用户名: 密码: 验证码:
肿瘤干细胞向不同肿瘤细胞分化的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肿瘤干细胞(cancer stem cells, CSCs)的存在已在某些肿瘤细胞株及原发性肿瘤中得到了证实,但肿瘤干细胞是否具有分化成为不同肿瘤细胞的潜能尚未见报道。因此,研究肿瘤干细胞的多向分化潜能对阐明肿瘤的发生、发展和转移,以及发展一种以肿瘤干细胞为靶点的抗肿瘤治疗都具有重要意义。
     目的:研究和证实肿瘤干细胞具有分化成为不同肿瘤细胞的潜能。
     方法:从原代人肝癌微血管内皮细胞分离培养过程中获得了一种快速增殖的小细胞(命名为T3A),通过将这些细胞在免疫缺陷小鼠成瘤和单细胞克隆技术筛选出生长最迅速、成瘤能力最强的细胞克隆(命名为T3A-A3)。对T3A-A3性质的鉴定分别应用]RT-PCR分析T3A-A3细胞干细胞相关基因mRNA的水平;应用流式细胞术从蛋白水平检测干细胞相关标志的表达;应用甲基纤维素二次集落形成实验及免疫缺陷小鼠二次成瘤实验评价T3A-A3细胞的自我更新能力;并通过染色体核型分析对T3A-A3细胞进行核型鉴定。通过将细胞接种于NOD/SCID鼠后的成瘤和转移情况评价T3A-A3细胞的成瘤能力。为诱导T3A-A3细胞向不同肿瘤细胞分化,选择人黑色素瘤细胞株(SK-MEL-1)和淋巴瘤细胞株(Daudi),用反复低氧-复氧培养分别活化两种肿瘤细胞,然后收集细胞的培养上清用作诱导分化的肿瘤细胞条件培养基,另将两种肿瘤细胞分别接种免疫缺陷小鼠,将成瘤后的肿瘤组织匀浆处理,用以制备肿瘤组织条件培养基。用黑色素瘤细胞和淋巴瘤细胞制备的细胞及组织条件培养基培养T3A-A3细胞21天后,应用RT-PCR、免疫蛋白印迹(Western-blot).细胞免疫荧光染色和免疫组织化学染色方法检测T3A-A3细胞诱导分化前后黑色素瘤细胞特有蛋白gp100和淋巴瘤细胞特异蛋白CD10的表达情况。
     此外,通过免疫组织化学染色检测在人肝癌、巨细胞型胶质母细胞瘤、乳腺癌、胶质肉瘤、食管癌和胃印戒细胞癌,以及正常肝、脑、食道和胃组织切片上T3A单抗阳性细胞的分布情况。
     结果:RT-PCR结果显示,T3A-A3细胞表达与干细胞增殖、自我更新相关的基因Notch-1, Bmi-1,β-catenin, Oct-4, SMO;表达经典的干细胞标志性分子CD133, CD34, ABCG2, Nestin, C-kit和SCF;表达可诱导的多潜能干细胞(induced pluripotent stem cells,iPS)相关的转录因子Oct-4, Nanog, Lin28, Klf4, Sox2和C-myc。流式细胞术分析显示,T3A-A3细胞表达经典干细胞标志性分子CD133、Nestin, CD34, CD44, ABCG2和Oct-4;二次集落形成实验及二次成瘤实验阳性。染色体核型分析显示,T3A-A3细胞为多倍体;细胞接种到NOD/SCID鼠皮下后,最低1000个细胞即可成瘤;接种1×106T3A-A3细胞于NOD/SCID鼠肝脏,2个月后在胃、肺、结肠发现肿瘤转移灶。T3A-A3细胞经过黑色素瘤细胞和黑色素瘤组织条件培养基诱导3周后,细胞形态发生明显变化,RT-PCR、Western-blot、细胞免疫荧光染色和免疫组织化学染色显示,T3A-A3细胞表达黑色素瘤细胞的特异标志gp100的mRNA和蛋白,表明T3A-A3向黑色素瘤细胞分化;T3A-A3细胞经过淋巴瘤细胞和淋巴瘤组织条件培养基诱导3周后,细胞形态也发生明显变化,RT-PCR、Western-blot、细胞免疫荧光染色和免疫组织化学染色显示,T3A-A3细胞表达淋巴瘤细胞的特异标志CD10的mRNA和蛋白,表明T3A-A3具有向淋巴瘤细胞分化的潜能。通过免疫组织化学染色,在人的肝癌、巨细胞型胶质母细胞瘤、乳腺癌、胶质肉瘤、食管癌和胃印戒细胞癌的肿瘤组织中都发现了不同程度的T3A抗体标记阳性细胞,而在正常肝、脑、食道和胃组织切片上未见到T3A抗体标记阳性的细胞。
     结论:我们的研究结果表明,人的肿瘤干细胞具有分化成为不同肿瘤细胞的潜能,人的肿瘤细胞可能来源于一类共同的肿瘤干细胞。
Although the existence of cancer stem cells (CSCs) has been confirmed in some primary tumors and cancer cell lines, it has not been well documented whether cancer stem cells have the potential of differentiating into different types of cancer cells. Therefore, to investigate the multi-potential of cancer stem cells will have great significance for developing a novel anti-tumor method by targeting cancer stem cells as well as for elucidating the initiation, progression and metastasis of cancer.
     Objectives: To investigate and confirm the potential that cancer stem cells could differentiate into different types of cancer cells.
     Methods: A population of small cells (T3A) with rapidly proliferation capacity were obtained during isolation and culture of primary human liver cancer microvascular endothelial cells. Undergo subcutanously inoculation with NOD/SCID mice and monoclonal screening, a single cell clone (T3A-A3) with rapid proliferation and high tumorigenicity was selected by MTT assay and immune deficienct mice tumorigenesis. Expression of stem cell related genes was analyzed by RT-PCR in T3A-A3. The stem cell-related markers were detected by flow cytometry in T3A-A3. Self-renewal potential of T3A-A3 was evaluated by methylcellulose secondary colony fomation assay and secondary tumorigenesis assay. Chromosome karyotype assay was made with T3A-A3 tumorigenicity and metastasis ability was evaluated by subcutaneous inoculation and intrahepatic inoculation respectively.
     In order to investigate the multiple differentiation potential of T3A-A3, human melanoma cell line SK-MEL-1 and human lymphoma cell line Daudi were selected to prepare the cancer inducing conditioned mediums (including cell conditioned mediums and tissue conditioned mediums):the cell conditioned mediums were made from culture supernatant of melanoma/lymphoma after incubated under hypoxia/reoxygenation, while the tissue conditioned medium were made from tissue homogenate of tumors formed by both cell transplanted in NOD/SCID mice. T3A-A3 was cultured with melanoma/lymphoma cell conditioned mediums or with melanoma/lymphoma tissue conditioned mediums for 21 days respectively, then the expression of melanoma specific molecule (gp100) and lymphoma correlative molecule (CD10) were detected by RT-PCR, immunofluorescence staining, western blot and immunohistochemistry technology.
     In addition, the monoclonal antibody against T3A was developed and applied to immunohistochemistry staining on 6 types of human cancer tissues and 4 types of human normal tissues.
     Results: By RT-PCR, mRNA of such genes related to stem cell proliferation and self-renewal as Notch, Bmi-1,β-catenin, Oct-4 and SMO were fund to express in T3A-A3. mRNA of several transcription factors related to induced pluripotent stem cell, Oct-4, Nanog, Lin28, K1f4, Sox2 and C-myc were expressed in T3A-A3 as well as stem cell classic markers CD133, CD34, ABCG2, Nestin, C-kit and SCF. By flow cytometry, expressions of the classic stem cell markers CD133,Nestin,CD34,CD44, ABCG2 and Oct-4 were confirmed on T3A-A3 cells. Chromosome karyotype analysis showed that T3A-A3 is polyploidy. The ability of secondary colony formation and secondary tumorigenicity ability were exhibited with T3A-A3 cells. Tumorigenesis was found when just 1000 T3A-A3 cells were subcutaneously inoculated into NOD/SCID mice. The metastatic focuses were found in stomach, lung and colon two months later 1×106 T3A-A3 cells were inoculated in NOD/SCID mice. The morphological changes were found in T3A-A3 cells after induced with melanoma/lymphoma cell conditioned mediums or melanoma/lymphoma tissue conditioned mediums. The specific marker of melanoma (gp100) was found in T3A-A3 after cultured with melanoma conditioned mediums or melanoma tissue mediums by RT-PCR, immunofluorescence staining, western blot and immunohistochemical staining. It was indicated that T3A-A3 was induced to differentiate toward melanoma cell. The fact specific marker of lymphoma (CD 10) was detectable in T3A-A3 after cultured with lymphoma cell conditioned mediums or tissue conditioned mediums by RT-PCR, immunofluorescence staining, western blot and immunohistochemical staining indicated that T3A-A3 was induced to differentiate toward to lymphoma cell. In addition, by immunohistochemical staining with mAb against T3A, positive cell subsets were detected in several different types of cancers including hepatoma, giant cell glioblastoma, breast cancer, gliosarcoma, esophageal cancer and gastric signet ring cell carcinoma.At the same time, no positive cell was detected in normal liver, normal brain, normal esophagus, and normal stomach tissues.
     Conclusions:Human cancer stem cells have the potential of differentiating into different types of cancer cells, and the different types of cancer cells may come from one homogeneous cancer stem cells.
引文
[1]Parkin DM, Bray F, Ferlay J, Pisani P.Global cancer statistics,2002[J].CA Cancer J Clin.2005;55(2):74-108.
    [2]Dalerba, P., Cho, R.W., and Clarke, M.F. Cancer stem cells: models and concepts [J].Annu. Rev. Med,2007,58:267-284.
    [3]O'Brien, C.A., Pollett, A., Gallinger, S., and Dick, J.E. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice [J]. Nature, 2007,445:106-110.
    [4]Wicha MS. Cancer stem cells and metastasis: lethal seeds [J]. Clin Cancer Res, 2006,12(19):5606-5607.
    [5]Hermann PC, Huber SL, Herrier T, et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer [J]. Cell Stem Cell,2007,1(3):313-323.
    [6]Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells[J].Nature,2001,414:105-111.
    [7]Al-Hajj M, Becker MW, Wicha M et al. Therapeutic implications of cancer stem cells[J]. Curr Opin Genet Dev,2004,14:43-47.
    [8]Zhang M, Rosen JM. Stem cells in the etiology and treatment of cancer[J]. Curr Opin Genet Dev,2006,16:60-64.
    [9]Michor F, Hughes TP, Iwasa Y, et al.Dynamics of chronic myeloid leukaemia[J]. Nature,2005,435:1267-1270.
    [10]Hirschmann-Jax C, Foster AE, Wulf GG, et al.A distinct "side population" of cells with high drug efflux capacity in human tumor cells[J]. Proc Natl Acad Sci U S A.2004,101:14228-14233.
    [11]Liu G, Yuan X, Zeng Z, et al.Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma[J]. Mol Cancer,2006,5:67-78.
    [12]Brown JM, Giaccia AJ. The unique physiology of solid tumors:opportunities (and problems) for cancer therapy [J]. Cancer Res,1998,58(7):1408-1416.
    [13]Green SK, Frankel A, Kerbel RS. Adhesion-dependent multicellular drug resistance[J]. Anticancer Drug Des,1999,14(2):153-168.
    [14]Brown JM, Wilson WR. Exploiting tumour hypoxia in cancer treatment[J].Nat Rev Cancer,2004,4:437-447.
    [15]Bao S, Wu Q, McLendon RE, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response[J]. Nature,2006,444:756-760.
    [16]Setoguchi T, Taga T, Kondo T. Cancer stem cells persist in many cancer cell lines[J]. Cell Cycle,2004,3(4):414-415.
    [17]Kondo T, Setoguchi T, Taga T. Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line [J]. Proc Natl Acad Sci U S A, 2004,101 (3):781-786.
    [18]Bonnet D, Dick J E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell [J].Nat Med,1997,3 (7):730-737.
    [19]Ponti D, Costa A, Zaffaroni N,et al. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties[J].Cancer Res,2005,65(13):5506-5511.
    [20]Singh SK, Hawkins C, Clarke ID,et al. Identification of human brain tumour initiating cells[J]. Nature,2004,432(7015):396-401.
    [21]Hemmati HD, Nakano I, Lazareff JA, Masterman-Smith M, Geschwind DH, Bronner-Fraser M, Kornblum HI. Cancerous stem cells can arise from pediatric brain tumors[J]. Proc Natl Acad Sci U S A,2003,100:15178-15183.
    [22]Collins AT, Berry PA, Hyde C,et al. Prospective identification of tumorigenic prostate cancer stem cells[J]. Cancer Res,2005,65(23):10946-10951.
    [23]Patrawala L, Calhoun T, Schneider-Broussard R, Li H, Bhatia B, Tang S, Reilly JG, Chandra D, Zhou J, Claypool K, Coghlan L, Tang DG. Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells[J]. Oncogene,2006,25:1696-1708.
    [24]Richardson GD, Robson CN, Lang SH, Neal DE, Maitland NJ, Collins AT. CD133, a novel marker for human prostatic epithelial stem cells[J].J Cell Sci,2004,117:3539-3545.
    [25]Houghton J, Stoicov C, Nomura S, Rogers AB, Carlson J, Li H, Cai X, Fox JG, Goldenring JR, Wang TC. Gastric cancer originating from bone marrow-derived cells[J]. Science,2004,306:1568-1571.
    [26]Prince ME, Sivanandan R, Kaczorowski A. et al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma[J]. Proc Natl Acad Sci U S A,2007,104(3):973-978.
    [27]Li C, Heidt DG, Dalerba P, et al. Identification of pancreatic cancer stem cells[J]. Cancer Res,2007,67(3):1030-1037.
    [28]Bapat SA, Mali AM, Koppikar CB,et al. Stem and progenitor-like cells contribute to the aggressive behavior of human epithelial ovarian cancer[J].Cancer Res,2005,65(8):3025-3029.
    [29]Schatton T, Murphy GF, Frank NY,et al. Identification of cells initiating human melanomas[J].Nature,2008,451:345-352.
    [30]O'Brien CA, Pollett A, Gallinger S, et al. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice[J].Nature,2007, 445(7123),106-110.
    [31]Ricci-Vitiani L, Lombardi DG, Pilozzi E,et al. Identification and expansion of human colon-cancer-initiating cells. Nature,2007,445(7123):111-115.
    [32]Perryman SC, Sylvester KG. Repair and regeneration: opportunities for carcinogenesis from tissue stem cells[J]. J Cell Mol Med,2006,10:292-308.
    [33]Chambers I, Smith A. Self-renewal of teratocarcinoma and embryonic stem cells[J]. Oncogene,2004,23:7150-7160.
    [34]Valk-Lingbeek ME, Bruggeman SW, von Lohuizen M. Stem cells and cancer; the polycomb connection[J]. Cell,2004,118:409-418.
    [35]Beachy PA, Karhadkar SS, Berman DM. Tissue repair and stem cell renewal in carcinogenesis[J]. Nature,2004,432:324-331.
    [36]Eramo A, Lotti F, Sette G, et al. Identification and expansion of the tumorigenic lung cancer stem cell population [J]. Cell Death Differ,2008,15:504-514.
    [37]Yang ZF, Ho DW, Ng MN, et al. Significance of CD90+ cancer stem cells in human liver cancer[J]. Cancer Cell,2008,13:153-166.
    [38]Yu F, Yao H, Zhu P, et al. let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell,2007,131,1109-1123.
    [39]Ginestier C, Hur MH, Charafe-Jauffret E, et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome[J]. Cell Stem Cell,2007,1:555-567.
    [40]Ma S, Chan KW, Hu L, et al. Identification and characterization of tumorigenic liver cancer stem/progenitor cells[J]. Gastroenterology,2007,132(7):2542-2556.
    [41]Baker D, Harrison N, Maltby E, et al. Adaptation to culture of human embryonic stem cells and oncogenesis in vivo[J].Nature Biotechnol. 2007,25,207-215.
    [29]Schatton T, Murphy GF, Frank NY, et al. Identification of cells initiating human melanomas[J]. Nature,2008,451:345-349.
    [30]Dalerba P, Dylla SJ, Park IK, et al. Phenotypic characterization of human colorectal cancer stem cells[J].Natl Acad. Sci. USA,2007,104:10158-10163.
    [31]Prince ME, Sivanandan R, Kaczorowski A, et al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma[J]. Proc. Natl Acad. Sci. USA,2007,104,973-978.
    [32]Singh SK, Hawkins C, Clarke ID, et al. Identification of human brain tumour initiating cells[J]. Nature,2004,432,396-401.
    [33]Wu C, Wei Q, Utomo V, et al. Side population cells isolated from mesenchymal neoplasms have tumor initiating potential[J]. Cancer Res,2007,67:8216-8222.
    [47]Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors[J]. Cell,2007,131:861-72.
    [48]Junying Yu, Maxim A. Vodyanik, Kim Smuga-Otto, et al. Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells[J].Science,2007, 318,1917-1920.
    [49]Topczewska JM, Postovit LM, Margaryan NV, et al. Embryonic and tumorigenic pathways converge via Nodal signaling: Role in melanoma aggressiveness[J]. Nat Med,2006,12:925-932.
    [50]Santagata S, Ligon KL, Hornick JL. Embryonic stem cell transcription factor signatures in the diagnosis of primary and metastatic germ cell tumors[J]. Am J Surg Pathol,2007,31:836-45.
    [51]Li XL, Eishi Y, Bai YQ, et al. Expression of the SRY-related HMG box protein SOX2 in human gastric carcinoma[J]. Int J Oncol,2004,24:257-263.
    [52]Rodriguez-Pinilla SM, Sarrio D, Moreno-Bueno G, et al. Sox2:A possible driver of the basal-like phenotype in sporadic breast cancer[J].Mod Pathol,2007,20:474-481.
    [53]Fang D, Nguyen TK, Leishear K,et al. A tumorigenic subpopulation with stem cell properties in melanomas[J].Cancer Res,2005,65(20):9328-9337.
    [54]Lin T.M., Chang H.W., Wang K.H., et al.Isolation and identification of mesenchymal stem cells from human lipoma tissue[J]. Biochem Biophys Res Commun,2007,361:883-889.
    [55]Gibbs C.P, Kukekov V.G, Reith J.D, et al. Stem-like cells in bone sarcomas: implications for tumorigenesis[J].Neoplasia,2005,7(11):7967-7976.
    [56]Mario-Luca Suva, Nicolo Riggi,1 Jean-Christophe Stehle,et al. Identification of Cancer Stem Cells in Ewing's Sarcoma[J]. Cancer Res,2009,69(5):OF1-6.
    [57]Cao H, Xu W, Qian H, et al. Mesenchymal stem cell-like cells derived from human gastric cancer tissues[J]. Cancer Lett,2009,274(1),61-71.
    [58]Calabrese C, Poppleton H, Kocak M, et al. A perivascular niche for brain tumor stem cells[J]. Cancer Cell,2007,11:69-82.
    [59]Gao JX.Cancer stem cells:the lessons from pre-cancerous stem cells[J]. J Cell Mol Med,2008,12(1),67-96.
    [60]Hendrix MJ, Seftor EA, Hess AR, et al. Vasculogenic mimicry and tumour-cell plasticity: lessons from melanoma[J]. Nat Rev Cancer,2003,3(6),411-421.
    [61]Pezzolo A, Parodi F, Corrias MV, et al. Tumor origin of endothelial cells in human neuroblastoma[J]. J Clin Oncol,2007,25(4),376-383.
    [62]Nolan DJ, Ciarrocchi A, Mellick AS,et al. Bone marrow-derived endothelial progenitor cells are a major determinant of nascent tumor neovascularization[J]. Genes Dev,2007,21(12):1546-1558.
    [63]Aguirre-Ghiso JA.Models, mechanisms and clinical evidence for cancer dormancy[J]. Nat Rev Cancer,2007,7,834-846.
    [64]Indraccolo S, Stievano L, Minuzzo S, Interruption of tumor dormancy by a transient angiogenic burst within the tumor microenvironment[J]. Proc Natl Acad Sci U S A,2006,103(11),4216-4221.
    [65]Jorgensen HG, Copland M, Allan EK, et al. Intermittent exposure of primitive quiescent chronic myeloid leukemia cells to granulocyte-colony stimulating factor in vitro promotes their elimination by imatinib mesylate[J]. Clin Cancer Res,2006,12:626-633.
    [66]Fuchs E, Tumbar T, Guasch G: Socializing with the neighbors:stem cells and their niche[J]. Cell,2004,116:769-778.
    [67]Ailles L, Weissman I:Cancer stem cells in solid tumors[J]. Curr Opin Biotechnol,2007,18:460-466.
    [68]Egeblad M, Littlepage LE, Werb Z:The fibroblastic coconspirator in cancer progression[J]. Cold Spring Harb Symp Quant Biol,2005,70,383-388.
    [69]Kenny PA, Lee GY, Bissell MJ:Targeting the tumor microenvironment[J]. Front Biosci,2007,12:3468-3474.
    [70]Batistatou A, Cook MG, Massi D et al.Histopathology report of cutaneous melanoma and sentinel lymph node in Europe:a web-based survey by the Dermatopathology Working Group of the European Society of Pathology[J]. Virchows Arch,2009;454(5):505-511.
    [71]Gakis G, Merseburger AS, Sotlar K,et al. Metastasis of malignant melanoma in the ureter: possible algorithms for a therapeutic approach[J]. Int J Urol, 2009,16(4):407-409.
    [72]Boerma EG, Siebert R, Kluin PM, Baudis M. Translocations involving 8q24 in Burkitt lymphoma and other malignant lymphomas:a historical review of cytogenetics in the light of todays knowledge[J].Leukemia, 2009;23(2):225-234.
    [73]Sevilla DW, Gong JZ, Goodman BK, Buckley PJ, Rosoff P, Gockerman JP, Lagoo AS.Clinicopathologic findings in high-grade B-cell lymphomas with typical Burkitt morphologic features but lacking the MYC translocation[J]. Am J Clin Pathol,2007,128(6):981-991.
    [1]Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells[J].Nature,2001,414:105-111.
    [2]Al-Hajj M, Becker MW, Wicha M et al. Therapeutic implications of cancer stem cells[J]. Curr Opin Genet Dev,2004,14:43-47.
    [3]Zhang M, Rosen JM. Stem cells in the etiology and treatment of cancer[J]. Curr Opin Genet Dev,2006,16:60-64.
    [4]Bao S, Wu Q, McLendon RE,et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response[J]. Nature, 2006,444:756-760.
    [5]Hermann PC, Huber SL, Herrler T, et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer[J]. Cell Stem Cell,2007,1(3):313-323.
    [6]Eramo A, Lotti F, Sette G, et al. Identification and expansion of the tumorigenic lung cancer stem cell population[J]. Cell Death Differ,2008,15:504-514.
    [7]Yang ZF, Ho DW, Ng MN, et al. Significance of CD90+ cancer stem cells in human liver cancer[J]. Cancer Cell,2008,13:153-166.
    [8]Yu F, Yao H, Zhu P, et al. let-7 regulates self renewal and tumorigenicity of breast cancer cells[J]. Cell,2007,131,1109-1123.
    [9]Ginestier C, Hur MH, Charafe-Jauffret E, et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome[J]. Cell Stem Cell,2007,1:555-567.
    [10]Perryman SC, Sylvester KG. Repair and regeneration:opportunities for carcinogenesis from tissue stem cells[J]. J Cell Mol Med,2006,10:292-308.
    [11]Chambers I, Smith A. Self-renewal of teratocarcinoma and embryonic stem cells[J]. Oncogene,2004,23:7150-7160.
    [12]Valk-Lingbeek ME, Bruggeman SW, von Lohuizen M. Stem cells and cancer; the polycomb connection[J]. Cell,2004,118:409-418.
    [13]Beachy PA, Karhadkar SS, Berman DM. Tissue repair and stem cell renewal in carcinogenesis[J]. Nature,2004,432:324-331.
    [14]Singh SK, Clarke ID, Terasaki M, et al. Identification of a Cancer Stem Cell in Human Brain Tumors[J]. Cancer Res,2003,63(18):5821-5828.
    [15]Li C, Heidt DG, Dalerba P, et al. Identification of pancreatic cancer stem cells[J]. Cancer Res,2007,67: 1030-1037
    [16]Wu, C. et al. Side population cells isolated from mesenchymal neoplasms have tumor initiating potential[J]. Cancer Res,2007,67:8216-8222.
    [17]Bonnet D, Dick J E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell[J].Nat Med,1997,3 (7):730-737.
    [18]Ponti D, Costa A, Zaffaroni N,et al. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties[J].cancer res,2005,65(13):5506-5511.
    [19]Singh SK, Hawkins C, Clarke ID,et al. Identification of human brain tumour initiating cells[J]. Nature,2004,432(7015):396-401.
    [20]Hemmati HD, Nakano I, Lazareff JA, Masterman-Smith M, Geschwind DH, Bronner-Fraser M, Kornblum HI. Cancerous stem cells can arise from pediatric brain tumors[J]. PNAS,2003,100:15178-15183.
    [21]Collins AT, Berry PA, Hyde C,et al. Prospective identification of tumorigenic prostate cancer stem cells[J]. Cancer Res,2005,65(23):10946-10951.
    [22]Patrawala L, Calhoun T, Schneider-Broussard R, Li H, Bhatia B, Tang S, Reilly JG, Chandra D, Zhou J, Claypool K, Coghlan L, Tang DG. Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells[J]. Oncogene,2006,25:1696-1708.
    [23]Richardson GD, Robson CN, Lang SH, Neal DE, Maitland NJ, Collins AT. CD133, a novel marker for human prostatic epithelial stem cells[J]. J Cell Sci,2004,117:3539-3545.
    [24]Houghton J, Stoicov C, Nomura S, Rogers AB, Carlson J, Li H, Cai X, Fox JG, Goldenring JR, Wang TC. Gastric cancer originating from bone marrow-derived cells[J]. Science,2004,306:1568-1571.
    [25]Prince ME, Sivanandan R, Kaczorowski A, et al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma[J]. Proc Natl Acad Sci U S A,2007,104(3):973-978.
    [26]Bapat SA, Mali AM, Koppikar CB,et al. Stem and progenitor-like cells contribute to the aggressive behavior of human epithelial ovarian cancer[J]. Cancer Res,2005,65(8):3025-3029.
    [27]Schatton T, Murphy GF, Frank NY, et al.Identification of cells initiating human melanomas[J]. Nature,2008,451(7176):345-349.
    [28]O'Brien CA, Pollett A, Gallinger S,et al. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice[J].Nature,2007, 445(7123):106-110.
    [29]Ricci-Vitiani L, Lombardi DG, Pilozzi E,et al. Identification and expansion of human colon-cancer-initiating cells[J]. Nature,2007,445(7123):111-115.
    [30]Hanahan D,Weinberg RA. The hallmarks of cancer [J].Cell,2000,100 (1):57-70.
    [31]Marx J. Cancer research. Mutant stem cells may seed cancer[J]. Science,2003, 301 (5038):1308-1310.
    [32]Liu C, Chen Z, Chen Z,et al. Multiple tumor types may originate from bone marrow-derived cells[J]. Neoplasia,2006,8(9):716-724.
    [33]Jones PA, Baylin SB. The epigenomics of cancer[J]. Cell,2007,128:683-692.
    [34]Krivtsov AV,Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9[J]. Nature,2006,442:818-822.
    [35]Wilson A, Oser GM, Jaworski M, et al. Dormant and self-renewing hematopoietic stem cells and their niches[J]. Ann NY Acad Sci,2007,1106:64-75.
    [36]Tumbar T, Guasch G, Greco V, et al. Defining the epithelial stem cell niche in skin[J]. Science,2004,303:359-363.
    [37]Guan Y, Gerhard B, Hogge DE. Detection, isolation, and stimulation of quiescent primitive leukemic progenitor cells from patients with acute myeloid leukemia (AML) [J]. Blood,2003,101:3142-3149
    [38]Pantel K Alix-Panabieres C.The clinical significance of circulating tumor cells[J]. Nat Clin Pract Oncol,2007,4:62-63.
    [39]Aguirre-Ghiso JA.Models, mechanisms and clinical evidence for cancer dormancy[J]. Nat Rev Cancer,2007,7:834-846.
    [40]Almog N, Henke V, Flores L, Prolonged dormancy of human liposarcoma is associated with impaired tumor angiogenesis[J]. FASEB J,2006,20(7):947-949.
    [41]Indraccolo S, Favaro E, Amadori A. Dormant tumors awaken by a short-term angiogenic burst: the spike hypothesis[J]. Cell Cycle,2006,5(16):1751-1755.
    [42]Indraccolo S, Stievano L, Minuzzo S, Interruption of tumor dormancy by a transient angiogenic burst within the tumor microenvironment[J]. Proc Natl Acad Sci U S A,2006,103(11):4216-4221.
    [43]Udagawa T, Fernandez A, Achilles EG, et al.Persistence of microscopic human cancers in mice:alterations in the angiogenic balance accompanies loss of tumor dormancy[J]. FASEB J,2002,16(11):1361-1370.
    [44]J(?)rgensen HG, Copland M, Allan EK, et al. Intermittent exposure of primitive quiescent chronic myeloid leukemia cells to granulocyte-colony stimulating factor in vitro promotes their elimination by imatinib mesylate[J]. Clin Cancer Res,2006,12:626-633.
    [45]Topczewska JM, Postovit LM, Margaryan NV, et al. Embryonic and tumorigenic pathways converge via Nodal signaling:Role in melanoma aggressiveness[J]. Nat Med,2006,12(8):925-932.
    [46]Santagata S, Ligon KL, Hornick JL. Embryonic stem cell transcription factor signatures in the diagnosis of primary and metastatic germ cell tumors[J]. Am J Surg Pathol,2007,31:836-845.
    [47]Li XL, Eishi Y, Bai YQ, et al. Expression of the SRY-related HMG box protein SOX2 in human gastric carcinoma[J]. Int J Oncol,2004,24:257-263.
    [48]Rodriguez-Pinilla SM, Sarrio D, Moreno-Bueno G, et al. Sox2:A possible driver of the basal-like phenotype in sporadic breast cancer [J]. Mod Pathol,2007,20:474-481.
    [49]Suva ML, Riggi N, Stehle JC,et al. Identification of Cancer Stem Cells in Ewing's Sarcoma[J]. Cancer Res 2009;69(5):1776-1781.
    [50]Folkman J. Angiogenesis: An organizing principle for drug discovery[J]? Nat Rev Drug Discov,2007,6:273-286.
    [51]Bian XW, Chen JH, Jiang XF, et al. Angiogenesis as andimmunopharmacologic target in inflammation and cancer [J]. International Immunopharmacology,2004, 4(12):1537-1547.
    [52]Bao S, Wu Q, Sathornsumetee S, et al. Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor[J].Cancer Res, 2006,66:7843-7848.
    [53]Oka N, Soeda A, Inagaki A, et al.VEGF promotes tumorigenesis and angiogenesis of human glioblastoma stem cells[J]. Biochem Biophys Res Commun,2007,360:553-559.
    [54]Calabrese C, Poppleton H, Kocak M, et al. A perivascular niche for brain tumor stem cells[J]. Cancer Cell,2007,11:69-82.
    [55]Dalerba P, Cho RW, Clarke MF. Cancer stem cells:models and concepts[J]. Annu Rev Med,2007,58:267-284.
    [56]Wicha MS. Cancer stem cells and metastasis:lethal seeds [J]. Clin Cancer Res, 2006,12(19):5606-5607.
    [57]Li F, Tiede B, Massague J, et al. Beyond tumorigenesis:cancer stem cells in metastasis[J]. Cell Res,2007,17 (1):3-14.
    [58]Fidler IJ, Talmadge JE. Evidence that intravenously derived murine pulmonary melanoma metastases can originate from the expansion of a single tumor cell[J]. Cancer Res,1986,46(10):5167-5171.
    [59]Balic M, Lin H, Young L, et al. Most early disseminated cancer cells detected in bone marrow of breast cancer patients have a putative breast cancer stem cell phenotype[J]. Clin Cancer Res,2006,12(19):5615-5621.
    [60]Mani SA, Yang J, Brooks M,et al. Mesenchyme Forkhead 1 (FOXC2) plays a key role in metastasis and is associated with aggressive basal-like breast cancers[J]. Proc Natl Acad Sci U S A,2007,104(24):10069-10074.
    [61]Mani SA, Guo W, Liao MJ, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells[J].Cell,2008,133:704-715.
    [62]Morel AP, Lievre M, Thomas C, et al. Generation of breast cancer stem cells through epithelial-mesenchymal transition[J]. PLoS ONE,2008,3(8):e2888.
    [63]Kaplan RN, Riba RD, Zacharoulis S, et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche[J].Nature,2005,438(7069):820-827.
    [64]Michor F, Hughes TP, Iwasa Y, et al.Dynamics of chronic myeloid leukaemia[J]. Nature,2005,435:1267-1270.
    [65]Hirschmann-Jax C, Foster AE, Wulf GG, et al.A distinct "side population" of cells with high drug efflux capacity in human tumor cells[J]. Proc Natl Acad Sci U S A,2004,101:14228-14233.
    [66]Liu G, Yuan X, Zeng Z, et al.Analysis of gene expression and chemoresistance of CD133+cancer stem cells in glioblastoma[J]. Mol Cancer,2006,5:67-78.
    [67]Brown JM, Giaccia AJ. The unique physiology of solid tumors:opportunities (and problems) for cancer therapy[J]. Cancer Res.1998,58(7):1408-1416.
    [68]Green SK, Frankel A, Kerbel RS. Adhesion-dependent multicellular drug resistance[J]. Anticancer Drug Des,1999,14(2):153-168.
    [69]Wilson WR. Exploiting tumour hypoxia in cancer treatment[J].Nat Rev Cancer,2004,4:437-447.
    [70]Clarke, M.F. A self-renewal assay for cancer stem cells[J].Cancer Chemother. Pharmacol,2005,56(Suppl):64-68.
    [71]Berns A. Stem cells for lung cancer[J] Cell,2005,121(6):811-813.
    [72]Malanchi I, Peinado H, Kassen D, et al. Cutaneous cancer stem cell maintenance is dependent on beta-catenin signalling[J].Nature,2008,452: 650-653.
    [73]Lessard J, Sauvageau G:BMI-1 determines the proliferative capacity of normal and leukaemic stem cells[J]. Nature,2003,423:255-260.
    [74]Liu S, Dontu G, Mantle ID, et al. Hedgehog signaling and BMI-1 regulate self-renewal of normal and malignant human mammary stem cells[J]. Cancer Res,2006,66:6063-6071.
    [75]Cui H, Hu B, Li T, et al. BMI-1 is essential for the tumorigenicity of neuroblastoma cells[J]. Am J Pathol,2007,170:1370-1378.
    [76]Lee CJ, Dosch J, Simeone DM. Pancreatic cancer stem cells[J].J Clin Oncol. 2008,26(17):2806-2812.
    [77]Schatzlein AG. Delivering cancer stem cell therapies-a role for nanomedicines? [J]. Euro J Cancer.2006,42(9):1309-1315.
    [78]Jin L, Hope KJ, Zhai Q, et al. Targeting of CD44 eradicates human acute myeloid leukemic stem cells[J]. Nature Med,2006,12:1167-1174.
    [79]Ohno R, Asou N, Ohnishi K. Treatment of acute promyelocytic leukemia: strategy toward further increase of cure rate[J].Leukemia,2003,17:1454-1463.
    [80]Piccirillo SG, Reynolds BA, Zanetti N,et al. Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells[J]. Nature,2006,444:761-765.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700