用户名: 密码: 验证码:
活性污泥和生物膜的胞外聚合物性质及其对污泥性能影响的比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
污水处理最常用的活性污泥和生物膜法中,微生物的胞外聚合物(EPS)的性质与污泥性能有着密切的联系。了解活性污泥与生物膜之间的EPS的性质差异,以及EPS对生物膜量和污泥性能的影响情况,对改善反应器运行具有现实意义。本课题对活性污泥、生物膜以及活性污泥一生物膜共存的三种生物处理系统分别开展了EPS性质与污泥性能的比较研究。
     为了完整考察EPS不同层面的聚合物对于污泥性质的影响,提出了分层提取低速离心粘附物(LSCP)、溶解型EPS(SEPS)和结合型胞外聚合物(BEPS)的方法,并通过实验选择加热法作为实验提取BEPS的方法,该方法提取的EPS的量较多,提取的DNA在各组分中所占比重最小。
     对BATH用于测定污泥表面相对疏水性的标准条件进行了实验讨论,确定600nm为实验波长,反应静置时间为20min,推荐使用辛烷和PUM(phosphate-urea-magnesium)缓冲液分别作为疏水相和水相,采用1/10作为疏水相和水相的体积比H/A的取值,并提出了推荐实验步骤。
     考察了贫有机底物条件下营养条件的变化对活性污泥反应器中污泥性能和EPS的影响,发现COD/N比例从120/5降至120/24,污泥的沉降性能变好,SVI从164下降到105,但ESS(出水SS)从5mg/L上升到18mg/L,絮凝性能有所下降。EPS中的蛋白质成分下降,而多糖和腐殖质成分均加倍;COD/P比例从120/1上升到120/0.2,SVI很快上升到200以上,污泥发生膨胀。EPS中蛋白质含量基本不变,腐殖质含量加倍,多糖含量下降。分析微生物菌群结构后证实了,适应该种营养条件的丝状菌成为优势种群。在各工况中,活性污泥的EPS总量中的蛋白质和腐殖质分别与污泥的沉降和絮凝性能呈负相关性。各层面EPS组分对于污泥沉降、絮凝性能的影响表现在微生物胞外最外层的LSCP中的多糖成分,其对沉降性能有着正面的贡献,但与絮凝性能负相关。
     在贫有机底物水质条件下,考察中试规模实验装置中四种材质、形状的填料的EPS性质后,发现斜柱型悬浮填料挂膜最好,其生物膜的EPS总量最大。蛋白质为不同填料上生物膜的EPS中差别最大的一种组分。
     考察生产规模条件下的同一个悬浮填料生物反应池内两种悬浮填料的表面性质后发现,填料A比填料B表面更具亲水性和更高的表面电势。但填料A上的单位面积膜量不如填料B,同时填料A上的生物膜的EPS大于填料B的。两种填料EPS总量的差别,主要由BEPS中的蛋白质的量的差别引起的。比较反应池中的活性污泥和悬浮填料上的生物膜的EPS后发现,同一池内的生物膜EPS的量远大于活性污泥的EPS的量,从组分含量来看,生物膜中的蛋白质含量是活性污泥的1.5倍。污泥的EPS的总量、蛋白质以及BEPS中的蛋白质和DNA含量与污泥表面相对疏水性呈正相关性,说明了生长在填料上的微生物的粘附能力大于活性污泥中微生物的粘附能力。
     即使采用的是相同表面性质的组合填料,三个生产规模的废水处理站水质条件的影响使粘附在填料表面生长的生物膜的EPS存在差异。尽管如此,三种生物膜上的蛋白质组分,却表现出了差不多的含量,均为50mg/g-VSS左右。组合填料上的生物膜的SEPS层面的腐殖质和DNA含量也表现出了与生物膜相对疏水性正相关的关系。给水厂弹性立体填料上的生物膜的EPS含量远小于污水厂生物膜的。
In wastewater treatment, the extracellular polymeric substances (EPS) of microorganism in both the activated sludge and biofilm systems are closely related to sludge characteristics. With respect to improving the operation of a bioreactor, it is important to understand the differences of EPS properties between the activated sludge and biofilm, and the effects of EPS on sludge characteristics and the quantity of biofilm. This study thus compared the EPS properties with the sludge characteristics in three systems--activated sludge, biofilm, and their concurrent system.
     This study firstly proposed extractions for low speed centrifugation products (LSCP), soluble EPS (SEPS) and Bound EPS (BEPS) in order to examine the effects of different layers of EPS on sludge characteristics. Heating extraction was chosen for the BEPS extraction because of the greater quantity of the BEPS extracted and because of the lowest DNA proportion.
     The evaluation of test parameters on bacterial adhesion to hydrocarbons (BATH) method using sludge samples was conducted. Results showed that the relative hydrophobicity (RH) of activated sludge was more stable at a wavelength of 600 nm, and a minimum standing time of 20 min gave stable results. N-octane and phosphate-urea-magnesium (PUM) buffer were found suitable as the hydrophobic and aqueous phase respectively. The volume ratio of the hydrophobic to the aqueous solution is suggested to be 1/10. An optimized procedure is then recommended.
     Feeding with poor organic substance synthetic wastewater in an experimental equipment, the effects of nutrients (COD/N/P) on the composition of EPS and sludge characteristics were studied. When the COD/N ratio changed from 120/5 to 120/24, the activated sludge performed better with the sludge volume index (SVI) value lowering from 164 to 105. Meanwhile the effluent suspended solids (ESS) increased from 5mg/L to 18mg/L, indicating that the bioflocculation of sludge became worse. A decreasing content of protein and a doubling content of humic and polysaccharide in EPS were found in this period. Phosphorus depleted conditions (COD/P=120/0.2) resulted in a rapid increase in SVI, indicating sludge bulking. Both doubling content of humic and decreasing content of polysaccharide in EPS were detected. The analysis of the microbial community structure of the activated sludge showed that the filamentous bacteria were dominant under this condition. A larger amount of protein content in total EPS was associated with poorer settleability, and the humic content in total EPS had significant negative correlation with the bioflocculation of sludge. Thus it can be concluded that the polysaccharide in LSCP had a positive correlation to the settleability and a negative one to the bioflocculation of the sludge, suggesting an important effect of the outermost layer EPS of the cell on sludge characteristics.
     Different performance of four carriers with various structures and materials were shown in a pilot-scale equipment. The amount of total EPS of biofilm in the inclined columnar type carrier was the greatest, with the greatest quantity of biofilm. Furthermore among the EPS of different layers for the four carriers, the protein was the composition showing the greatest variation.
     In the investigation of the surface properties of two carriers in a full-scale suspended carrier bioreactor, carrier A exhibited more hydrophilic surface and carried higher surface potential than carrier B. The amount of EPS of biofilm on carrier A was greater than that on carrier B, and the difference of EPS of the two biofilms was mostly caused by the significant difference of protein composition. The EPS of biofilm on suspended carriers was much greater than that of activated sludge in the same chamber. The protein content of biofilm EPS was 1.5 times of that of activated sludge. Results showed that sludge relative hydrophobicity (RH) increased with protein content and the total content of EPS of biofilm in suspended carriers, and the same relationship was true between the RH and the content of protein and DNA in BEPS. These result confirmed that the microorganisms on carrier had better adhesive properties than those in activated sludge.
     Although using the same combined packing, the EPS of biofilm coming from the three treatment stations were quite different due to the different kinds of wastewater. Nonetheless almost the same content of protein of three biofilm on combined packing were detected--approximately 50mg/g-VSS. Humic and DNA content of SEPS of biofilm in combined packings were also significantly correlated to RH of the sludge. Using the same elastic packing, the EPS of biofilm in wastewater treatment plant was much greater than that in the water treatment plant.
引文
[1]Wingender J., Neu T.R., Flemming H.C. Microbial extracellular polymeric substances —characterization, structure and function [M]. Berlin:Springer,1999
    [2]Liu Y. and Fang H.H. P. Influence of Extracellular Polymeric Substances (EPS) on Flocculation, Settling, and Dewatering of Activated Sludge [J]. Critical Reviews in Environmental Science and Technology,2003,33(3):237-273.
    [3]Geesey GG Microbial exopolymers:ecological and economic considerations [J]. ASM News,1982,48:9-14.
    [4]Characklis W.G, Wilderer P.A., Glossary [A] In:Characklis W.G, Wilderer P.A.(eds). Structure and function of biofilms [M]. Chichester:Wiley,1989:369-371
    [5]Hsieh K. M., Murgel G A., Lion L. W., Shuler M. L. Interactions of microbial biofilms with toxic trace metals:1. Observation and modeling of cell growth, attachment, and production of extracellular polymer [J]. Biotechnol. Bioeng.,1994, 44(2):219-231.
    [6]Nielsen P.H., Jahn A., Palmgren R. Conceptual model for production and composition of exopolymers in biofilms [J]. Water Sci. Technol.,1997,36(1):11-19.
    [7]Nicklin J., Graeme-Cook K., Killington R.著;林稚兰译.微生物学(第2版)[M].北京:科学出版社,2004:94.
    [8]Laspidou C. S., Rittmann B. E. A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass[J]. Water Res., 2002,36:2711-2720.
    [9]王红武,李晓岩,赵庆祥.胞外聚合物对活性污泥沉降和絮凝性能的影响研究[J].中国安全科学学报,2003,13(9):32-34.
    [10]Namkung E., Rittmann B. E. Soluble microbial products (SMP) formation kinetics by biofilms [J].Water Res.,1986,20(6):795-806.
    [11]Forster,C.J. Activated sludge surfaces in relation to the sludge volume index [J].Water Res.,1971,5:861-870.
    [12]Brown M.J., Lester J.N. Comparison of bacterial extracellular polymer extraction methods [J]. Appl. Environ. Microbiol.1980,40(2):179-185.
    [13]Liu H.F., Herbert H.P. Extraction of extracellular polymeric substances (EPS) of sludges [J]. J. Biotechnol.,2002,95:249-256.
    [14]Delia T. S. Extracellular polymer substances and physicochemical properties of flocs in steady-and unsteady-state activated sludge systems [J]. Process Biochem., 2002,37:983-998.
    [15]Morgan J. W., Forster C. F., Evison L. A comparative study of the nature of biopolymers extracted from anaerobic and activated sludge [J]. Water Res.,1990, 24(6):743-750.
    [16]Frφlund B., Palmgren R., Keiding K., Nielsen P.H. Extraction of extracellular polymers from activated sludge using a cation exchange resin [J]. Water Res.,1996, 30(8):1749-1758.
    [17]Wilen B.M., Jin B., Lant P. The influence of key chemical constituents in activated sludge on surface and flocculating properties [J]. Water Res.,2003, 37:2127-2139.
    [18]Flemming, H.-C., Wingender, J. Relevance of microbial extracellular polymeric substances (EPSs)-Part Ⅰ:Structural and ecological aspects [J]. Water Sci. Technol. 2001,43(6):1-8.
    [19]Christensen,B.E. The role of extracellular polysaccharides in biofilms [J]. J. Biotechnol.,1989,10:181-202.
    [20]李久义,左华,栾兆坤,朱宝霞,贾智萍.不同基质条件对生物膜细胞外聚合物组成和含量的影响[J].环境化学,2002,21(6):546—551.
    [21]Jahn. A., Nielsen. P. H. Cell biomass and exopolymer composition in sewer biofilms [J].Water Sci. Technol.,1998,37(1):17-24.
    [22]Urbain V., Block J.C., Manem J. Bioflocculation in activated sludge:an analytic approach [J]. Water Res.,1993,5:829-838.
    [23]Frφlund B., Griebe T., Nielsen P.H. Enzymatic activity in the activated-sludge floc matrix [J]. Appl. Microbiol. Biotechnol.,1995,43(4):755-761.
    [24]Dignac M.F., Urbain V., Rybacki D., Bruchet A., Snidaro D., Scribe P. Chemical description of extracellular polymers:implication on activated sludge floc structure [J]. Water Sci. Technol.,1998,38(8-9):45-53.
    [25]Azeredo J., Lazarova V., Oliveira, R. Methods to extract the exopolymeric matrix from biofilms:a comparative study [J]. Water Sci. Technol.,1999,39(7):243-250.
    [26]Fang, H.H.P., Jia, X.. Extraction of extracellular polymers from anaerobic sludges [J]. Biotech. Technol.,1996,10:803-808.
    [27]Forster C.F., Clarke A.R. The production of polymer from activated sludge by ethanolic extraction and its relation to treatment plant operation [J]. Water Pollut. Control,1983:430-433.
    [28]Chen Y. G., Yang H. Z., Gu G. W. Effect of acid and surfactant treatment on activated sludge dewatering and settling [J]. Water Res.,2001,35(11):2615-2620.
    [29]Schmidt J., Ahring B. Extracellular polymers in granular sludge from different upflow anaerobic sludge blanket (UASB) reactors [J]. Appl. Microbiol. Biotechnol, 1994,42:457-462.
    [30]Jia XS, Furumai H, Fang H.H.P. Yield of biomass and extracellular polymers in four anaerobic sludges [J]. Environ. Technol.,1996,17:283-291.
    [31]Goodwin. J. A. S., Forster C. F. A further examination into the composition of activated sludge surfaces in relation to their settlement characteristics[J]. Water Res., 1985,19(4):527-533.
    [32]Azeredo J., Oliveira, R., Lazarova, V. A new method for extraction of exopolymers from activated sludges [J]. Water Sci. Technol.,1998,37:367-370.
    [33]Bura R., Cheung M., Liao B., Finlayson J., Lee B.C., Droppo I.G, Leppard G.G., Liss.S.N. Composition of extracellular polymeric substances in the activated sludge floc matrix [J]. Water Sci. Technol.,1998,37:325-333.
    [34]Zhang X.Q., Bishop P.L., Kupferle M.J. Measurement of polysaccharides and proteins in biofilm extracellular polymers [J]. Water Sci. Technol.,1998, 37(4-5):345-348.
    [35]曹相生,龙腾锐,孟雪征,赖震宏.Mn2+、Mo6+和Zn2+对活性污泥内胞外聚合物组分的影响[J].环境科学,2004,25(4):70-73.
    [36]Grotenhuis J.T.C., Smit M., Van Lammeren A.A.M., Stams A.J.M., Zehnder A.J.B. Localization and quantification of extracellular polymers in methanogenic granular sludge[J].Appl.Microbiol.Biotechnol.,1991,36:115-119.
    [37]Guo P. S., Han Q. Y, Zhou Y. Extraction of extracellular polymeric substances from the photosynthetic bacterium Rhodopseudomonas acidophila [J]. Appl. Microbiol. Biotechnol.,2005,67:125-130.
    [38]Zhang, X.Q., Bishop, P.L., Kinkle, B.K. Comparison of extraction methods for quantifying extracellular polymers in biofilms [J]. Water Sci. Technol.,1999,39 (7):211-218.
    [391 Frφlund B., Keiding K., Nielsen P. H. A comparative study of biopolymers from a conventional and an advanced activated sludge treatment plant [J]. Water Sci. Technol.,1994,29 (7):137-141.
    [40]Liao B. Q., Allen D. G., Droppo I. G., Leppard G. G. and Liss S.N. Surface properties of sludge and their role in bioflocculation and settleability [J]. Water Res.,2001,35 (2):339—350.
    [41]周健,龙腾锐,苗利利.胞外聚合物EPS对活性污泥沉降性能的影响研究[J].环境科学学报,2004,24(4):613-618.
    [42]Martin-cereceda, M., Jorand F., Guinea A., Block J.C. Characterization of extracellular polymeric substances in rotating biological contactors and activated sludge flocs [J]. Environ. Technol.,2001,22:951-959.
    [43]Li J.Y., Luan Z.k., Zhu B.X., Gong X.Y., Peng D.C. Effects of colloidal organic matter on nitrification and composition of extracellular polymeric substances in biofilms [J].J. Chem. Technol. Biotechnol.,2002,77:1333-1339.
    [44]刘燕,王越兴,莫华娟,马鲁铭.有机底物对活性污泥胞外聚合物的影响[J].环境化学,2004,23(3):252-257.
    [45^ Durmaz B., Sanin, F. D. Effect of carbon to nitrogen ratio on the composition of microbial extracellular polymers in activated sludge [J]. Water Sci. Technol.,2001, 44(10):221-229.
    [46]Magesan G. N., Williamson J. C., Yeates G W., Lloyd-Jones A.Rh. Wastewater C:N ratio effects on soil hydraulic conductivity and potential mechanisms for recovery [J]. Bioresource Technol.,2000,71(1):21-27.
    [47]Higgins M.J. and Novak J.T. Characterization of extracellular protein and its role in bioflocculation [J]. J Environ. Eng.,1997,123 (5):479-485.
    [48]Murthy S.N., Novak J.T. Effect of potassium ion on sludge settling, dewatering and effluent properties [J]. Water Sci. Technol.,1998,37 (4-5):317-324.
    [49]Jin B., Wilen B.-M., Lant P. A comprehensive insight into floc characteristics and their impact on compressibility and settleability of activated sludge[J]. Chem. Eng. J., 2003,95:221-234.
    [50]Delia T. S. Investigation of extracellular polymer substances (EPS) and physicochemical properties of different activated sludge flocs under steady-state conditions [J]. Enzyme Microb. Technol.,2003,32:375-385.
    [51]Jorand F.J., Boue-Bigne F., Block J.C., Urbain V. Hydrophobic/hydrophilic properties of activated sludge exopolymeric substances[J]. Water Sci. Technol.,1998, 37(4-5):307-315.
    [52]Lurie. M., Rebhun. M. Effect of properties of polyelectrolytes on their interaction with particulates and soluble organics [J]. Water Sci. Technol.,1997,36(4):93-101.
    [53]Keiding K, Nielsen P.H. Desorption of organic macromolecules from activated sludge:effect of ionic composition [J]. Water Res.,1997,31 (7):1665-1672.
    [54]Allison D. G, Evans D. J., Brown M. R.W., Gillbert P. Possible involvement of the division cycle in dispersal Escherichia coli from biofilm [J]. J. Bacteriol,1990, 172(3):1667-1669.
    [55]Pere J., Alen R., Viikari L., Eriksson L. Characterization and dewatering of activated sludge from the pulp and paper industry [J]. Water Sci. Technol.,1993, 28(1):193-201.
    [56]Wrangstadh M., Conway P.L., Kjelleberg S. The production and release of an extracellular polysaccharide during starvation of a marine Pseudomonas sp. and the effect thereof on adhesion [J]. Arch. Microbiol.,1986,145(1/4):220-227.
    [57]Zheng Y.M., Yu H.Q., Sheng G.P. Physical and chemical characteristics of granular activated sludge from a sequencing batch airlift reactor [J]. Process biochem.,2005, 40:645-650.
    [58]Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Analyt. Biochem.,1976,72:248-254.
    [59]Houghton, J., Quarmby, J., Stephenson, T. Impact of digestion on sludge dewaterability. Trans. IchienE. Part B [J]. Process Safe Environ. Prot.,2000,78(2), 153-159.
    [60]Houghton, J., Quarmby, J., Stephenson, T. Municipal wastewater sludge dewaterability and the presence of microbial extracellular polymer [J]. Water Sci. Technol.2001,44(2/3):373-379.
    [61]Houghton J.I., Stephenson T. Effect of influent organic content on digested sludge extracellular polymer content and dewaterability [J]. Water Res.,2002, 36:3620-3628.
    [62]吴桂标,杨海真,陈银广,顾国维.表面活性剂对污泥沉降及脱水性能的影响[J].中国给水排水,2001,17(1):68-70.
    [63]王红武,李晓岩,赵庆祥.活性污泥的表面性质与其沉降脱水性能的关系[J]清华大学学报,2004,44(6):766-769.
    [64]Costerton J.W., Lewandowski Z., Caldwell D.E., Korber D.R., Lappin-Scott H.M. Microbial biofilms [J]. Annu. Rev Microbiol.,1995,49:711-745.
    [65]Sutherland I.W. The biofilm matrix-an immobilized but dynamic microbial environment [J]. TRENDS in Microbiology,2001,9(5):222-227.
    [66]Costerton J.W. Introduction to biofilm [J].Int. Antimicrob. Agents,1999, 11:217-221.
    [67]Laβmann E., Reimann H. Der Einsatz von offenporigen Schaumstoff als Taraegermaterial bei der biologischen Abwasser-Reinigung [J]. Chem. Ing. Tech., 1987,59 (2):132-134.
    [68]Morper M., Wildmoser A. Improvement of existing wastewater treatment plants' efficiencies without enlargement of tankage by application of the LINPOR-process-CASE STUDIES [J], Water Sci. Technol.,1990,22(7/8):207-215.
    [69]Golla P.S., Reddy M.P., Simms M.K., Laken T.J. Three years of full-scale CAPTOR(?) process operation at Moundsville WWTP [J]. Water Sci. Technol.,1994, 29 (10-11):175-181.
    [70]Rusten B., Siliudalen J.G., Strand H. Upgrading of a biological-chemical treatment p lant for cheese factory wastewater [J]. Wat Sci. Technol.,1996,34 (11):41-49.
    [71]Kaindl N., Tillman U., MEbius C.H. Enhancement of capacity and efficiency of a biological wastewater treatment plant [J]. Wat Sci. Technol.,1999,40 (11~12): 231-239.
    [72]Andreottola G., Foladori P., Gatti G, Nardelli P., Pettena M., Ragazzi M. Upgrading of a small overloaded activated sludge plant using a MBBR system [J]. J. Environ. Sci. Heal. A,2003,38 (10):2317-2328.
    [73]Falletti L., Conte L. Upgrading of Activated Sludge Wastewater Treatment Plants with Hybrid Moving-Bed Biofilm Reactors [J]. Ind. Eng. Chem. Res.2007, 46(21):6656-6660.
    [74]蒋玖璐,励建全,何文斌.上海南桥污水厂改造工程的设计[J].中国给水排水,2006,22(8):19-22.
    [75]邹平,陈良才,魏宏斌,王志海,贾志宇.悬浮填料活性污泥法处理低温地区综合污水[J].中国给水排水,2008,24(12):47-49.
    [76]熊建英,雷震珊,许晓天,曹达文.化学强化+悬浮填料活性污泥工艺设计[J].中国给水排水,2005,21(1):67-69
    [77]Morper M.R. Upgrading of activated sludge systems for nitrogen removal by application of the LINPOR(?)-CN process [J]. Water Sci.Technol.,1994, 29(12):167-176.
    [78]Suvilamp I. J., Lehtomaki A., Rintala J. Comparison of lab-cale thermophilic biofilm and activated sludge process integrated with a mesophilic activated sludge process [J]. Bioresource Technol.,2003,88:207-214.
    [79]建成[2000]124号,城市污水处理及污染防治技术政策[S].北京:建设部,国家环境保护总局,科学技术部联合发文,2000:
    [80]张正贵.住房和城乡建设部通报全国城镇水务情况并部署相关重点工作,城镇水务在发展中追求高效能[EB]. http://www.chinajsb.cn/gb/content/2009-03/23/content_272210.htm, 2009-03-23
    [81]邱慎初.化学强化一级处理(CEPT)技术[J].中国给水排水,2000,16(1):26-29.
    [82]桂浩尧,刘晓东,段亚萍.化学强化一级处理工艺[J].中国科技信息,2006,21:24—25,40.
    [83]于晓洁,陈银广,顾国维.城市污水除磷技术研究—化学强化一级除磷与生物除磷[J].环境科学与技术,2008,31(11):82-85.
    [84]Rosenberg, M., Gutnick, D., Rosenberg, E. Adherence of bacteria to hydrocarbons: a simple method for measuring cell-surface hydrophobicity [J]. FEMS Microbiol. Lett.,1980,9:29-33.
    [85]Van L. M. C. M., Lyklema J., Norde W., Schraa G., Zethnder A.J.B. The Role of Bacterial Cell Wall Hydrophobicity in Adhesion[J]. Appl. Environ. Microbiol,1987, 53(8):1893-1897.
    [86]Rosenberg M., Judes H., Weiss E. Cell surface hydrophobicity of dental plaque microorganisms in situ [J]. Infect. Immun.,1983,42:831-834.
    [87]Singh K.K., Vincent W.S. Clumping characteristics and hydrophobic behaviour of an isolated bacterial strain from sewage sludge [J]. Appl. Microbiol. Biotechnol,1987, 25:396-398.
    [88]Jorand F., Guicherd P., Urbain V, Manem J., Block J.C. Hydrophobicity of activated sludge flocs and laboratory-grown bacteria [J]. Water Sci. Technol.,1994, 30:211-218.
    [89]Palmgren R., Jorand F., Nielsen P.H., Block J.C. Influence of oxygen limitation on the cell surface properties of bacteria from activated sludge [J]. Water Sci. Technol. 1998,37:349-352.
    [90]Boyette S.M., Lovett J.M., Gaboda W.G., Soares J.A. Cell surface and exopolymer characterization of laboratory stabilized activated sludge from a beverage bottling plant [J].Water Sci.Technol.,2001,43:175-184.
    [91]Qin L., Liu Y, Tay J.H. Effect of settling time on aerobic granulation in sequencing batch reactor [J]. Biochem. Eng. J.,2004,21:47-52.
    [92]Bhathena J., Driscoll B.T., Charles T.C., Archibald F.S. Effects of nitrogen and phosphorus limitation on the activated sludge biomass in a kraft mill biotreatment system [J]. Water Environ. Res.,2006,78:2303-2310.
    [93]Agridiotis V., Forster C.F., Balavoine C., Wolter C., Carliell-Marquet C. An examination of the surface characteristics of activated sludge in relation to bulking during the treatment of paper mill wastewater [J]. Water Environ. J.,2006,20: 141-149.
    [94]Lei Z., Luo X., Zhang Z., Sugiura N. Effects of variations of extracellular polymeric substances and soluble microbial products on activated sludge properties during anaerobic storage [J]. Environ. Technol.,2007,28:529-544.
    [95]Sheng G.P., Yu H.Q. Relationship between the extracellular polymeric substances and surface characteristics of Rhodopseudomonas acidophila [J]. Appl. Microbiol. Biotechnol.,2006.72:126-131.
    [96]Geng Z.H., Hall E.R. Comparative study of fouling-related properties of sludge from conventional and membrane enhanced biological phosphorus removal processes [J]. Water Res.,2007,41:4329-4338.
    [97]Lowry O. H., Rosebrough N. J., Farr A. L., and Randall R. J. Protein measurement with the folin-phenol reagent [J]. J. Biol. Clicin.,1951,193:265-275.
    [98]Gaudy A.F. Colorimetric determination of protein and carbohydrate [J]. Ind. Water Wastes,1962,7:17-22.
    [99]国家环境保护总局,水和废水监测分析方法编委会.《水和废水监测分析方法(第四版)》[M],北京:中国环境科学出版社,2002:
    [100]李燕城.《水处理实验技术》[M].北京:中国建筑工业出版社,1989:
    [101]Lane D.J.16S/23S rRNA sequencing [A]. In:Nucleic Acid Techniques in Bacterial Systematics. Edited by E. Stackebrandt & M. Goodfellow. Microbiology[J]. Chichester:Wiley.2003,149:67-75.
    [102]Geng Z.H., Hall E.R. Comparative study of fouling-related properties of sludge from conventional and membrane enhanced biological phosphorus removal processes [J]. Water Res,2007,41:4329-4338.
    [103]Busscher H.J., Van de Belt G B., Van de Mei H.C. Implications of microbial adhesion to hydrocarbons for evaluating cell surface hydrophobicity 1. Zeta potentials of hydrocarbon droplets. Colloid [J]. Surface. B:Biointerfaces,1995,5:111-116.
    [104]The Physical and Theoretical Chemistry Laboratory, Oxford University. Safety MSDS data for chemical [EB].:http://msds.chem.ox.ac.uk/HE,2009-3-17:
    [105]Low L., Meeks J., Mackeerer, C. n-Octane [M], in:R. Snyder (2nd ED). Ethel Browning's Toxicity and Metabolism of Industrial Solvents[M], Amsterdam:Elsevier, 1987:297-311.
    Sigma-Aldrich company [EB], https://www.sigmaaldrich.com,2008-3-26:
    [107]Guellil A., Block J.C., Urbain V. Adaptation of the microbial adhesion to hydrocarbon test (MATH) for measuring activated sludge hydrophobicity [J]. Water Sci. Technol.,1998,37 (4-5):359-362.
    [108]周群英.《环境工程微生物学》[M],北京;高等教育出版社,2008;312-315
    [109]夏四清,杨殿海,高廷耀.化学生物絮凝工艺处理城市污水试验研究[J]上海环境科学,2003,22(1):16-18.
    [110]王凯军.活性污泥膨胀的机理与控制[M].北京:中国环境科学出版社,1992:34-37.
    [111]Lee H.W., Lee S. Y., Lee J.W., Park J.B., Choi E.S.,. Park Y.K. Molecular characterization of microbial community in nitrate-removing activated sludge [J] FEMS Microbiol. Ecol.,2002,41:85-94.
    [112]Levantesi C., Beimfohr C., Geurkink B., Rossetti S., Thelen K., Krooneman J., Snaidr J., Waarde J., Tandoi V. Filamentous Alphaproteobacteria Associated with Bulking in industrial wastewater treatment plants [J]. System. Appl. Microbiol., 2004,27:716-727.
    [113]杨爽,阎冬,侯绍刚.对生物膜载体相关问题的探讨[J].环境科学与管理,2007,32(9):118-121,128.
    [114]Tsuneda S, Aikawa H, Hayashi H, Yuasa A., Hirata A. Extracellular polymeric substances responsible for bacterial adhesion onto solid surface [J]. FEMS Microbiol. Lett.,2003,223(2):287-292.
    [115]Daniellson A., Norkans B., Bjφrnsson A. Bacterial adhesion-the effect of certain enzymes on adhered cells of a marine Pseudomonas species [J]. Bot. Mar., 1977,20(1):13-17.
    [116]王文军,王文华,黄亚冰,张学林.生物膜的研究进展[J].环境科学进展,1998,7(5):43-50.
    [117]Cheng S.S., Chen W.C., Hwang H.H. Biofilm formation:The effects of hydrodynamic and substrate feeding patterns in three phase draft-tube fluidized bed for nitrification process [J]. Water Sci. Technol.,1997,36(12):83-90.
    [118]Wang Z.W., Liu Y., Tay J.H. Distribution of EPS and cell surface hydrophobicity in aerobic granules [J]. Appl. Microbiol. Biotechnol.,2005,69: 469-473.
    [119]Watanabe M, Sasaki K, Nakashimada Y,Kakizono T., Noparatnaraporn N., Nishio N. Growth and flocculation of a marine photosynthetic bacterium Rhodovulum sp [J]. Appl. Microbiol. Biotechnol.,1998,50:682-691.
    [120]Zita A., Hermansson M., Effects of bacterial cell surface structure and hydrophobicity on attachment to activated sludge flocs [J]. Appl. Environ. Microbiol.,1997,63:1168-1170.
    [121]Selim L. S., Sanin F. D., James D. B. Effect of starvation on the adhesive properties of xenobiotic degrading bacteria [J]. Process Biochem., 2003,38(6):909-914.
    [122]Tchbanoglous G, Burton F. L., Stensel H. D. Wastewater engineering:treatment and reuse,4th ed [M].USA:Metcalf and Eddy Inc.2003:887-890
    [123]Bond,P.L., Hugenholtz,P., Keller,J., Blackall,L.L. Bacterial community structures of phosphate-removing and non-phosphate-removing activated sludges from sequencing batch reactors [J]. Appl. Environ. Microbiol.,1995,61 (5):1910-1916.
    [124]Hugenholtz P., Tyson G.W., Webb R.I., Wagner A.M., Blackall L.L. Investigation of candidate division TM7, a recently recognized major lineage of the domain Bacteria with no known pure-culture representatives [J]. Appl. Environ. Microbiol.,2001,67 (1):411-419.
    [125]Yamada T., Sekiguchi Y., Hanada S., Imachi H., Ohashi A., Harada H., Kamagata Y. Anaerolinea thermolimosa sp nov., Levilinea saccharolytica gen. nov., sp nov and Leptolinea tardivitalis gen. nov., so. nov., novel filamentous anaerobes, and description of the new classes anaerolineae classis nov and Caldilineae classis nov in the bacterial phylum Chloroflexi [J]. Int. J. Syst. Evol. Microbiol.,2006,56: 1331-1340.
    [126]Sekiguchi Y., Kamagata Y., Syutsubo K., Ohashi A., Harada H., Nakamura K. Phylogenetic diversity of mesophilic and thermophilic granular sludges determined by 16S rRNA gene analysis [J]. Microbiology-SGM,1998,144:2655-2665.
    [127]Hugenholtz P., Goebel B.M., Pace N.R. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity [J]. J. Bacteriol.,1998,180 (24):6793-6793.
    [128]Sekiguchi Y, Takahashi H, Kamagata Y, Ohashi A, Harada H. In situ detection, isolation, and physiological properties of a thin filamentous microorganism abundant in methanogenic granular sludges:a novel isolate affiliated with a clone cluster, the green non-sulfur bacteria, subdivision I [J]. Appl. Environ. Microbiol.,2001,67(12): 5740-5749.
    [129]Sekiguchi Y. Yamada T., Hanada S., Ohashi A., Harada H., Kamagata Y. Anaerolinea thermophila gen. nov., sp. nov. and Caldilinea aerophila gen. nov., sp. nov., novel filamentous thermophiles that represent a previously uncultured lineage of the domain Bacteria at the subphylum level [J]. Int. J. Syst. Evol. Microbiol., 2003,53:1843-1851.
    [130]Yamada T., Sekiguchi Y., Imachi H., Kamagata Y., Ohashi A., Harada H. Diversity, localization, and physiological properties of filamentous microbes belonging to Chloroflexi subphylum I in mesophilic and thermophilic methanogenic sludge granules [J]. Appl. Environ. Microbiol.,2005,71 (11):7493-7503.
    [131]Dabert P., Sialve B., Delgenes J.P., Moletta R., Godon J.J. Characterisation of the microbial 16S rDNA diversity of an aerobic phosphorus-removal ecosystem and monitoring of its transition to nitrate respiration [M]. Appl. Microbiol. Biotechnol.,2001,55 (4):500-509.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700