红外扫描分析表明,≤400MPa超高压处理后,蛋白质分子发生降解、伸展,二硫键部分断裂,内部疏水基团外露,使其巯基含量和相对疏水性均增大,蛋白质的表面性质和形成凝胶的能力加强,所形成的凝胶细腻、持水性高,凝胶强度略低,但明胶凝胶处理后强度有所提高;电泳的结果还显示,500MPa的压力导致大豆蛋白部分凝聚。
     分子量大,在溶液中呈一定卷曲状态的多糖胶体,超高压处理后由于分子结构的伸展,极性基团外露,使其电荷量和溶剂化作用增强,溶液的粘度
Ultrahigh pressure (UHP) treatment is a new technology for food processing and storage. As the base of the application of this technology, we should not only to understand the effects of UHP treatment on microorganisms, enzymes in food, but also to know the changes of foods' physicochemical properties after the treatment. Protein and polysaccharide are two main components of foods, and they have important functional properties. In this dissertation, protein colloid solutions of soybean milk, isolated soybean protein (ISP), milk powders and gelatin, polysaccharide colloid solutions of carrageenin, agar, high methoxyi pectin, etc. were used as research objects, at the condition of ≤ 500MPa pressure, normal temperature, 0~30min, to study the changes of physicochemical properties after the UHP treatment.
    The results showed that the turbility of soybean milk slightly decreased after the treatment of pressure more than 200MPa, but its settling stability and heat stability increased, oil or fat, pH and sugar affected the changes. UHP treatment greatly improved the solubility of ISP. The results of SEM observation showed that the particle size of protein in soybean milk and ISP solution decreased, and that of fat in soybean milk increased after UHP treatment. The viscosity of soybean milk and ISP solution increased as the result of decreasing of particle size and increasing concentration of protein particles. Solutions of bovine milk powder had similar changes after the treatment. The elasticity of the solutions also increased, but when the pressure was ≥ 200MPa, the elasticity of soybean milk decreased. The chemical analysis and infrared absorption spectrum of the solutions displayed that the protein disassociated and unfolded with the treatment of ≤ 400MPa, disulphar bonds were partially disrupted, and the internal hydrophobic groups demasked. These made the contents of -SH groups and hydrophobicity increasing, which improved the proteins' surface properties and ability for gelatification, and formed gel was fine and with a high water holding capacity, lower gel strength. The gel strength
引文
[1] 林力丸,加压杀菌的周边技术.食品容器,1993,34(9):492-500.
    [2] 吴怀祥,高压食品加工.食品科学,1996,17(1):3-9.
    [3] 陈祥奎,超高压杀菌新技术.食品与发酵工业,1995,4:67-79.
    [4] Knorr, D., Effects of High-hydrostatic-pressure processes on food safety and quality. Food Technology, 1993, 47(6): 156-161.
    [5] Mertens, B., Hydrostatic pressure treatment of food: equipment and processing. In: New Method of Food Preservation. Gould, G.W.(ed.), Blackie, London, 1994,p159-175;
    [6] Ogawa, H., et al, Effects of hydrostatic pressure on sterilization and preservation of freshly squeezed, nonpasteurized citrus jaiee. Nippon Nogeikagaku Kaishi, 1989, 63: 1109-1114.
    [7] Horie, Y., et al, Jam preparation by pressurization. Nippon Nageikagaku kaishi, 1991, 65(6): 975-980.
    [8] Suzuki, A., Mechanism for meat tenderization and acceleration of meat conditioning induced by high pressure treatment. J. of Japanese Society of Food Scierce & Technology, 1995, 42(5): 388-394.
    [9] 青山,高压改良陈米炊饭性能的研究,食品开发,1991,26(12):15-19.
    [10] 高压技术在食品工业上的应用研究及市场动向,食品开发,1992,27(12):5-7.
    [11] 神田幸忠,压力移动冻结法——压力速冻法的研究,食品开发,1991,26(12):12-14.
    [12] Hill, V. M., et al, Influence of high hydrostatic pressure and pH on the rate of Millard browning in a glucose-lysine system, J.of Agile. and Food Chem., 1996,44(2): 594-598.
    [13] Vardag, T., et al, High pressure food processing, Food Techn. Europe. 1995, 2(2): 106,108-110.
    [14] Hite, B. H., The effect of pressure in the preservation of wilk, Bull. West Virginia Univ. Agile. Exp. Stn., 1899, 58:15.
    [15] Bridgrnen, P. W., The coagulation of albumen by pressure, J. Biol Chem. 1914, 19:511.
    [16] Basset, J. et al, Etude sur les effects billogiques des detrapressions: Resistance des bacteries, des diastases et des toxines au pressions tres elevees. Federation Proc. Compt. Rend., 1932, 196:1431.
    [17] Payens, T.A.J., and K. Heremans, Effect of pressure on the temperature dependert association of β-casein. Biopolymers, 1969, 8:335.
    [18] Suzuki, K. et al, Protein denaturation by high pressure, Measurements of??turbidity of isoelectric ovalbumin and horse serum albumin under high pressure. Arch. Biochem. Biophsy., 1963, 101:225-229.
    [19] Hayashi, R. Possibility of high pressure technology for cooking, sterilization, shohuhin to Kaihatsu 1987, 122:55-57.
    [20] Hayashi, R. Utilization of pressure on food processing and storage. Kagaku to Seibutu. 1987, 25:703-706
    [21] Cheftel, J.C., Review: High pressure, microbial inactivation and food preservation, Food Sci.& Technol. Internat., 1995, 1:75-90.
    [22] 林力丸,加压食品的研究开发的最新动向,食品开发,1994,29(2):5-7.
    [23] Mertens,B., Under pressure. Food Manufacture, 1992, 67(1):23-24.
    [24] Hoover, D. G. et al, Biological effects of high hydrostatic pressure on food microorganisms. Food Technol., 1989, 43(3):99-107.
    [25] Alemen, G. D., et al, Ultra-high pressure pasterization of fresh cut pineapple, J. Food Prot., 1994, 57:931-934.
    [26] Styles, M. F., et al, Response of Listeria Monoytogenes and Vibro parahaemolyticus to high hydrostatic pressure. J. food Sci., 1991, 56:1404-1407.
    [27] Metrick, C. et al, Effects of high hydrostatic pressure on heat-resistant and heat-sensitive strains of Salmonella J. Food Sci., 1989, 54:1547-1549,1564.
    [28] Alemen, G. D. et al, Pulsed ultra high pressure treatments for pasteurization of pineapple juice. J. Food Sci., 1996, 61 (2):388-390.
    [29] Hashizume, C. et al, Kinetic analysis of yeast inactivation by high pressure treatment at low temperature, Biosci. Biotech. Biochem., 1995, 59(8): 1455-1458.
    [30] 林力丸,食品加工高压处理技术展望,食品容器,1995,36(9):490-495。
    [31] Raffaei, J. et al, High pressure stress and inactivation of Listeria innocua in inoculated dairy cream, Sciences des Aliments, 1994, 14(3):349-358.
    [32] 园池耕一郎,加压处理杀菌成分影响,食品容器,1994,35(3):256-264.
    [33] 光浦畅洋,高压微生物二一技术,食品开发,1989,24(2):62-67.
    [34] Fornari, C., et al, Inactivation of Bacillus endospores by high pressure treatment. Industria Conserva, 1995, 70(3):259-265.
    [35] 罔崎尚等,加压,加热并用处理耐热性细菌胞子杀菌,日本食品工业学会志,1994,41(8):536-541.
    [36] 石黑幸雄等,抗菌物质存在下高压处理中菌举动与影响,日本农业化学会志,1993,67(2):1707-1711.
    [37] Hayakawa, I. et al, Application of high pressure for spore inactivation and protein denaturation. J. of Food Sci., 1994, 59(1):159-163.
    [38] 高桥观二郎,低温域高压杀菌,食品开发,1990,25(12):15-16.
    [39] 高桥观二郎等,低温域高压杀菌技术研究开发,??食品容器,1994,35(12):682-690.
    [40] 尾山升等,高压大肠杆菌的杀菌,日本食品工业学会志,1993,40(6):406-413.
    [41] 吉罔薰等,高粘物质高压处理应用(2),食品容器,1994,35(11):608-615.
    [42] Pandya, Y. et al, Concurrent effects of high dydrostatic pressure, acidity and heat on the destruction and injury of yeasts. J. of Food Protection, 1995, 58(3):301-304.
    [43] 木村郁夫,水产食品高压处理应用,食品与容器,1994,35(8):428-435.
    [44] Heinz, V, et al, Inactivation of Bacillus Subtilis endospores by ultra-highpressure in combination with other treatments, IFT Annual Meeting, 1995:268.
    [45] Hayakawa, I, et al, Oscillatory compared with continous high pressure sterilization on Bacillus stearothermophilus spores. J. of Food Sci., 1994, 59(1):164-167.
    [46] 西贤司等,Bacillus属芽胞的压力活化杀菌,日本食品工业学会志,1994,41(8):542-549.
    [47] Maggi, A. et al, Use of high pressure for inactivation of Butyric Clostridia in tomato serum. Industria conserva, 1995, 70(3):289-293.
    [48] 齐藤义行,食品用高压处理影响高压处理适性静菌剂探索,食品容器,1994,35(7):368-373.
    [49] Gomes, M.R.A., et al, Effect of high-pressure treatment on the activity of some polyphenoloxidases, Food Chem., 1996, 56(1): 1-5.
    [50] Ogawa, H. et al, Pressure inactivation of yeasts, molds, and pectin esterase in satsuma mandarin juice: Effect of Juice eoncentratiort, pH, and organic acids, and comparison with heat sanitations, Agric, Biol. Chem, 1990, 54:1219-1225.
    [51] Ohmori, T. et al, Effect of high pressure on the protease acitivity in meat. Agric. Biol. Chem. 1991, 55:357-361.
    [52] Ashie, I.N.A., et al, Effect of hydrostatic pressure on α 2 -macroglobulin and selected proteases. J. Food Biochem., 1995, 18(6):377-391.
    [53] Murao, S. et al, Enhancement ofacitivities ofcellulases under high hydrostatic pressure. Biosci. Biotech. Biochem., 1992, 56(8): 1366-1367.
    [54] Seyderhelrn, I., et al, Pressure induced inactivation of selected food enzymes. J. of Food Sci., 1996, 61(2):308-310.
    [55] Asaka, M., et al, Activation of polyphenoloxidase in pear fruits by high pressure treatment. Agric. Biol. Chem., 1991, 55(9):2439-2440.
    [56] Ohmori, T., et al, Biochemical effects of high pressure on the lysosome and proteases involved in it. Biosci. Biotech. Biochem 1992, 56(8): 1285-1288.
    [57] Etoh, H. et al, Stabilization of isothioeyanates in wasabi and horse radish by high pressure treatment and addition of proteins, Nippon shokuhin kogyo Gakkaishi, 1994, 41 (8):531-535.[58] Butz, P. et al, Response of immobilized Bacillus subtilis α-anylase to high pressure treatment. Food Biotech., 1996, 10(2):93-103.
    [59] Schmid, A. et al, Effects of pressure on immobilized enzymes, GBF Monogr. 1988 Set. 11:221-225.
    [60] Fennema,O.R.著,王璋等译,(《食品化学》,中国轻工业出版社,1991,P203~211.
    [61] Gekko,K, et al, Compressibility-structure relationship of globular protein. Biochemistry, 1986, 25:6563-6567.
    [62] Heremans, K., High-pressure effects on protein and other biomolecules. Ann. Rev. Biophys. Bioeng., 1982, 11:1-5.
    [63] Morishima, I. et al, High-pressure NMR of hemoproteins. The effect of pressure on the quaternary structure of hemo-globin. Biochem, & Biophys. Research, 1984, 121:229-236.
    [64] Hayakawa, I. et al, Denaturation of bovine serum albumin(BSA) and ovalbumin by high pressure, heat and chemicals, J. of Food. Sci., 1992, 57(2):288-292.
    [65] Lopez-fandino, R. et al, The effects of high pressure on whey protein deraturation and cheese-making properties of raw milk. J. Dairy Sci., 1996, 79:929-936.
    [66] Tanaka, N. et al, Effect of pressure on the deuterium exchange raction of α-lactalbumin and β-lactoglobulin, Inter. J. Biol. Macromole., 1996:18(1/2):33-39.
    [67] Dumay, E.M. et al, High pressure unfolding and aggregation of β-latoglobulin and the baropretective effects of sucrose, J. Agile, & Food Chem.,1994, 42(9): 1861-1868.
    [68] Tada, K. et al, Effect of pressure treatment on the heat-induced gelation of whey protein concentrate, Animal Sci. & Techn. 1994, 65(9):862-867.
    [69] Tade, K. et at, Effect of pressure treatment on the heat-induced gelation of mixture of actomyosin and whey protein concentrate, Animal Sci, & Techn., 1994,65(9): 868-874.
    [70] Dalgleish, D.G., Denaturation and aggregation of serum proteins and caseins in heated milk, J. Agilc. Food Chem., 1990, 38:1995-1999.
    [71] Ohmiya, K.T. et al, Dissociation and reassociation of enzyme treated caseins under high pressure. J. Dairy Res. 1989, 56:435-440.
    [72] Ohmiya, K. et al, Milk curdling by rennet under high pressure. J. Food Sci., 1987, 52:84-86.
    [73] Suzuki, A. et al, Effect of high pressure treatment on the ultrastructure and myofibrillar protain of beef skeletal muscle. Agric. Biol. Chem., 1990, 54(2):3085-3091.
    [74] 池内义英,高压处理食肉质性状变化,日本食品工业学会志,1993,40(4):299-307.
    [75] Hayashi, R. et al, Iucreased amylase digestibility of pressure treated starch.??Agric, Biol. Chem., 1989, 53:2543-2547.
    [76] Hibi, Y. et al, Effect of high pressure on the crystalline structure of various starch granules. Cereal Chem., 1993, 70(6):671-676.
    [77] Mercier, C. et al, Influence of a pressure treatment of the granular stureture and susceptibility to enzymatic amylolysis of various starches. Starch Staerke, 1968,20:6-11.
    [78] Therelein, J.M., et al, Gelatinisation temperature of starch, as influenced by high pressure. Carbohydr. Res. 1981, 93:304-307.
    [79] 玉川浩司著,杀菌、粘度、褐变及高压处理影响,日本食品科学工业学会志,1996,43(2):194-202。
    [80] King, An-erl V. et al, Studies on the characteristics of thermal behaviour and the optimum process conditions of gelation of high-methoxyl pactin induced by high pressure, J. of the Chinese Agric. Clemical Society (Taiwan), 1994, 32(5):513-521.
    [81] Tsea, J-H et al, Studies on high-preseure-induced gelation of carrragenan using response surface methodology. J. of the Chinede Agric. Chemical Society (Taiwan),1994, 325; 543-552.
    [82] Schutt, M. et al, Fat crystallization in the emulsified state under high hydrotatic pressure, Kiler Milchwirtschaftliche Forschuvgsherichte, 1995, 47(3): 209-220.
    [83] Buchheim, W, et al, use of high pressure treatmeat to influene the crystallization of emulsified fat, DMZ Lebensmittelindustrie und Milchwirtschaft,1996, 117(5): 228-237.
    [84] Cheah, P.B. et al, High-pressure effects on Lipid oxidation, J. of the Amer. Oil Chem. Sci.., 1995, 72(9): 1059-1063.
    [85] Shimada, A., et al, Changes in the palatability of Foods by hydrostatic pressuring. Nippen shokuhin Koggo Gakkalshi, 1990, 37:515-519.
    [86] Butz, P., et al, Ultra-high pressure processing of Onions: chemical and sensory changes, Lebensmittel-Wissenschaft und Technologie, 1994, 27(5): 463-467.
    [87] Chnflel, J.C., Effects of high hydrostatic pressure on food constituents: an overview. High pressure and Biotechnology. 1992, p195-209.
    [88] 张振山,方继功编著,《豆制食品生产工艺与设备》,中国轻工业出版社,1988,p47-70.
    [89] 大连轻工业学院,华南理工大学等合编,(《食品分析》,中国轻工业出版社,1994,p221-226.
    [90] 黄伟坤等编著,《食品检验与分析》,轻工业出版社,1990.
    [91] 罗平编著,《饮料分析与检验》,中国轻工业出版社,1992,p95.
    [92] 周祖康等编著,《胶体化学基础》,北京大学出版社,1987,p316.
    [93] 卢寅泉等,磷酸化大豆蛋白功能特性的研究,食品与发酵工业,1993(1):17-24.
    [94] Galazka, V.B. et al, High pressure effects on emulsifying behavior of whey protein concentrate. J. Food Sci., 1995, 60(6): 134-1343.[95] Janatova, J. et al, The heterogeneity of bovine albumin with respect to sulfhydryl and dimer content. J. Biol. Chem., 1968, 243:3612-3622.
    [96] Kato, A., et al, Hydrophobicitydetermined by a fluorescence probe method and its correlation with surface properties of proteins, Biochem. Biophys. Acta., 1980, 624:13-20.
    [97] Bernal, V.M., et al, Interactions in protein/polysaccaride/calcium gels. J Food Sci., 1987, 52(5): 1121-1124.
    [98] 华家等编译,(《实用蛋白质化学技术》,上海科学技术出版社,1982,p81.
    [99] Hiemenz,P.C.著,周祖康等译,《胶体与表面化学原理》,北京大学出版社,1986,p191.
    [100] 吉罔薰等,高粘物质~高压处理应用(1),食品容器,1994,35(10):548-555.
    [101] Desobry-banon, S., et al, Study of acid and rennet coagulation of high pressurized milk. J Dairy Sci., 1994, 77:3267-3274.
    [102] 陈克复等编译,《食品流变学及其测量》,轻工业出版社,1989,p51.
    [103] Ikeuchi, Y., et al, Dynamic rheological measurements on heat-induced pressurized actomyosin gel. J Agric. Food Chem., 1992, 40:1751-1755.
    [104] Okamoto, M., et al, Application of high pressure to foodprocessing: textual comparison of pressure- and heat-induced gels of food proteins. Agric. Biol. Chem.,1990, 54(1): 183-189.
    [105] Fukushima, D., Recent progress on biotechnology of soybean protein food products. Food Biotech., 1994, 8:83-135.
    [106] Obata, A., et al, Decrease in the gel strenth of tofu caused by enzyme reaction during soybean grinding and its control. Biosci. Biotech. Bioeng., 1993, 57:542-545.
    [107] Christian,G.D.等著,王滇浦等译,《仪器分析》,北京大学出版社,1991,p103.
    [108] Gekko, K. et al, Compressibility of globular proteins in water at 25℃. J Phys. Chem., 1979,83:2706-2709.
    [109] Defaye, A. B. et al, Pressure induced dimerization of metmyoglobin. J Food Sci., 1995, 60(2):262-264.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700