用户名: 密码: 验证码:
基于热力学模型的新型无机熔盐水化物相变储能材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
经济的快速发展使世界能源危机日益加重,如何提高能源利用效率、实现节能减排已受到普遍关注。相变储能材料(Phase change material,即PCM)因其在相变过程中储存或释放潜热,从而有效缓解能源紧张所带来的供求失衡的矛盾,已成为当前各国研究的热点。国际上普通采用“配方法”寻找新型储能材料,耗时耗材且不易找到真正的共晶点。本文从我国储量丰富的镁锂资源入手,选择合适的热力学模型对储能密度大的多元盐水体系的相图进行计算,以期寻找到温度适宜的相变储能材料。主要研究内容及创新性结果如下:
     1.简要评述了国际上常用的几种热力学模型,并用Pitzer-Simonson-Clegg (PSC)模型和BET模型对七种三元盐水体系(CaCl2-LiCl-H2O、LiCl-LiNO3-H2O、LiNO3-Mg(NO3)2-H2O、NaNO3-Mg(NO3)2-H2O、KNO3-LiNO3-H2O、KNO3-Mg(NO3)2-H2O和CuCl2-LiCl-H2O)的溶解度进行计算,与实验值进行对照,用以比较这两种热力学模型的预测能力。相图计算结果表明,若三元体系中所含两种盐的溶解性均较高,BET模型的计算值与实验值十分吻合,预测能力明显优于PSC模型;若三元体系中同时包含溶解性高和溶解性较低的电解质,PSC模型既考虑长程静电作用,又添加溶剂与离子相互作用,所以在结合二元及三元体系实验数据的情况下可较为准确的计算体系相图,而BET模型的计算结果不尽如人意。
     2.选择合适的热力学模型对若干含锂(镁)的盐水体系相图进行计算,寻找温度适宜的共晶材料。(1)由于LiNO3-KNO3-M(NO3)n-H2O (M=Na (n=1), Mg (n=2))体系中包含低温时溶解性较低的KNO3和高溶解性的LiNO3,选择PSC模型,结合相关二元及三元体系的实验数据,拟合模型参数,计算这两个四元体系及其所包含的二元及三元子体系的相图,并从中找到三个二元共晶占:KNO3-LiNO3-3H2O、NaNO3-LiNO3-3H2O, LiNO3-3H2O-Mg(NO3)2-6H2O,及五个三元共晶点:KNO3-LiNO3-3H2O-LiNO3. NaNO3-LiNO3-3H2O-LiNO3LiNO3-3H2O-LiNO3-Mg(NO3)2-6H2O、LiNO3-3H2O-NaNO3-KNO3> KN03-LiNO3-3H20-Mg(NO3)2-6H20,它们的熔点在294K-301K之间。(2)对于各盐溶解性均较高的LiNO3-NaNO3-NH4NO3-H2O体系和Mg(NO3)2-MgCl2-H2O体系,选择BET模型,结合实验数据获得二元参数及三元盐盐相互作用参数,计算这两个体系及其子体系的相图。从中找到三个二元共晶点:NaNO3-LiNO3-3H2O、NH4NO3-LiNO3·3H2O、Mg(NO3)2·6H2O-MgCl2·6H2O和四个三元共晶点:NaNO3-LiN3-·3H2O-LiNO3·NH4NO3-LiNO3-3H2O-LiNO3、 Mg(NO3)2·6H2O-Mg(NO3)2·2H2O-MgCl2·6H2O、LiNO3·3H2O-NaNO3-NH4NO3。
     3.用等温溶解度法测定KNO3-LiNO3-H2O体系283.15K的溶解度,用固相消失法测定KNO3-LiNO3-NaNO3-H2O体系298.1K和308.5K的溶解度,及其子体系LiNO3-NaNO3-H2O在323.1K的溶解度。所有实验值均与本文PSC模型预测值吻合。
     4.对本文用热力学模型预测的部分共晶材料的储能性能进行熔化结晶行为测试,并用DSC或DTA测定材料的熔点及熔化热。结果表明:(1)二元共晶材料KNO3(17.5%)-LiNO3-3H2O (82.5%)和三元共晶材料KNO3(20.9%)-LiNO3-3H2O (64.4%)-LiNO3(14.7%). LiNO3-3H2O (76.2%)-NaNO3(5.9%)-KNO3(17.9%),具有较好的储能效果,它们的熔点与模型预测值相差小于±1K,且均在室温范围(293±5K),可用作潜在的室温相变储能材料。(2)BET模型预测的三元共晶点LiNO3-3H2O (63.4%)-NaNO3(5.5%)-NH4NO3(31.3%),其熔点为287.1K,与模型预测值基本一致,熔化结晶行为曲线表明吸放热性能良好,可用作潜在的低温相变储能材料。(3)二元共晶材料Mg(NO3)2-6H2O (61.6%)-MgCl2-6H2O (38.4%)的熔点为333.5K,比BET模型的预测值高2K,熔化热约为137J·g-1,可用作潜在的相变储能材料。而三元共晶材料Mg(NO3)2-6H2O (45.6%)-Mg(NO3)2-2H2O (29.6%)-MgCl2-6H2O (24.8%)的储能效果较差,不适用于潜在的相变储能材料
The present energy crisis caused by economic development is more and more serious. How to increase utilization ratio of energy and save energy attracts worldwide attentions. Phase change material (PCM), which can store or release latent heat during phase change process and solve the unbalance between supply and demand of energy shortage, has become hot topic in the research. Conventionally, a formula method is used widely for looking for PCM, which is difficult to find real eutectic points. In this paper, thermodynamic model has been chosen for calculating the phase diagrams of lithium and magnesium hydrated salt systems and finding phase change materials with suitable temperature. The main research contents and results are:
     1. Several thermodynamic models commonly used were evaluated, and a Pitzer-Simonson-Clegg model (PSC model) and a BET model were chosen for calculating phase diagrams of seven ternary systems including CaCl2-LiCl-H2O, LiCl-LiNO3-H2O, LiNO3-Mg(NO3)2-H2O, NaNO3-Mg(NO3)2-H2O, KNO3-LiNO3-H2O, KNO3-Mg(NO3)2-H2O and CuCl2-LiCl-H2O, and the calculated values are compared with experimental data. The results show that the BET model is more appropriate than the PSC model to predict the properties of highly soluble hydrated salt systems. For salt-water systems consisting of lowly soluble salt and highly soluble salt, the PSC model, which includes long range electrostatic terms and interaction between solvent water and ions, is more suitable than the BET model.
     2. Suitable model was applied to calculate phase diagrams of salt-water systems containing lithium (magnesium), and then eutectic points with appropriate temperature were found.(1) For LiNO3-KNO3-M(NO3)n-H2O (M=Na (n=1), Mg (n=2)) systems containing lowly soluble salt KNO3and highly soluble salt LiNO3, combining with experimental data of its binary and ternary systems, the PSC model was used to calculate phase diagrams of quaternary systems and their sub-systems. In these phase diagrams, we have found three binary eutectic points:KNO3-LiNO3-3H2O, NaNO3-LiNO3-3H2O, LiNO3-3H2O-Mg(NO3)2-6H2O, and five ternary eutectic points:KNO3-LiNO3-3H2O-LiNO3, NaNO3-LiNO3-3H2O-LiNO3, LiNO3·3H2O-LiNO3-Mg(NO3)2-6H2O, LiNO3·3H2O-NaNO3-KNO3, KNO3-LiNO3-3H2O-Mg(NO3)2-6H2O, with melting temperature range from294K to301K.(2) The BET model is applied to calculate phase diagrams of systems LiNO3-NaNO3-NH4NO3-H2O, Mg(NO3)2-MgCl2-H2O and their sub-systems, and then three binary eutectic points including NaNO3-LiNO3-3H2O, NH4NO3-LiNO3-3H2O, Mg(NO3)2-6H2O-MgCl2-6H2O, and four ternary eutectic points including NaNO3-LiNO3·3H2O-LiNO3, NH4NO3-LiNO3·3H2O-LiNO3, Mg(NO3)2-6H2O-Mg(NO3)2-2H2O-MgCl2-6H2O and LiNO3·3H2O-NaNO3-NH4NO3were found.
     3. The solubility isotherm of the KNO3-LiNO3-H2O system at283.1K has been determined using method of isothermal solution, and the solubilities of the KNO3-LiNO3-NaNO3-H2O system at298.1K and308.5K as well as its sub-system LiNO3-NaNO3-H2O at323.1K have been measured by means of isothermal solid-disappearance method. The experimental solubility data are in excellent agreement with the calculated values.
     4. Melting and crystallization behavior of the aforementioned predicted eutectic points have been measured using our device, and DSC or DTA was used to measure the fusion heat and fusion temperature. The results show that:(1) The binary eutectic points KNO3(17.5%)-LiNO3·3H2O (82.5%) and the ternary eutectic point KNO3(20.9%)-LiNO3·3H2O (64.4%)-LiNO3(14.7%), LiNO3·3H2O (76.2%)-NaNO3(5.9%)-KNO3(17.9%) can be taken as potential room temperature PCM with high stored energy effect, and the differences of melting temperature between experimental data and predicted ones are less than±1K.(2) The ternary eutectic point LiNO3·3H2O (63.4%)-NaNO3(5.5%)-NH4NO3(31.3%) which has excellent heat storage behavior, could be used as potential low temperature PCM.(3) The binary eutectic point Mg(NO3)2·6H2O (61.6%)-MgCl2·6H2O (38.4%) whose melting point is333.5K and phase change heat is137J·g-1, could be regarded as potential PCM. However, ternary eutectic point Mg(NO3)2-6H2O (45.6%)-Mg(NO3)2·2H2O (29.6%)-MgCl2·6H2O (24.8%) possesses less storage energy ability.
引文
[1]Telkes M, Raymond E. Storing solar heat in chemicals-a report on the Dover house [J]. Heat Vent,1949,46(11):80-86.
    [2]Hodgins W, Qvale B, Swartman R K, Aureille R, Glew DN, Grjebine T, et al. Lowtemperature thermal energy storage [J]. Energy,1977,2(1):70-75.
    [3]Telkes M. Thermal energy storage in salt hydrates [J]. Solar Energy Materials, 1980,2(4):381-393.
    [4]Sparrow E M, Larson E D, Ramsey J W. Freezing on a finned tube for either conduction-controlled or natural-convection-controlled heat transfer [J]. International Journal of Heat and Mass Transfer,1981,24(2):273-284.
    [5]Feldman D, Shapiro M M, Fazio P, et al. The compressive strength of cement blocks permeated with an organic phase change material [J]. Energy and Buildings,1984,6(1):85-92.
    [6]Ho C J, Viskanta R. Inward solid-liquid phase-change heat transfer in a rectangular cavity with conducting vertical walls [J]. International Journal of Heat and Mass Transfer,1984,27(7):1055-1065.
    [7]Hill J E, Kelly G E, Peavy B A. A method of testing for rating thermal storage devices based on thermal performance [J]. Solar Energy,1977,19(6): 721-732.
    [8]Nagano K, Ogawa K, Mochida T, et al. Thermal characteristics of magnesium nitrate hexahydrate and magnesium chloride hexahydrate mixture as a phase change material for effective utilization of urban waste heat [J]. Applied Thermal Engineering,2004,24:221-232.
    [9]Akhilesh R, Narasimhan A, Balaji C. Method to improve geometry for heat transfer enhancement in PCM composite heat sinks [J]. International Journal of Heat and Mass Transfer,2005,48:2759-2770.
    [10]Castell A, Sole C, Medrano M, et al. Natural convection heat transfer coefficients in phase change material (PCM) modules with external vertical fins [J]. Applied Thermal Engineering,2008,28:1676-1686.
    [11]Guo C, Zhang W. Numerical simulation and parametric study on new type of high temperature latent heat thermal energy storage system [J]. Energy Conversion and Management,2008,49:919-927.
    [12]Agyenim F, Hewitt N, Eames P, et al. A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS) [J].2010,14:615-628.
    [13]Pincemin S, Olives R, Py X, et al. Highly conductive composites made of phase change materials and graphite for thermal storage [J]. Solar Energy Materials & Solar Cells,2008,92:603-613.
    [14]Lacroix M. Numerical simulation of a shell and tube latent heat thermal energy storage unit [J]. Solar Energy,1993,50(4):357-367.
    [15]Sharma S D, Iwata T, Kitano H, et al. Thermal performance of a solar cooker based on an evacuated tube solar collector with a PCM storage unit [J]. Solar Energy,2005,78:416-426.
    [16]Abdel-Wahed R M, Ramsey J W, Sparrow E M. Photographic study of melting about an embedded horizontal heating cylinder [J]. International Journal of Heat and Mass Transfer,1979,22:171-173.
    [17]李爱菊,张仁元,柯秀芳.显热/潜热复合储能材料的研究[J].新能源,2000,22(12):29-31.
    [18]祁先进.金属基相变复合蓄热材料的实验研究[D].昆明:昆明理工大学,2005.
    [19]Eames I W, Adref K T. Freezing and melting of water in spherical enclosures of the type used in thermal (ice) storage systems [J]. Appl. Thermal Eng., 2002,22:733-745.
    [20]Bedecarrats J P, Dumas J P. Etude de la cristallisation de nodules contenant un materiau a changement de phase en vue du stockage par chaleur latent [J].Int. J. Heat Mass Transfer,1997,40:149-157.
    [21]Inaba H, Tu P. Evaluation of thermophysical characteristics on shape-stabilized paraffin as a solid-liquid phase change material [J]. Heat Mass Transfer,1997,32:307-312.
    [22]Brown R C, Rasberry J D, Overmann S P. Microencapsulated phase-change materials as heat transfer media in gas-fluidized beds [J]. Powder Technol., 1998,98 (3):217-222.
    [23]Telkes M. Storage of solar energy for heating and cooling [J]. Ki, Klima+ Kaelte-Ingenieur,1974,2(11):465-470.
    [24]黄金,柯秀芳.无机水合盐相变材料Na2SO4 10H2O的研究进展[J].材料导报,2008,22(3):63-67.
    [25]Charlsson B, Stymme H, Wattermark G. An incongruent heat of fusion system CaCl2-6H2O made congruent through modification of chemical composition of the system [J]. Solar Energy,1979,23:333-50.
    [26]Abhat A. Low temperature latent heat thermal energy storage:heat storage materials [J]. Solar Energy,1983,30(4):313-332.
    [27]Abhat A. Low temperature latent heat thermal energy storage:heat storage materials [J]. Solar Energy,1983,30:313-332.
    [28]Sasaguchi K, Viskanta R. Phase change heat transfer during melting and resolidification of melt aroung cylindrical heat source(s)/sink(s) [J]. J. Energy Resources Technol.,1989,111:43-49.
    [29]Lane G A. Low temperature heat storage with phase change materials [J]. Int. J. Ambient Energy,1980,1:155-168.
    [30]Herrick S, Golibersuch D C. Quantitative behavior of a new latent heat storage device for solar heating/cooling systems [C]. In:General International Solar Energy Society Conference,1978.
    [31]乔英杰,王德民,张晓红,等.复合相变储能材料研究与应用新进展[J].材料工程,2007,增刊(1):229-232.
    [32]林怡辉,张正国,王世平.溶胶-凝胶法制备新型蓄能复合材料的研究[J].华南理工大学学报(自然科学版),2001,29(11):7-10.
    [33]Sari A, Karaipekli A. Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material [J]. Applied Thermal Engineering,2007,27(8-9):1271-1277.
    [34]田胜利,张东,肖德炎.硬脂酸丁酯/多孔石墨定形相变材料的实验研究[J].节能,2005,11:5-6.
    [35]凌双梅,高学农,尹辉斌.低温相变蓄热材料研究进展[J].广东化工,2007,34(3):48-51.
    [36]Pillai K K, Brinkwarth B J. The storage of low grade thermal energy using phase change materials [J]. Appl Energy,1976,2:205-216.
    [37]樊耀峰,张兴祥.有机固-固相变材料的研究进展[J].材料导报,2003,17(7):50-53.
    [38]Schroder J, Gawron K. Latent heat storage [J]. Energy Res,1981,5:103-109.
    [39]Himran S, Suwono A, Ali Mansoori G. Characterization of alkanes and paraffin waxes for application as phase change energy storage medium [J]. Energy Sourc,1994,16:117-128.
    [40]He B, Gustafsson M, Setterwall F. Tetradecane and hexadecane binary mixtures as phase change materials (PCM) for cool storage in district cooling systems [J]. Energy,1999,24(12):1015-1028.
    [41]Sharma A, Tyagi V V, Chen C R, et al. Review on thermal energy storage with phase change materials and applications [J]. Renewable and Sustainable Energy Reviews,2009,13:318-345.
    [42]Huang M J, Eames P C, Norton B. Thermal regulation building-integrated photovoltaics using phase change materials [J]. Heat and Mass Transfer,2004, 47(12-13):2715-2733.
    [43]Esen M, Durmus A, Durmus A. Geometric design of solar-aided latent heat store depending on various parameters and phase change materials [J]. Solar Energy,1998,62(1):19-28.
    [44]Esen M, Ayhan T. Development of a model compatible with solar assisted cylindrical energy storage tank and variation of stored energy with time for different phase change materials [J]. Energy Conversion and Management, 1996,37(12):1775-1785.
    [45]Shilei L, Neng Z, Guohu F. Eutectic mixtures of capric acid and lauric acid applied in building wallboards for heat energy storage [J]. Energy and Buildings,2006,38:708-711.
    [46]Sari A. Thermal reliability test of some fatty acids as PCMs used for solar thermal latent heat storage applications [J]. Energy Conversion and Management,2003,44:2277-2287.
    [47]Domanski R, El-sebaii A, JaworskiM. Cooking during off-sunshine hours using PCMs as storage media [J]. Energy,1995,20(7):607-616.
    [48]Baran G, Sari A. Phase change and heat transfer characteristics of a eutectic mixture of palmitic and stearic acids as PCM in a latent heat storage system [J]. Energy Conversion and Management,2003,44:3227-3246.
    [49]Zalba B, Marin J M, Cabeza L F, et al. Review on thermal energy storage with phase change:materials, heat transfer analysis and applications [J]. Applied Thermal Engineering,2003,23:251-283.
    [50]Hawes D W, Feldman D, Banu D. Latent heat storage in building materials [J]. Energy Buildings,1993,20:77-86.
    [51]Sharma A, Wona LD, Buddhi D, et al. Numerical heat transfer studies of the fatty acids for different heat exchanger materials on the performance of a latent heat storage system [J]. Renewable Energy,2005,30:2179-2187.
    [52]Tuncbileka K, Saria A, Tarhanb S, et al. Lauric and palmitic acids eutectic mixture as latent heat storage material for low temperature heating applications [J]. Energy,2005:30:677-692.
    [53]Sari A. Thermal characteristics of a eutectic mixture of myristic and palmitic acids as phase change material for heating applications [J]. Applied Thermal Engineering,2003,23:1005-1017.
    [54]Hasan A. Phase change material energy storage system employing palmitic acid [J]. Solar Energy,1994,52(2):143-154.
    [55]Ghoneim A A. Comparison of theoretical models of phase-change and sensible heat storage for air and water-based solar heating systems [J]. Solar Energy 1989,42(3):209-220.
    [56]Nagano K, Takeda S, Mochida T, et al. Thermal characteristics of a direct heat exchange system between granules with phase change material and air [J]. Applied Thermal Engineering,2004,24:2131-2144.
    [57]Heckenkamp J., Baumann H., Latent heat storage energy speicher [J]. Sonderdruck aus Nachrichten,1997,11:1075-1081.
    [58]Naumann R., Emons H H. Results of thermal analysis for investigation of salt hydrates as latent heat-storage materials [J]. J Thermal Analysis,1989,35: 1009-1031.
    [59]Choi J C, Kim S D. Heat transfer characteristics of a latent heat storage system using MgCl2-6H2O [J]. Energy,1992,17(12):1153-1164.
    [60]Zalba B, Marrn J M, Cabeza L F, et al. Review on thermal energy storage with phase change:materials, heat transfer analysis and applications [J]. Applied Thermal Engineering,2003,23(3):251-283.
    [61]Graeter F, Rheinlander J. Thermische Energiespeicherung mit Phasenwechsel im Bereich von 150 bis 400 ℃ [C]. Proceedings of the Warmespeicherung Workshop, Cologne (Germany) (2001).
    [62]Wada T, Yamamoto R. Studies on salt hydrate for latent heat storage. I. Crystal nucleation of sodium acetate trihydrate catalysed by tetrasodium pyrophosphate decahydrate [J]. Bul. Chem. Soc. Jpn,1982,55:3603-3606.
    [63]Schroder J. Thermal energy storage and control [J]. J. Eng. Industry Aug., 1975,893-896.
    [64]Royon L, Guiffant G, Flaud P. Investigation of heat transfer in a polymeric phase change material for low level heat storage [J]. Energy Convers. Mgmt., 1997,38:517-524.
    [65]Wada T., Kimura F., Yamamoto R. Studies on salt hydrate for latent heat storage. Ⅲ. Pseudo-binary system, CH3CO2Na-3H2O-HCONH2 [J]. Bul. Chem. Soc. Jpn.,1983,56:1575-1576.
    [66]Horbaniuc B, Dumitrascua G, Popescub A.Mathematical models for the study of solidification within a longitudinally finned heat pipe latent heat thermal storage system [J]. Energy Conversion & Management,199,40:1765-1774.
    [67]Papanicolaou E, Belessiontis V. Transient natural convection in a cylindrical enclosure at high Rayleigh numbers [J]. Heat and Mass Transfer,2001,45: 1425-1444.
    [68]Silva P D, Goncalves L C, Pires L. Transient behaviour of a latent-heat thermal energy store:numerical and experimental studies [J]. Applied Energy, 2002,73:83-98.
    [69]Esen M, Durmus A, Durmus A. Geometric design of solar-aided latent heat store depending on various parameters and phase change materials [J]. Solar Energy,1998,62(1):19-28.
    [70]Gong Z, Mujumdar A S. Finite-element analysis of cyclic heat transfer in a shell and tube latent heat energy storage exchanger [J]. Applied Thermal Engineering,1997,17(4):583-591.
    [71]Solomon A D. Melt time and heat flux for a simple PCM body [J]. Solar Energy,1979,22:251-257.
    [72]Prakash J, Garg H P, Datta G. A solar water heater with a built-in latent heat storage [J]. Energy Convers Manage,1985,25(1):51-6.
    [73]Bansal N K, Buddhi D. An analytical study of a latent heat storage system in a cylinder [J]. Solar Energy,1992,33(4):235-242.
    [74]Bajnoczy G, Palffy E G, Prepostffy E, et al. Heat storage by two-grade phase change material [J]. Periodica Polytecinica Ser Chem. Eng,1999,43(2): 137-147.
    [75]Kaygusuz K. Experimental and theoretical investigation of latent heat storage for water based solar heating systems [J]. Energy Convers Manage,1995, 36(5):315-323.
    [76]Rabin Y, Bar-Niv I, Korin E, et al. Integrated solar collector storage system based on a salt hydrate phase change material [J]. Solar Energy,1995,55(6): 435-444.
    [77]Mettawee E B S, Assassa G M R. Experimental study of a compact PCM solar collector [J]. Energy,2006,31(14):2958-2968.
    [78]Morrison D J, Abdel-Khalik S I. Effects of phase change energy storage on the performance of air-based and liquid-based solar heating systems [J]. Solar Energy,1978,20:57-67.
    [79]Jurinak J J, Adbel-Khalik S I. Sizing phase-change energy storage units for air-based solar heating systems [J]. Solar Energy,1979,22(4):355-359.
    [80]Zhou G, ZhangY, Zhang Q, et al. Performance of a hybrid heating system with thermal storage using shape-stabilized phase-change material plates [J]. Appl Energy,2007,84(10):1068-1077.
    [81]Hung K, Toksoy M. Design and analysis of green house solar system in agricultural production [J]. Energy Agric,1983,2(2):115-136.
    [82]Nishina H, Takakura T. Greenhouse heating by means of latent heat storage units [J]. Acta Hort (Energy in Protected Cultivation 111),1984,148:751-754.
    [83]Takakura T, Nishina H. A solar greenhouse with phase change energy storage and a microcomputer control system [J]. Acta Hort (Energy in Protected Cultivation),1981,115:583-590.
    [84]Boulard T, Razafinjohany E, Baille A, et al. Performance of a greenhouse heating system with a phase change material [J]. Agric Forest Meteorol,1990, 52:303-318.
    [85]Ozturk H H. Experimental evaluation of energy and exergy efficiency of a seasonal latent heat storage system for greenhouse heating [J]. Energy Convers Manage,2005,46:1523-1542.
    [86]Enibe S O. Performance of a natural circulation solar air heating system with phase change material energy storage [J]. Renew Energy,2002,27:69-86.
    [87]马骉,王晓曼,李超,等.相变材料在沥青混凝土路面中的应用前景分析[J].公路,2009,12:115-118.
    [88]Feldman D, Khan M A, Banu D. Energy storage composite with an organic PCM [J]. Solar Energy Materials,1989,18:333-341.
    [89]Theunissen P H, Buchlin JM. Numerical optimization of a solar air heating system based on encapsulated PCM storage [J]. Solar Energy 1983,31(3): 271-277.
    [90]Bourdeau L E. Study of two passive solar systems containing phase change materials for thermal storage [C]. In:Hayes J, Snyder R, editors. Proceedings of fifth national passive solar conference, October 19-26, Amherst. Newark, Delaware:American Solar Energy Society; 1980:297-301.
    [91]Ghoneim A A, Kllein S A,Duffie J A. Analysis of collector-storage building walls using phase change materials [J]. Solar Energy,1991,47(1):237-242.
    [92]Chandra S, Kumar R, Kaushik S, et al. Thermal performance of a non A/C building with PCCM thermal storage wall [J]. Energy Convers Manage,1985, 25(1):15-20.
    [93]Feldman D, Shapiro M, Banu D, et al. Fatty acids and their mixtures as phase change materials for thermal energy storage [J]. Solar Energy Mater,1989,18: 201-216.
    [94]Neeper D A. Thermal dynamics of wallboard with latent heat storage [J]. Solar Energy,2000,68:393-403.
    [95]Stovall T K, Tomlinson J J. What are the potential benefits of including latent heat storage in common wall board [J]. Trans ASME,1995,117:318-325.
    [96]Peippo K, Kauranen P, Lund P D. A multi-component pcm wall optimized for passive solar heating [J]. Energy Build,1991,17:259-270.
    [97]Schossig P, Henning H M, Gschwander S, et al. Micro-encapsulated phase-change materials integrated into construction materials [J]. Solar Energy Mater Solar Cells,2005,89:297-306.
    [98]邓安仲,庄春龙,李胜波,等.地板采暖系统用复合相变砂浆填充材料研究[J].建筑材料学报,2010,13(2):161-164.
    [99]Farid M, Kong W. Underfloor heating with latent heat storage [J]. Proc. Inst. Mech. Engineers, Part A:J. Power Energy,2001,215:601-609.
    [100]Niesing B. Storing heat with wax [J]. Fraunhofer Magazine,2004,1:36-37.
    [101]Schindler A K, Mccullough B F. The importance of concrete temperature control during concrete pavement in hot weather conditions [C]. in: Proceedings of the Annual Meeting of the Transport Research Board, Washington, DC,2002:1-17.
    [102]Baetens R, Jelle B P, Gustavsen A. Phase change materials for building applications:A state-of-the-art review [J]. Energy and Buildings,2010,42(9): 1361-1368.
    [103]Castellon C, Nogues M, Roca J, et al. Microencapsulated phase changing materials (PCM) for building applications [C]. in:L. Stiles (Ed.), Proceedings of the 10th International Conference on Thermal Energy Storage, Stockton, Yersey,May 31,2006:1-9.
    [104]Hittle D C. Phase Change Materials in Floor Tiles for Thermal Energy Storage [R]. Topical Report August 2002, Colorado State University, USA,2002.
    [105]张东,周剑敏,吴科如,等.相变储能混凝土制备方法及其储能行为研究[J].建筑材料学报,2003,6(4):374-380.
    [106]Baetens R, Jelle B P, Gustavsen A. Phase change materials for building applications:A state-of-the-art review [J]. Energy and Buildings,2010,42: 1361-1368.
    [107]Saman W, Bruno F, Halawa E. Thermal performance of PCM thermal storage unit for a roof integrated solar heating system [J]. Solar Energy,2005,78(2): 341-349.
    [108]Zalba B, Marin J M, Cabeza L F, et al. Free-cooling of buildings with phase changing materials [J]. International Journal of Refrigeration,2004,27: 839-849.
    [109]Velraj R, Seeniraj R V, Hafner B, et al. Heat transfer enhancement in a latent heat storage system [J]. Solar Energy,1999,65(3):171-180.
    [110]Alawadhi E M. Thermal insulation for a pipe using phase changing material [J]. Heat Transfer Engineering,2005,26(8):32-40.
    [111]Hed G, Bellander R. Mathematical modeling of PCM air heat exchanger [J]. Energy and Buildings,2006,38:82-89.
    [112]Takeda S, Nagano K, Mochida T, et al. Development of a ventilation system utilizing thermal energy storage for granules containing phase change material [J]. Solar Energy,2004,77(3):329-338.
    [113]况军.相变储能材料在电力调峰中的应用[J].电气开关,2011,1:69-71.
    [114]Brandstetter A, Kaneff S. Materials and systems for phase change thermal storage [C]. In:Proceedings of the 1st world renewable energy congress; 1990: 1460-4.
    [115]Farid MM, Husain RF. An electrical storage heater using the phase change method of heat storage [J]. Energy Convers Manage,1990,30(3):219-230.
    [116]Lin K P, Zhang Y P, Xu X, et al. Modeling and simulation of under-floor electric heating system with shapestabilized PCM plates [J]. Build Environ 2004,39(12):1427-1434.
    [117]张东,周剑敏,吴科如.相变储能复合材料及其电力调峰功能分析[J].华东电力,2003,9:27-30.
    [118]Kumar R, Misra Manoj K., Kumar R; et al. Phase change materials: technology status and potential defence applications [J]. Defence Science Journal,2011,61(6):576-582.
    [119]Pause B. Textiles with improved thermal capabilities through the application of Phase Change Material (PCM) microcapsules [J]. Melliand Textilberichte 2000,81(9), E179-E180:753-754.
    [120]Zhang X X, Wang X C, Tao X M, et al. Energy storage polymer/MicroPCMs blended chips andthermo-regulated fibers [J]. J Mater Sci,2005,40(14): 3729-3735.
    [121]Strumpf H J, Coombs G M. Solar receiver experiment for the space station freedom brayton engine [J]. Journal of Solar Energy Engineering,1990, 112(2):12-18.
    [122]Sokolov P, Ibrahim M, Kerslake T. Computational heat transfer modeling of thermal energy storage canisters for space applications [J]. Journal of Spacecraft and Rockets,2000,37(2):265-272.
    [123]陈传福,习复,潘增富,等.一种新型贮能材料的研制及其应用前景[J].中国空间科学技术,1995,5:31-36.
    [124]赵朝义,袁修干,孙金镖.一种用于出舱活动的相变储能/辐射器式热沉 [J].中国空间科学技术,1998,5:38-42.
    [125]王建军,蔡九菊,陈春霞,等.我国钢铁工业余热余能调研报告[J].工业加热,2007,36(2):1-3.
    [126]蔡九菊,王建军,陈春霞,等.钢铁企业余热资源的回收与利用[J].钢铁,2007,42(6):1-7.
    [127]付英,曾令可,王慧,等.相变储能材料在工业余热回收领域的应用研究进展[J].工业炉,2009,31(5):11-14.
    [128]Ma B, Wang S S, Li J. Study on application of PCM in asphalt mixture [J]. Advanced Materials Research 2011,168-170:2625-630.
    [129]叶东,栾建凤,朱培元,等.相变保温材料在血液长途运输中的应用[J].中国输血杂质,2008,21(8):581-582.
    [130]Yoneda N, Takanashi S. Eutectic mixtures for solar heat storage [J]. Solar Energy,1978,21:61-63.
    [131]Debye P, Huckel E. The Theory of Electrolytes [J]. Phys. Z.,1923,24: 185-206.
    [132]黄子卿.电解质溶液理论导论[M].北京:科学出版社,1983.
    [133]Stocks R H, Ronbison R A. Ionic Hydration and activity in electrolyte solution [J]. J. Am. Chem. Soc.,1948,70:1870-1878.
    [134]Pitzer K S. Thermodynamics of Electrolytes. Ⅰ. Theoretical Basis and General Equations [J]. J. Phys. Chem.,1973,77(2):268-277.
    [135]Pitzer K S, Mayorga G. Thermodynamics of Electrolytes. Ⅱ.Activity and Osmotic Coefficients for Strong Electrolytes with One or Both Ions Univalent [J]. J. Phys. Chem.,1973,77(19):2300-2308.
    [136]Pitzer K S, Kim J. Thermodynamics of electrolytes. Ⅳ. Activity and osmotic coefficients for mixed electrolytes [J]. J. Am. Chem. Soc.,1974,96(18): 5701-5707.
    [137]Pitzer K S. Thermodynamics of Electrolytes 5:efficts of higher-order electrostatic terms [J]. J. Sol. Chem.,1975,4(3):249-265.
    [138]Pitzer K S, Leonard F. Thermodynamics of Electrolytes 6:Weak electrolytes including H3PO4 [J]. J. Sol. Chem.,1976,5(4):269-278.
    [139]Leonard F, Pitzer K S. Thermodynamics of Electrolytes 8:High temperature properties, including enthalpy and heat capacity, with application to sodium chloride [J]. J. phys. Chem.,1977,81(19):1822-1828.
    [140]Pitzer K S, Leonard F. Thermodynamics of Electrolytes 11:Properties of 3:2, 4:2, and other high-valence types [J]. J. phys. Chem.,1978,82(11): 1239-1242.
    [141]Bradley D J, Pitzer K S. Thermodynamics of electrolytes.12:Dielectric properties of water and Debye-Hiickel parameters to 350℃ 1 kbar [J]. J. phys. Chem.,1979,83(12):1599-1603.
    [142]Pabalan R T, Pitzer K S. Thermodynamics of concentrated electrolyte mixtures and the prediction of mineral solubilities to high temperatures for mixtures in the system Na-K-Mg-Cl-SO4-OH-H2O [J]. Geochimica et Cosmochimica Acta, 1987,51:2429-2443.
    [143]Pitzer K S, Wang P M, Rard J A, et al. Thermodynamics of electrolytes.13. Ionic strength dependence of higher-order terms; Equations for CaCl2 and MgCl2 [J]. J. Solution Chem.,1999,28(4):265-282.
    [144]Pitzer K S, Simonson J M. Thermodynamics of multicomponent, miscible, ionic systems:Theory and equations [J]. J. Phys. Chem.,1986,90: 3005-3009.
    [145]Simonson J M, Pitzer K S. Thermodynamics of multicomponent, miscible, ionic systems:The system LiNO3-KNO3-H2O [J]. J. Phys. Chem.,1986,90: 3009-3013.
    [146]Clegg S L, Pitzer K S. Thermodynamics of multicomponent, miscible, ionic solutions:Generalized equations for symmetrical electrolytes [J]. J. Phys. Chem.,1992,96:3513-3520.
    [147]Clegg S L, Pitzer K S, Brimblecombe P. Thermodynamics of multicomponent, miscible, ionic solutions. Mixtures including unsymmetrical electrolytes [J]. J. Phys. Chem.,1992,96:9470-9479.
    [148]Lebowitz J L, Percus J K. Mean spherical model for lattice gases with extended hard cores and continuum fluids [J]. Phys. Rev.,1966,144:251-258.
    [149]Blum L. Mean spherical model for asymmetric electrolytes I. Method of solution [J]. Molecular Physics,1975,30(5):1529-1535.
    [150]Planche H, Renon H. Mean spherical approximation applied to a simple but nonprimitive model interaction for electrolyte solutions and polar substances [J]. J. Phys.Chem.,1981,85(25):3924-3929.
    [151]Ball F X, Planche H, Furst W, et al. Representation of deviation from ideality in concentrated aqueous solutions of electrolytes using a mean spherical approximation molecular model [J]. AIChE J.,1985,31(8):1233-1240.
    [152]Gao G H, Tan Z Q, Yu Y X. Calculation of high-pressure solubility of gas in aqueous electrolyte solution based on non-primitive mean spherical approximation and perturbation theory [J]. Fluid Phase Equilib.,1999,165: 169-182.
    [153]Yu Y X, Gao G H, Li Y G. Surface tension for aqueous electrolyte solutions by the modified mean spherical approximation [J]. Fluid Phase Equilib.,2000, 173:23-38.
    [154]Simonin J P, Blum L, Turq P. Real ionic solutions in the mean spherical approximation.1. Simple salts in the primitive model [J]. J. Phys. Chem., 1996,100:7704-7709.
    [155]Simonin J P. Real ionic solutions in the means spherical approximation.2. Pure strong electrolytes up to very high concentrations, and mixtures, in the primitive modle [J]. J. Phys. Chem. B,1997,101:4313-1320.
    [156]Sohnel o, Novotny P. Densities of aqueous solutions of inorganic substances; Physical Sciences Data 22; Elsevier:Amsterdam,1985.
    [157]Monnin C, Dubois M, Papaiconomou N, et al. Thermodynamics of the LiCl+ H2O system [J]. J. Chem. Eng. Data,2002,47:1331-1336.
    [158]Brunauer S, Emmett P H, Teller E. Adsorption of gases in multimolecular layers [J]. J. Am. Chem. Soc.,1938,60:309-319.
    [159]Stokes R H, Robinson R A. Ionic hydroation and activity in electrolyte solutions [J]. J. Am. Chem. Soc.,1948,70:1870-1878.
    [160]Sangster J, Abraham M C, Abraham M. Vapour pressures of aqueous solutions of (Ag, T1, Ca)NO3 at 371.7 K [J]. J. Chem. Thermodyn.,1979,11:619-625.
    [161]Abraham M C, Abraham M, Sangster J. Vapor pressures of aqueous solutions of (silver, thallium, sodium) nitrate at 98.5 degree.C [J]. J. Chem. Eng. Data, 1980,25:331-332.
    [162]Abraham M C, Abraham M, Sangster J. Influence de la temperature surles constantes B.E.T. de dissolution de leau dans un melange fondu [J]. Can. J. Chem.,1980,58:1480-1483.
    [163]Voigt W. Calculation of salt activities in molten salt hydrates applying the modified BET equation, I:Binary systems [J]. Monatshefte fur Chemie, 1993,124:839-848.
    [164]Ally M R, Braunstein J. Statistical mechanics of multilayer adsorption: electrolyte and water activities in concentrated solutions [J]. J. Chem. Thermodynamics,1998,30:49-58.
    [165]Abraham M, Abraham M C. Electrolyte and water activities in very concentrated solutions [J]. Electrochimica Acta,2000,46:137-142.
    [166]Zeng D W, Zhou J. Thermodynamic consistency of the solubility and vapor pressure of a binary saturated salt+water+system. I. LiCl+H2O [J]. J. Chem. Eng. Data,2006,51:315-321.
    [167]Zeng D W, Ming J W, Voigt W. Thermodynamic study of the system (LiCl+ LiNO3+H2O) [J]. J. Chem. Thermodynamics,2008,40:232-239.
    [168]Li B H, Zeng D W, Yin X, et al. Theoretical prediction and experimental determination of room-temperature phase change materials using hydrated salts as agents [J]. J. Therm. Anal. Calorim.,2010,100:685-693.
    [169]尹霞,李琴香,万艳鹏,等.高溶解性盐水体系热力学模型预测能力的比较研究Ⅰ:二元体系[J].化学学报,2008,66(15):1815-1826.
    [170]Gruszkiewicz M S, Simonson J. Vapor pressures and isopiestic molalities of concentrated CaCl2(aq), CaBr2(aq), and NaCl(aq) to T= 523 K[J]. J. Chem. Thermodynamics,2005,37:906-930.
    [171]Rard J A, Clegg S L. Critical evaluation of the thermodynamic properties of aqueous calcium chloride.1. Osmotic and activity coefficients of 0-10.77 mol-kg-1 aqueous calcium chloride Solutions at 298.15 K and correlation with extended Pitzer ion-interaction models [J]. J. Chem. Eng. Data 1997,42: 819-849.
    [172]Gibbard Jr H F, Scatchard G. Liquid-vapor equilibrium of aqueous lithium chloride, from 25 to 100 deg. and from 1.0 to 18.5 molal, and related properties [J]. J. Chem. Eng. Data,1973,18:293-298.
    [173]Zeng D W, Wu Z D, Yao Y, et al. Isopiestic determination of water activity on the system LiNO3+KNO3+H2O at 273.15 K and 298.15 K [J]. J. Solution Chem.,2010,39:1360-1376.
    [174]Braunstein H, Braunstein J. Isopiestic studies of very concentrated aqueous electrolyte solutions of LiCl, LiBr, LiNO3, Ca(NO3)2, LiNO3+KNO3, LiNO3+CsNO3, and Ca(NO3)2+CsNO3 at 100 to 150 [J]. J. Chem. Thermodynamics,1971,3:419-431.
    [175]Rard J A, Wijesinghe A M, Wolery T J. Review of the thermodynamc properties of Mg(NO3)2(aq) and their representation with thestandard and extended ion-interaction (Pitzer) models at 298.15 K [J]. J. Chem. Eng. Data, 2004,49:1127-1140.
    [176]Ewing W W, Kllnger E, Brandner J D. Studies on the vapor pressure-temperature relations and on the heats of hydration, solution and dilution of the binary system magnesium nitrate-water [J]. J. Am. Chem. Soc, 1934,56:1053-1057.
    [177]Pearce J N, Hopson H. The vapor pressures of aqueous solutions of sodium nit rate and potassium thiocyanate [J]. J. Phys.Chem.1937,41:535-538.
    [178]Goldberg R N. Evaluated activity and osmotic coefficients for aqueous solutions:Bi-Univalent compounds of lead, copper, manganese, and uranium [J]. J. Physical and Chemical Reference Data,1979,8:1005-1050.
    [179]Linke W F, Seidell A. Solubilities:inorganic and metal-organic compounds [M].4th. Ed.:American Chemical Society:Washington, DC,1965.
    [180]Collins E M, Menzies W C. A comparative method for measuring aqueous vapor and dissociation pressures with some of its applications [J]. J. Phys. Chem.1936,40:379-397.
    [181]尹霞,吴玉双,李琴香,等.LiNO3-KNO3-H2O三元体系相平衡研究[J].无机化学学报,2010,26(1):45-48.
    [182]Skripkin M Y, Chernykh L V. Solubility in the systems CuCl2-MCl-H2O (M= Li, Na, K, Cs, NH4) at 25 and 50 ℃ [J]. Zhurnal Neorganiccheskoi Khimii. 1994,39(10):1747-1751.
    [183]Zeng D W., Xu W F, Voigt W, etal. Thermodynamic study of the system (LiCl+CaCl2+H2O) [J]. J. Chem. Thermodynamics,2008,40:1157-1165.
    [184]Zeng D W, Zhou H Y, Voigt W. Thermodynamic consistency of solubility and vapor pressure of a binary saturated salt+water system Ⅱ. CaCl2+H2O [J]. Fluid Phase Equilibria,2007,253:1-11.
    [185]Filippov VK, Mihelbson K N. Thermodynamic study of the lithium chloride-calcium chloride-water system at 25 and 35%[J]. Zhurnal Neorganicheskoi Khimii,1977,22:1689-1694.
    [186]Zbranek V.; Eysseltova J. Study of the ternary system M(n)(NO3)2-LiNO3-H2O (M= Mg, Ca, Sr, Ba) at 25 ℃[J]. Monatshefe fur Chemie,2001,132:1463-1475.
    [187]Eysseltoya J. Solubility of lithium nitrate in solutions of lithium halides [J]. Monatshefte fur Chemie,2005,136:1567-1572.
    [188]Chernykh LV, Bulgakova T N, Skripkin M Y, et al. Thermodynamic study of MgX2-LiX-H2O systems (X= Br, NO3, ClO4) at 0 and 50 ℃[J]. Zh Prikl Khim, 1998,71:1425-1430.
    [189]Silvko T A, Shakhno I V, Plyushchev VE. System Li+, K+li NO3-,CO32--H2O at 25℃ [J]. Zhurnal Neorganicheskoi Khimii,1968,13:2020-2026.
    [190]Brugger J, Mcphail D C, Black J, et al. Complexation of Metal Ions in Brines: Application of Electronic Spectroscopy in The Study of The Cu(″)-LiCl-H2O System Between 25℃ and 90℃[J]. Geochim.Cosmochim. Acta,2001, 65(16):2691-2708.
    [191]Bobmann E, Richter J. Experimental results and aspects of analytical treatment of vapour pressure measurements in hydrated melts at elevated temperature [J]. Ber. Brmsenges Phys. Chem.,1993,97:240-245.
    [192]Barry J C, Richter J, Stich E. Vapour pressures and ionic activity coefficients in the system KNO3+H2O from dilute solutions to fused salts at 425 K,452 K, and 492 K [J]. Ber Bunsenges phys. Chem.,1988,92:1118-1122.
    [193]Rains W O, Cownce R M. Liquidus curves of NH4NO3(aq) calculated from the modified adsorption isotherm model for aqueous electrolytes [J]. Separation Science and Technology,2006,41(11):2629-2634.
    [194]Zeng D W, Voigt W. Phase diagram calculation of molten salt hydrates using the modified BET equation [J]. Calphad,2003,27:243-251.
    [195]Fanghanel T H, Kravchuk K, Voigt W, et al. Solid-liquid-phase equilibria in the system potassium chloride-magnesium chloride-water at elevated temperatures. I. The binary system magnesium chloride-water at 130-250℃ [J]. Z. Anorg. Allg. Chem 1987,547:21-26.
    [196]Kurtova L V, Bolshakova L P, Plyushchev V E. Equilibriums in the system LiNO3-NaNO3-H2O at 25℃ [J]. Zhurnal Neorganicheskoi Khimii,1963,8: 1993-1994.
    [197]Andronova N P. Sodium nitrate-lithium nitrate-water system at 50.deg [J]. Uchenye Zapiski-Yaroslavskii Gosudarstvennyi Pedagogicheskii Institut imeni K. D. Ushinskogo,1972,103:50-51.
    [198]Sieverts A, Muller H Z The reciprocal salt pair MgCl2, Na2(NO3)2, H20.1 [J].. Z. Anorg. Allg. Chem.1930,189:241-257.
    [199]Sieverts A, Muller E L. The reciprocal salt pair MgCl2, Na2(NO3)2, H2O. II [J]. Z. Anorg. Allg. Chem.1931,200:305-320.
    [200]Rockland L B. Saturated salt solutions for static control of relative humidity between 5°and 40℃ [J]. Anal. Chem.1960,32,1375-1376.
    [201]Jotshi C. K.; Goswami, D. Y.; Tomlinson, J. J. Solar thermal energy storage in phase change materials [C]. in Proc.1992 ASES Annual Conf., USA.,1992: 13-18.
    [202]Lane G A. Solar Heat Storage; Latent Heat Materials [M]. Vol.1. CRC Press Inc., USA,1983.
    [203]卤水和盐的分析方法[M].中国科学院青海盐湖研究所分析室编著,科学出版社,第二版,1988,35-37.
    [204]常素霞,张桂云.卤水在锂的常量测定——过碘酸盐间接容量法[J].海湖盐与化工,1995,24(4):36-38.
    [205]宋彭生,李冰.含锂水盐体系的相平衡研究[J].青海科技,1994,10(1):5-12.
    [206]Chan Y C, Choy K K H, Chan A H C, et al. Solubility of diamantane, triamantane, tetramantane, and their derivatives in organic solvents [J]. Journal of Chemical & Engineering Data,2008,53(8):1767-1771.
    [207]Lee L S, Lin C W, Kao C H. Using tert-butyl alcohol as an adductive agent for separation of an m-cresol and 2,6-xylenol mixture [J]. Industrial & Engineering Chemistry Research,2000,39(6):2068-2075.
    [208]徒杰生.化工产品手册[M]第三版,无机化工产品.北京:化学工业出版社1999,183-184.
    [209]宋彭生.湿渣法在水盐体系相平衡研究中的应用[J].盐湖研究,1991,1:15-23.
    [210]巴格也夫良斯基.物理化学分析[M],化学工业出版社,北京,1960,56-73.
    [211]李碧海.室温熔盐水合物相变储能材料的理论和实验研究[D].长沙:湖南大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700