用户名: 密码: 验证码:
铁(Ⅲ)氧化物修饰微生物燃料电池阳极及其电容特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微生物燃料电池(Microbial fuel cell, MFC)在污水处理的同时可回收清洁能源——电能,是一种真正意义上的可持续的绿色能源技术,成为当今世界科学工作者的研究热点之一,为合理解决水体污染以及能源危机问题提供了新思路。然而考虑到MFC的未来应用,存在着功率密度低、电极成本高等诸多问题,其中阳极与电化学活性微生物间的电子传递过程成为关键限制因素。
     MFC阳极的电化学活性微生物主要由异化金属还原菌构成。研究指出铁(III)氧化物与异化金属还原菌的胞外细胞色素C具有高度亲和性,能够作为电子受体而被还原;此外,不锈钢网金属集流体的机械强度高,导电性能优于常规碳电极,成为目前电极材料发展的主方向。
     本论文首次以不锈钢网作为集流体,超级电容活性炭作为阳极微生物的载体,采用辊压工艺,通过聚四氟乙烯乳液的粘结作用,开发了新型阳极(AcM),以乙酸钠人工模拟废水为底物,构建单室无膜空气阴极微生物燃料电池。研究表明,AcM价格相对低廉,机械强度高,与阳极为碳纤维布的相同构型的MFC体系相比,其输出功率略高3.0%,可见该新型阳极有利于MFC技术的市场化推广,商业化应用前景广阔。
     纳米半导体α-FeOOH修饰AcM电极,电化学测试发现MFC体系极化内阻减小、交换电流密度及阳极峰电流增加,表明α-FeOOH促进了阳极与微生物间的电子传递;阳极常相位角元件增加、韦伯阻抗减小,表明α-FeOOH提高了阳极表面电子扩散能力,增大了阳极电容;在α-FeOOH质量百分含量由0、2.5%增长到5.0%时,MFC体系的最大输出功率密度从508±40mW/m2上升到637士51mW/m2、并进一步增加到693士20mW/m2,然而∝-FeOOH含量继续增加到7.5%时,最大输出功率密度反而下降至(?)639±30mW/m2,原因可能是生物还原的Fe(II)吸附沉积在电极表面,降低了阳极的导电性、扩散性及电容性能。
     针对纳米Fe304修饰的AcM阳极(AcFeM),电化学Tafel测试表明AcFeM的动力学活性增加,最大输出功率密度由664士17mW/m2(AcM)上升到809士5mW/m2(Fe3O4wt.%=5.0%),提高了约22%;此外,本论文首次提出体系中Fe304的动力学活性起主导作用,证实Fe304的存在提高了MFC阳极的电容存储性能,且其电荷存储能力随MFC开路间隔的增加先增加后减少;当开路时间为20min时,AcFeM获得的最大电荷存储量为574.6C/m2。电化学循环伏安技术分析表明AcFeM的电容主要来源于碳的孔隙结构、阳极生物膜的类电容性以及可能充当固体中介体的Fe3O4/Fe(Ⅱ)氧化还原电对。
     MFC极化曲线性能逆转的存在降低了其性能评估的准确性,基于阳极生物膜的类电容特性,以超级电容活性炭、普通活性炭、导电炭黑制备了电容大小不同的阳极UAC、PAC和CB1,研究了阳极材料电容对MFC极化曲线性能逆转的影响。结果表明,UAC的无菌阳极电容(Cmabiotic)最大(2.1F/cm2),在Cycle2~4内,UAC-MFC体系的极化曲线均未出现逆转现象;而PAC的Cmabiotic次之(1.6F/cm2), PAC-MFC体系的性能逆转在Cycle3时消失;CB1的Cmabiotic最小(0.5F/cm2), CB1-MFC体系的性能逆转在Cycle4时才得到消除,从而提出阳极材料的孔结构充当中介体而存储电子的作用机理,借以消除极化曲线的性能逆转现象。
     为证明上述实验结果的可信性,对另一种小电容的炭黑材料(CB2)进行KOH、HN03的化学活化处理,并与5%的Fe304粉末制备成复合阳极,用以增加炭黑自身电容。研究发现,化学活化使炭黑表面引入了含氧官能团,改变了表面元素组成,提高了电极的亲水性,增加了阳极的Cmabiotic;但电极经Fe304修饰后,其电容仅略有增加;结果表明,无论是采用化学活化,还是通过生物富集或Fe304添加的方式补偿阳极电容,只有当炭黑阳极Cm≥1.1F/cm2时,极化曲线才不会出现逆转现象,从而进一步证实阳极材料电容不足会导致极化曲线性能逆转的产生。
It is well recognized that microbial fuel cell (MFC) is specified as the green energy technology due to its wastewater treatment accompanying with energy recovery. This provides a new trial for resolving water pollution and energy crisis. However, considering the practical application for the future, high cost and low power are still the main problems. Especially, the electron transfer rate between anode and bacteria is the key factor.
     The exoelectrogenic bacteria in MFC mainly consists of dissimilatory metal-reducing bacteria (DIRB). It has been experimentally demonstrated that outer membrane c-type cytochromes (OMCs) have a high binding affinity to iron(Ⅲ) oxides. Furthermore, iron(Ⅲ) oxides can be recognized by DIRB and utilized as extracellular electron acceptor to be reduced. What's more, stainless steel mesh (SSM) is superior to conventional carbon electrode with higher mechanism and conductivity, and already being the research tide in electrode materials.
     For the first time, a new type of anode (AcM) is composed of ultracapacitor activated carbon (UAC)/SSM and a polytetrafluoroethylene (PTFE) emulsion by a rolling press method. Sodium acetate is used as the synthetic substrate in single-chamber membrane-less air-cathode MFC. Comparing with carbon mesh (CM) as anode, it is lower cost and better mechanical strength with3.0%higher performance in power generation. Thus, there is bright prospect in favour of market promotion for MFC.
     For AcM modified by nanosemconductor goethite, based on the decrease of polar resistance and the increases of both exchange current density and anodic peak current, it is verified that α-FeOOH added AcM kinetically promotes the extracellular electron transfer. The increase of constant-phase element and decrease of Warburg element manifest that the capacitance and diffusion condition on the surface of anode are enhanced. So, the maximum power density (MPD) arrives to the biggest increase of36%from508±40mW/m2(the control) to637±51mW/m2(2.5%α-FeOOH added), and then to693±20mW/m2(5.0%α-FeOOH added). Whereas, with the excess increment of7.5%, the MPD inversely decreases to639±30mW/m2, probably due to the lower conductivity, diffusion and capacitance under the adsorption of biogenic iron(Ⅱ) on the anodic surface.
     For AcM modified by nano magnetite (AcFeM), Tafel tests indicate that AcFeM is also kinetically more advantageous, and the MPD of AcFeM (809±5mW/m2,5.0%Fe3O4added) is22%higher than that of AcM (664±17mW/m2) by polarization tests. It is the first time to point out that the dynamic activity of Fe3O4plays a leading role in accelerating the electron transfer, and beneficial to boost the transient charge storage of the anode. Furthermore, the net storage capacity initially increases followed by a decrease with the maximum capacitance of574.6C/m2for AcFeM under20min of open circuit interval. The cyclic voltammetry curves explain that the capacitance of AcFeM can be from three aspects:pore structure of carbon, capacitor-like behavior of anodic biofilm and the redox couple of Fe3O4/Fe(Ⅱ) as a solid-state electron shuttle.
     Power overshoot commonly makes the MFC performance evaluation inaccurate. Based on the capacitive characteristic of anodic biofilm, three types of carbon with different capacitance (UAC, plain activated carbon (PAC) and carbon black (CB1)) are rolled on SSM as anodes to investigate the relationship between overshoot and anodic capacitance. It is exciting that the overshoot is not observed for UAC-MFC from Cycle2to4, while the phenomenon is eliminated in PAC-MFC from Cycle3and in CB[-MFC from Cycle4. This is relevant with the Cmabiotic of the anode following the order of UAC (2.1F/cm2)> PAC (1.6F/cm2)> CB1(0.5F/cm2). It is inferred that the Cmabiotlc of anode stores charges and function as electron shuttle to overcome the phenomenon.
     In order to prove the credibility of the result above, another carbon black (CB2) with enhanced capacitance is produced via chemical activation with potassium hydroxide and nitric acid, and simultaneously made into composite anode with5.0%addition. It has been found that oxygen-containing functional groups are introduced and both the hydrophilicity and Cmabiotic of the electrode are also improved. But, before and after Fe3O4addition, there is a slight increase in anodic capacitance. It indicates that the overshoot phenomenon disappears only when Cm is larger than1.1F/cm2, in spite of through chemical activation or capacitance compensation from bacterial colonization and Fe3O4. This further strengthens that insufficient capacity of anode leads to the power overshoot.
引文
[1]Gokcol, C., Dursun, B., Alboyaci, B.,et.al. Importance of biomass energy as alternative to other sources in Turkey. Energy Policy,2009,37(2):424-431.
    [2]Saidur, R., Atabani, A., Mekhilef, S. A review on electrical and thermal energy for industries. Renewable and Sustainable Energy Reviews,2011,15(4):2073-2086.
    [3]U.S. Energy Information Aadministration. International energy outlook 2011. http://www.eia.gov/forecasts/ieo/pdf/0484(2011).pdf.
    [4]王鑫.微生物燃料电池中多元生物质产电特性与关键技术研究:[D].哈尔滨:哈尔滨工业大学,2010.
    [5]Suk Nahm, K. Recent advances and challenges in the anode architecture and their modifications for the applications of microbial fuel cells. Biosensors and Bioelectronics,2013.
    [6]Lewis, K. Symposium on bioelectrochemistry of microorganisms. IV. Biochemical fuel cells. Bacteriological Reviews,1966,30(1):101.
    [7]Potter, M.C. Electrical effects accompanying the decomposition of organic compounds. Proceedings of the Royal Society of London Series B, Containing Papers of a Biological Character,1911,84(571):260-276.
    [8]Davis, J.B., Yarbrough Jr, H. Preliminary Experiments on a Microbial Fuel Cell. Science (New York),1962,137(3530):615.
    [9]Lovley, D.R. Microbial fuel cells:novel microbial physiologies and engineering approaches. Current opinion in biotechnology,2006,17(3):327-332.
    [10]Allen, R.M., Bennetto, H.P. Microbial fuel-cells:electricity production from carbohydrates. Applied biochemistry and biotechnology,1993,39(1):27-40.
    [11]Zhang, T., Cui, C.Z., Chen, S.L.,et.al. A novel mediatorless microbial fuel cell based on direct biocatalysis of Escherichia coli. Chemical Communications,2006, (21):2257-2259.
    [12]Kim, H., Hyun, M., Chang, I.,et.al. A microbial fuel cell type lactate biosensor using a metal-reducing bacterium, Shewanella putrefaciens. J Microbiol Biotechnol,1999,9(3):365-367.
    [13]Liu, H., Grot, S., Logan, B.E. Electrochemically assisted microbial production of hydrogen from acetate. Environmental Science & Technology,2005,39(11):43174320.
    [14]Cao, X., Huang, X., Liang, P.,et.al. A new method for water desalination using microbial desalination cells. Environmental Science & Technology,2009,43(18):7148-7152.
    [15]Qian, F., Wang, G., Li, Y. Solar-driven microbial photoelectrochemical cells with a nanowire photocathode. Nano letters,2010,10(11):4686.
    [16]Wang, X., Feng, Y., Liu, J.,et.al. Sequestration of CO2 discharged from anode by algal cathode in microbial carbon capture cells (MCCs). Biosensors and Bioelectronics,2010, 25(12):2639-2643.
    [17]Lu, L., Xing, D., Xie, T.,et.al. Hydrogen production from proteins via electrohydrogenesis in microbial electrolysis cells. Biosensors and Bioelectronics,2010, 25(12):2690-2695.
    [18]Habermann, W., Pommer, E. Biological fuel cells with sulphide storage capacity. Applied microbiology and biotechnology,1991,35(1):128-133.
    [19]Logan, B.E. Scaling up microbial fuel cells and other bioelectrochemical systems. Applied microbiology and biotechnology,2010,85(6):1665-1671.
    [20]Aelterman, P., Verstraete, W. Bioanode performance in bioelectrochemical systems: recent improvements and prospects. Trends in biotechnology,2009,27(3):168-178.
    [21]Huang, L., Chai, X., Chen, G.,et.al. Effect of set potential on hexavalent chromium reduction and electricity generation from biocathode microbial fuel cells. Environmental Science & Technology,2011,45(11):5025-5031.
    [22]Heijne, A.T., Liu, F., Weijden, R.v.d.,et.al. Copper recovery combined with electricity production in a microbial fuel cell. Environmental Science & Technology,2010, 44(11):4376-4381.
    [23]Wang, Z., Lim, B., Choi, C. Removal of Hg2+ as an electron acceptor coupled with power generation using a microbial fuel cell. Bioresource Technology,2011,102(10):6304-6307.
    [24]Gu, H., Zhang, X., Li, Z.,et.al. Studies on treatment of chlorophenol-containing wastewater by microbial fuel cell. Chinese Science Bulletin,2007,52(24):3448-3451.
    [25]Clauwaert, P., Rabaey, K., Aelterman, P.,et.al. Biological denitrification in microbial fuel cells. Environmental Science & Technology,2007,41(9):3354-3360.
    [26]He, Z., Kan, J., Wang, Y.,et.al. Electricity production coupled to ammonium in a microbial fuel cell. Environmental Science & Technology,2009,43(9):3391-3397.
    [27]You, S.J., Ren, N.Q., Zhao, Q.L.,et.al. Improving phosphate buffer-free cathode performance of microbial fuel cell based on biological nitrification. Biosensors and Bioelectronics, 2009,24(12):3698-3701.
    [28]Virdis, B., Rabaey, K., Rozendal, R.A.,et.al. Simultaneous nitrification, denitrification and carbon removal in microbial fuel cells. Water Research,2010,44(9):2970-2980.
    [29]Xie, S., Liang, P., Chen, Y.,et.al. Simultaneous carbon and nitrogen removal using an oxic/anoxic-biocathode microbial fuel cells coupled system. Bioresource Technology,2011, 102(1):348-354.
    [30]Li, Z., Zhang, X., Lin, J.,et.al. Azo dye treatment with simultaneous electricity production in an anaerobic-aerobic sequential reactor and microbial fuel cell coupled system. Bioresource Technology,2010,101(12):4440-4445.
    [31]Steinbusch, K.J., Hamelers, H.V., Schaap, J.D.,et.al. Bioelectrochemical ethanol production through mediated acetate reduction by mixed cultures. Environmental Science & Technology,2009,44(1):513-517.
    [32]Rozendal, R.A., Leone, E., Keller, J.,et.al. Efficient hydrogen peroxide generation from organic matter in a bioelectrochemical system. Electrochemistry Communications,2009, 11(9):1752-1755.
    [33]You, S.J., Wang, J.Y., Ren, N.Q.,et.al. Sustainable conversion of glucose into hydrogen peroxide in a solid polymer electrolyte microbial fuel cell. ChemSusChem,2010, 3(3):334-338.
    [34]Fischer, F., Bastian, C., Happe, M.,et.al. Microbial fuel cell enables phosphate recovery from digested sewage sludge as struvite. Bioresource Technology,2011, 102(10):5824-5830.
    [35]Cusick, R.D., Logan, B.E. Phosphate recovery as struvite within a single chamber microbial electrolysis cell. Bioresource Technology,2012,107:110-115.
    [36]Kim, B.H., Chang, I.S., Cheol Gil, G,et.al. Novel BOD (biological oxygen demand) sensor using mediator-less microbial fuel cell. Biotechnology letters,2003,25(7):541-545.
    [37]Zhang, F., Tian, L., He, Z. Powering a wireless temperature sensor using sediment microbial fuel cells with vertical arrangement of electrodes. Journal of Power Sources,2011, 196(22):9568-9573.
    [38]Wang, X., Gao, N., Zhou, Q. Concentration responses of toxicity sensor with Shewanella oneidensis MR-1 growing in bioelectrochemical systems. Biosensors and Bioelectronics,2013,43:264-267.
    [39]Gil, G-C., Chang, I.-S., Kim, B.H.,et.al. Operational parameters affecting the performannce of a mediator-less microbial fuel cell. Biosensors and Bioelectronics,2003, 18(4):327-334.
    [40]Jang, J.K., Chang, I.S., Kang, K.H.,et.al. Construction and operation of a novel mediator-and membrane-less microbial fuel cell. Process Biochemistry,2004,39(8):1007-1012.
    [41]Liu, H., Cheng, S., Logan, B.E. Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environmental Science & Technology,2005,39(14):5488-5493.
    [42]Jadhav, G., Ghangrekar, M. Performance of microbial fuel cell subjected to variation in pH, temperature, external load and substrate concentration. Bioresource Technology,2009, 100(2):717-723.
    [43]Kim, J.R., Cheng, S., Oh, S.-E.,et.al. Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells. Environmental Science & Technology,2007, 41(3):1004-1009.
    [44]曹效鑫,梁鹏,黄霞.“三合一”微生物燃料电池的产电特性研究.环境科学学报,2006,26(8):1252-1257.
    [45]Fan, Y., Hu, H., Liu, H. Enhanced coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration. Journal of Power Sources, 2007,171(2):348-354.
    [46]Liu, H., Logan, B.E. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environmental Science & Technology,2004,38(14):4040-4046.
    [47]Cheng, S., Liu, H., Logan, B.E. Increased performance of single-chamber microbial fuel cells using an improved cathode structure. Electrochemistry Communications,2006, 8(3):489-494.
    [48]Cheng, S., Liu, H., Logan, B.E. Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells. Environmental Science & Technology,2006,40(1):364-369.
    [49]HaoYu, E., Cheng, S., Scott, K.,et.al. Microbial fuel cell performance with non-Pt cathode catalysts. Journal of Power Sources,2007,171(2):275-281.
    [50]Morris, J.M., Jin, S., Wang, J.,et.al. Lead dioxide as an alternative catalyst to platinum in microbial fuel cells. Electrochemistry Communications,2007,9(7):1730-1734.
    [51]Rismani-Yazdi, H., Carver, S.M., Christy, A.D.,et.al. Cathodic limitations in microbial fuel cells:an overview. Journal of Power Sources,2008,180(2):683-694.
    [52]Li, X., Hu, B., Suib, S.,et.al. Manganese dioxide as a new cathode catalyst in microbial fuel cells. Journal of Power Sources,2010,195(9):2586-2591.
    [53]Liu, X.W., Sun, X.F., Huang, Y.X.,et.al. Nano-structured manganese oxide as a cathodic catalyst for enhanced oxygen reduction in a microbial fuel cell fed with a synthetic wastewater. Water Research,2010,44(18):5298-5305.
    [54]Zhang, F., Cheng, S., Pant, D.,et.al. Power generation using an activated carbon and metal mesh cathode in a microbial fuel cell. Electrochemistry Communications,2009, 11(11):2177-2179.
    [55]Zhang, F., Pant, D., Logan, B.E. Long-term performance of activated carbon air cathodes with different diffusion layer porosities in microbial fuel cells. Biosensors and Bioelectronics,2011,30(1):49-55.
    [56]Wei, B., Tokash, J.C., Chen, G.,et.al. Development and evaluation of carbon and binder loading in low-cost activated carbon cathodes for air-cathode microbial fuel cells. RSC Advances,2012,2(33):12751-12758.
    [57]Rhoads, A., Beyenal, H., Lewandowski, Z. Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant. Environmental Science & Technology,2005,39(12):4666-4671.
    [58]Heijne, A., Hamelers, H.V., de Wilde, V.,et.al. A bipolar membrane combined with ferric iron reduction as an efficient cathode system in microbial fuel cells. Environmental Science & Technology,2006,40(17):5200-5205.
    [59]Mao, Y., Zhang, L., Li, D.,et.al. Power generation from a biocathode microbial fuel cell biocatalyzed by ferro/manganese-oxidizing bacteria. Electrochimica Acta,2010, 55(27):7804-7808.
    [60]Marsili, E., Rollefson, J.B., Baron, D.B.,et.al. Microbial biofilm voltammetry:direct electrochemical characterization of catalytic electrode-attached biofilms. Applied and Environmental Microbiology,2008,74(23):7329-7337.
    [61]王凯鹏.电子中介体固定化及其在微生物燃料电池阳极的应用:[D].武汉:武汉大 学,2010.
    [62]Mahadevan, R., Palsson, B.O., Lovley, D.R. In situ to in silico and back:elucidating the physiology and ecology of Geobacter spp. using genome-scale modelling. Nature Reviews Microbiology,2010,9(1):39-50.
    [63]Fredrickson, J.K., Romine, M.F., Beliaev, A.S.,et.al. Towards environmental systems biology of Shewanella. Nature Reviews Microbiology,2008,6(8):592-603.
    [64]Yang, Y., Xu, M., Guo, J.,et.al. Bacterial extracellular electron transfer in bioelectrochemical systems. Process Biochemistry,2012,47(12):1707-1714.
    [65]Shi, L., Squier, T.C., Zachara, J.M.,et.al. Respiration of metal (hydr) oxides by Shewanella and Geobacter. a key role for multihaem c-type cytochromes. Molecular microbiology,2007,65(1):12-20.
    [66]Harris, H.W., E1-Naggar, M.Y., Bretschger, O.,et.al. Electrokinesis is a microbial behavior that requires extracellular electron transport. Proceedings of the National Academy of Sciences,2010,107(1):326-331.
    [67]Reguera, G., McCarthy, K.D., Mehta, T.,et.al. Extracellular electron transfer via microbial nanowires. Nature,2005,435(7045):1098-1101.
    [68]El-Naggar, M.Y., Wanger, G, Leung, K.M.,et.al. Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1. Proceedings of the National Academy of Sciences, 2010,107(42):18127-18131.
    [69]Reguera, G, Pollina, R.B., Nicoll, J.S.,et.al. Possible nonconductive role of Geobacter sulfurreducens pilus nanowires in biofilm formation. Journal of bacteriology,2007, 189(5):2125-2127.
    [70]Parameswaran, P., Torres, C.I., Lee, H.S.,et.al. Syntrophic interactions among anode respiring bacteria (ARB) and Non-ARB in a biofilm anode:electron balances. Biotechnology and Bioengineering,2009,103(3):513-523.
    [71]Ross, D.E., Flynn, J.M., Baron, D.B.,et.al. Towards electrosynthesis in Shewanella: energetics of reversing the mtr pathway for reductive metabolism. PloS one,2011,6(2):el6649.
    [72]Korenevsky, A., Beveridge, T.J. The surface physicochemistry and adhesiveness of Shewanella are affected by their surface polysaccharides. Microbiology,2007,153(6):1872-1883.
    [73]Malvankar, N.S., Vargas, M., Nevin, K.P.,et.al. Tunable metallic-like conductivity in microbial nanowire networks. Nature nanotechnology,2011,6(9):573-579.
    [74]Torres, C.I., Marcus, A.K., Lee, H.S.,et.al. A kinetic perspective on extracellular electron transfer by anode-respiring bacteria. FEMS microbiology reviews,2010,34(1):3-17.
    [75]Rabaey, K.., Boon, N., Hofte, M.,et.al. Microbial phenazine production enhances electron transfer in biofuel cells. Environmental Science & Technology,2005,39(9):3401-3408.
    [76]Marsili, E., Baron, D.B., Shikhare, I.D.,et.al. Shewanella secretes flavins that mediate extracellular electron transfer. Proceedings of the National Academy of Sciences,2008, 105(10):3968-3973.
    [77]Lovley, D.R. Live wires:direct extracellular electron exchange for bioenergy and the bioremediation of energy-related contamination. Energy & Environmental Science,2011, 4(12):4896-4906.
    [78]卢娜,周顺桂,倪晋仁.微生物燃料电池的产电机制.化学进展,2008,20(7):1233-1240.
    [79]Logan, B.E. Microbial fuel cells New Jersey:John Wiley & Son,2008.
    [80]Weber, K.A., Achenbach, L.A., Coates, J.D. Microorganisms pumping iron:anaerobic microbial iron oxidation and reduction. Nature Reviews Microbiology,2006,4(10):752-764.
    [81]Mehta, T., Coppi, M.V., Childers, S.E.,et.al. Outer membrane c-type cytochromes required for Fe(Ⅲ) and Mn(IV) oxide reduction in Geobacter sulfurreducens. Applied and Environmental Microbiology,2005,71(12):8634-8641.
    [82]Xiong, Y.J., Shi, L., Chen, B.W.,et.al. High-affinity binding and direct electron transfer to solid metals by the Shewanella oneidensis MR-1 outer membrane c-type cytochrome OmcA. Journal of the American Chemical Society,2006,128(43):13978-13979.
    [83]Chaudhuri, S.K., Lovley, D.R. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nature Biotechnology,2003,21 (10):1229-1232.
    [84]Wang, X., Cheng, S.A., Feng, Y.J.,et.al. Use of carbon mesh anodes and the effect of different pretreatment methods on power production in microbial fuel cells. Environmental Science & Technology,2009,43(17):6870-6874.
    [85]Lamp, J.L., Guest, J.S., Naha, S.,et.al. Flame synthesis of carbon nanostructures on stainless steel anodes for use in microbial fuel cells. Journal of Power Sources,2011, 196(14):5829-5834.
    [86]Li, F., Sharma, Y., Lei, Y.,et.al. Microbial fuel cells:the effects of configurations, electrolyte solutions, and electrode materials on power generation. Applied biochemistry and biotechnology,2010,160(1):168-181.
    [87]Feng, Y., Lee, H., Wang, X.,et.al. Continuous electricity generation by a graphite granule baffled air-cathode microbial fuel cell. Bioresource Technology,2010,101(2):632-638.
    [88]Logan, B., Cheng, S., Watson, V.,et.al. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environmental Science & Technology,2007, 41(9):3341-3346.
    [89]Liang, P., Wang, H., Xia, X.,et.al. Carbon nanotube powders as electrode modifier to enhance the activity of anodic biofilm in microbial fuel cells. Biosensors and Bioelectronics,2011, 26(6):3000-3004.
    [90]Tsai, H.-Y., Wu, C.-C., Lee, C.-Y.,et.al. Microbial fuel cell performance of multiwall carbon nanotubes on carbon cloth as electrodes. Journal of Power Sources,2009,194(1):199-205.
    [91]Sun, J.-J., Zhao, H.-Z., Yang, Q.-Z.,et.al. Anovel layer-by-layer self-assembled carbon nanotube-based anode:Preparation, characterization, and application in microbial fuel cell. Electrochimica Acta,2010,55(9):3041-3047.
    [92]Zhao, Y., Watanabe, K., Hashimoto, K. Hierarchical micro/nano structures of carbon composites as anodes for microbial fuel cells. Physical Chemistry Chemical Physics,2011, 13(33):15016-15021.
    [93]Patil, S.A., Chigome, S., Hagerhall, C.,et.al. Electrospun carbon nanofibers from polyacrylonitrile blended with activated or graphitized carbonaceous materials for improving anodic bioelectrocatalysis. Bioresour Technol,2013,132C:121-126.
    [94]Xie, X., Hu, L., Pasta, M.,et.al. Three-dimensional carbon nanotube-textile anode for high-performance microbial fuel cells. Nano letters,2011,11(1):291.
    [95]Xie, X., Ye, M., Hu, L.,et.al. Carbon nanotube-coated macroporous sponge for microbial fuel cell electrodes. Energy & Environmental Science,2012,5(1):5265-5270.
    [96]Xie, X., Yu, G., Liu, N.,et.al. Graphene-sponges as high-performance low-cost anodes for microbial fuel cells. Energy & Environmental Science,2012.
    [97]Pocaznoi, D., Calmet, A., Etcheverry, L.,et.al. Stainless steel is a promising electrode material for anodes of microbial fuel cells. Energy & Environmental Science,2012.
    [98]Liu, J., Qiao, Y., Guo, C.X.,et.al. Graphene/carbon cloth anode for high-performance mediatorless microbial fuel cells. Bioresource Technology,2012,114(0):275-280.
    [99]Zhang, Y., Mo, G, Li, X.,et.al. A graphene modified anode to improve the performance of microbial fuel cells. Journal of Power Sources,2011,196(13):5402-5407.
    [100]Peng, L., You, S.J., Wang, J.Y. Carbon nanotubes as electrode modifier promoting direct electron transfer from Shewanella oneidensis. Biosensors and Bioelectronics,2010, 25(5):1248-1251.
    [101]Vander Wal, R.L., Ticich, T.M., Curtis, V.E. Diffusion flame synthesis of single-walled carbon nanotubes. Chemical Physics Letters,2000,323(3):217-223.
    [102]Zhang, Y, Sun, J., Hou, B.,et.al. Performance improvement of air-cathode single-chamber microbial fuel cell using a mesoporous carbon modified anode. Journal of Power Sources,2011,196(18):7458-7464.
    [103]Park, D., Zeikus, J. Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens. Applied microbiology and biotechnology,2002,59(1):58-61.
    [104]Park, D.H., Zeikus, J.G. Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnology and Bioengineering,2002,81(3):348-355.
    [105]Lowy, D.A., Tender, L.M., Zeikus, J.G.et al. Harvesting energy from the marine sediment-water interface II-Kinetic activity of anode materials. Biosensors and Bioelectronics, 2006,21(11):2058-2063.
    [106]Schroder, U., Nieβen, J., Scholz, F. A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude. Angewandte Chemie International Edition, 2003,42(25):2880-2883.
    [107]Fan, Y.Z., Xu, S.T., Schaller, R.,et.al. Nanoparticle decorated anodes for enhanced current generation in microbial electrochemical cells. Biosensors and Bioelectronics,2011, 26(5):1908-1912.
    [108]Lv, Z., Xie, D., Yue, X.,et.al. Ruthenium oxide-coated carbon felt electrode:A highly active anode for microbial fuel cell applications. Journal of Power Sources,2012,210(15):26-31.
    [109]Rosenbaum, M., Zhao,F., Schroder, U.,et.al. Interfacing electrocatalysis and biocatalysis with tungsten carbide:a high-performance, noble-metal-free microbial fuel cell. Angewandte Chemie International Edition,2006,45(40):6658-6661.
    [110]Zeng, L., Zhang, L., Li, W.,et.al. Molybdenum carbide as anodic catalyst for microbial fuel cell based on Klebsiella pneumoniae. Biosensors and Bioelectronics,2010, 25(12):2696-2700.
    [111]Ji, J.Y., Jia, Y.J., Wu, W.G.,et.al. A layer-by-layer self-assembled Fe2O3 nanorod-based composite multilayer film on ITO anode in microbial fuel cell. Colloids and Surfaces a-Physicochemical and Engineering Aspects,2011,390(1-3):56-61.
    [112]Qiao, Y., Li, C.M., Bao, S.-J.,et.al. Carbon nanotube/polyaniline composite as anode material for microbial fuel cells. Journal of Power Sources,2007,170(1):79-84.
    [113]Qiao, Y, Bao, S.J., Li, C.M.,et.al. Nanostructured polyanifine/titanium dioxide composite anode for microbial fuel cells. Acs Nano,2008,2(1):113-119.
    [114]Lai, B., Tang, X., Li, H.,et.al. Power production enhancement with a polyaniline modified anode in microbial fuel cells. Biosensors and Bioelectronics,2011,28(1):373-377.
    [115]Yuan, Y, Kim, S. Polypyrrole-coated reticulated vitreous carbon as anode in microbial fuel cell for higher energy output. BULLETIN-KOREAN CHEMICAL SOCIETY, 2008,29(1):168-172.
    [116]Zhao, Y., Watanabe, K., Nakamura, R.,et.al. Three-Dimensional Conductive Nanowire Networks for Maximizing Anode Performance in Microbial Fuel Cells. Chemistry-A European Journal,2010,16(17):4982-4985.
    [117]Feng, Y., Yang, Q., Wang, X.,et.al. Treatment of carbon fiber brush anodes for improving power generation in air-cathode microbial fuel cells. Journal of Power Sources,2010, 195(7):1841-1844.
    [118]Cheng, S., Logan, B.E. Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells. Electrochemistry Communications,2007,9(3):492-496.
    [119]Saito, T., Mehanna, M., Wang, X.,et.al. Effect of nitrogen addition on the performance of microbial fuel cell anodes. Bioresource Technology,2011,102(1):395-398.
    [120]Picot, M., Lapinsonniere, L., Rothballer, M.,et.al. Graphite anode surface modification with controlled reduction of specific aryl diazonium salts for improved microbial fuel cells power output. Biosensors and Bioelectronics,2011,28(1):181-188.
    [121]Zhu, N., Chen, X., Zhang, T.,et.al. Improved performance of membrane free single-chamber air-cathode microbial fuel cells with nitric acid and ethylenediamine surface modified activated carbon fiber felt anodes. Bioresource Technology,2011,102(1):422-426.
    [122]Ci, S., Wen, Z., Chen, J.,et.al. Decorating anode with bamboo-like nitrogen-doped carbon nanotubes for microbial fuel cells. Electrochemistry Communications,2012,14(1):71-74.
    [123]Tang, X., Guo, K., Li, H.,et.al. Electrochemical treatment of graphite to enhance electron transfer from bacteria to electrodes. Bioresource Technology,2011,102(3):3558-3560.
    [124]Lowy, D.A., Tender, L.M. Harvesting energy from the marine sediment-water interface:Ⅲ. Kinetic activity of quinone-and antimony-based anode materials. Journal of Power Sources,2008,185(1):70-75.
    [125]Ganguli, R., Dunn, B. Kinetics of anode reactions for a yeast-catalysed microbial fuel cell. Fuel Cells,2009,9(1):44-52.
    [126]Wang, K., Liu, Y., Chen, S. Improved microbial electrocatalysis with neutral red immobilized electrode. Journal of Power Sources,2011,196(1):164-168.
    [127]Adachi, M., Shimomura, T., Komatsu, M.,et.al. A novel mediator-polymer-modified anode for microbial fuel cells. Chemical Communications,2008, (17):2055-2057.
    [128]Feng, C.H., Ma, L., Li, F.B.,et.al. A polypyrrole/anthraquinone-2,6-disulphonic disodium salt (PPy/AQDS)-modified anode to improve performance of microbial fuel cells. Biosensors and Bioelectronics,2010,25(6):1516-1520.
    [129]Luckarift, H.R., Sizemore, S.R., Roy, J.,et.al. Standardized microbial fuel cell anodes of silica-immobilized Shewanella oneidensis. Chemical Communications,2010, 46(33):6048-6050.
    [130]杜嬛.天然植物基多孔炭材料的制备及其电化学性能研究:[D].天津:天津大学,2009.
    [131]Conway, B.E. Transition from "supercapacitor" to "battery" behavior in electrochemical energy storage. Journal of the Electrochemical Society,1991,138(6):1539-1548.
    [132]刘亚菲.超级电容器活性炭电极材料的孔径调控和表面改性:[D].上海:同济大学,2008.
    [133]Zhang, L.L., Zhao, X. Carbon-based materials as supercapacitor electrodes. Chemical Society Reviews,2009,38(9):2520-2531.
    [134]Du, X., Wang, C., Chen, M.,et.al. Electrochemical performances of nanoparticle Fe3O4/activated carbon supercapacitor using KOH electrolyte solution. The Journal of Physical Chemistry C,2009,113(6):2643-2646.
    [135]White, A.M., Slade, R.C. Electrochemically and vapour grown electrode coatings of poly (3,4-ethylenedioxythiophene) doped with heteropolyacids. Electrochimica Acta,2004, 49(6):861-865.
    [136]Scott, K., Rimbu, G., Katuri, K.,et.al. Application of modified carbon anodes in microbial fuel cells. Process Safety and Environmental Protection,2007,85(5):481-488.
    [137]Xiao, B., Yang, F., Liu, J. Evaluation of electricity production from alkaline pretreated sludge using two-chamber microbial fuel cell. Journal of hazardous materials,2013, 255:57-63.
    [138]Debabov, V. Electricity from microorganisms. Microbiology,2008,77(2):123-131.
    [139]Chang, I., Moon, H., Bretschger, O.,et.al. Electrochemically active bacteria (EAB) and mediator-less microbial fuel cells. J Microbiol Biotechnol,2006,16(2):163-177.
    [140]Bagotsky, V.S. Fundamentals of electrochemistry (Second Edition), Polarization of Electrodes. Moscow:John Wiley and Sons,2006, pp.79-99.
    [141]Menicucci, J., Beyenal, H., Marsili, E.,et.al. Procedure for determining maximum sustainable power generated by microbial fuel cells. Environmental Science & Technology,2006, 40(3):1062-1068.
    [142]Una, N., Berbel, X.M., Sanchez, O.,et.al. Transient storage of electrical charge in biofilms of Shewanella oneidensis MR-1 growing in a microbial fuel cell. Environmental Science & Technology,2011,45(23):10250-10256.
    [143]Schrott, G.D., Bonanni, P.S., Robuschi, L.,et.al. Electrochemical insight into the mechanism of electron transport in biofilms of Geobacter sulfurreducens. Electrochimica Acta, 2011,56(28):10791-10795.
    [144]Logan, B.E., Regan, J.M. Microbial challenges and applications. Environmental Science & Technology,2006,40(17):5172-5180.
    [145]Pognon, G., Brousse, T., Belanger, D. Effect of molecular grafting on the pore size distribution and the double layer capacitance of activated carbon for electrochemical double layer capacitors. Carbon,2011,49(4):1340-1348.
    [146]Pierotti, R., Rouquerol, J. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem,1985, 57(4):603-619.
    [147]张治安.基于氧化锰和炭材料的超级电容器研究:[D].成都:电子科技大学,2005.
    [148]Hori, K., Matsumoto, S. Bacterial adhesion:from mechanism to control. Biochemical Engineering Journal,2010,48(3):424-434.
    [149]Dumas, C., Mollica, A., Feron, D.,et.al. Checking graphite and stainless anodes with an experimental model of marine microbial fuel cell. Bioresource Technology,2008, 99(18):8887-8894.
    [150]L'Hostis, V., Dagbert, C., Feron, D. Electrochemical behavior of metallic materials used in seawater-interactions between glucose oxidase and passive layers. Electrochimica Acta, 2003,48(10):1451-1458.
    [151]Zhang, F.Novel Cathode Materials for Microbial Fuel Cells:[D]. The Pennsylvania State University,2010.
    [152]Imoto, K., Takahashi, K., Yamaguchi, T.,et.al. High-performance carbon counter electrode for dye-sensitized solar cells. Solar Energy Materials and Solar Cells,2003, 79(4):459-469.
    [153]Chung, H., Rhee, K., Kim, M.,et.al. Surface treatment of stainless steel to improve coating strength of ZrO2 coated stainless steel needle. Surface Engineering,2011,27(2):145-148.
    [154]Meyer, T.E., Tsapin, A.I., Vandenberghe, I.,et.al. Identification of 42 possible cytochrome c genes in the Shewanella oneidensis genome and characterization of six soluble cytochromes. Omics-a Journal of Integrative Biology,2004,8(1):57-77.
    [155]Deng, L., Guo, S.J., Liu, Z.J.,et.al. To boost c-type cytochrome wire efficiency of electrogenic bacteria with Fe3O4/Au nanocomposites. Chemical Communications,2010, 46(38):7172-7174.
    [156]Nakamura, R., Kai, F., Okamoto, A.,et.al. Self-constructed electrically conductive bacterial networks. Angewandte Chemie-International Edition,2009,48(3):508-511.
    [157]Lower, S.K., Hochella, M.F., Beveridge, T.J. Bacterial recognition of mineral surfaces:nanoscale interactions between Shewanella and alpha-FeOOH. Science,2001, 292(5520):1360-1363.
    [158]Richter, K., Schicklberger, M., Gescher, J. Dissimilatory reduction of extracellular electron acceptors in anaerobic respiration. Applied and Environmental Microbiology,2012, 78(4):913-921.
    [159]Kato, S., Nakamura, R., Kai, F.,et.al. Respiratory interactions of soil bacteria with (semi)conductive iron-oxide minerals. Environmental Microbiology,2010,12(12):3114-3123.
    [160]Lovley, D.R. Bug juice:harvesting electricity with microorganisms. Nature Reviews Microbiology,2006,4(7):497-508.
    [161]Nakamura, R., Ishii, K., Hashimoto, K. Electronic absorption spectra and redox properties of C type cytochromes in living microbes. Angewandte Chemie International Edition, 2009,48(9):1606-1608.
    [162]Webster, N.A.S., Loan, M.J., Madsen, I.C.et al. An investigation of the mechanisms of goethite, hematite and magnetite-seeded Al(OH)3 precipitation from synthetic Bayer liquor. Hydrometallurgy,2011,109(1-2):72-79.
    [163]Mozaffari, M., Taheri, M., Amighian, J. Preparation of barium hexaferrite nanopowders by the sol-gel method, using goethite. Journal of Magnetism and Magnetic Materials,2009,321(9):1285-1289.
    [164]Li, H., Li, W., Zhang, Y.,et.al. Chrysanthemum-like α-FeOOH microspheres produced by a simple green method and their outstanding ability in heavy metal ion removal. Journal of Materials Chemistry,2011,21(22):7878-7881.
    [165]刘永红,叶发兵,岳霞丽等.铁氧化物的合成及其表征.化学与生物工程,2006,23(7):10-12.
    [166]Liu, C., Zachara, J.M., Gorby, Y.A.,et.al. Microbial reduction of Fe (Ⅲ) and sorption/precipitation of Fe (Ⅱ) on Shewanella putrefaciens strain CN32. Environmental Science & Technology,2001,35(7):1385-1393.
    [167]Liu, C.X., Kota, S., Zachara, J.M.,et.al. Kinetic analysis of the bacterial reduction of goethite. Environmental Science & Technology,2001,35(12):2482-2490.
    [168]Dong, H., Kukkadapu, R.K., Fredrickson, J.K.,et.al. Microbial reduction of structural Fe (Ⅲ) in illite and goethite. Environmental Science & Technology,2003,37(7):1268-1276.
    [169]Zhang, Z.J., Chen, X.Y., Wang, B.N.,et.al. Hydrothermal synthesis and self-assembly of magnetite (Fe3O4) nanoparticles with the magnetic and electrochemical properties. Journal of crystal growth,2008,310(24):5453-5457.
    [170]Li, R., Zhang, F., Du, C.,et.al. Synthesis of Fe3O4@ SnO2 core-shell nanorod film and its application as a thin-film supercapacitor electrode. Chemical Communications,2012, 48:5010-5012.
    [171]Wu, N.-L. Nanocrystalline oxide supercapacitors. Materials Chemistry and Physics, 2002,75(1):6-11.
    [172]Wu, N.L., Wang, S.Y., Han, C.Y.,et.al. Electrochemical capacitor of magnetite in aqueous electrolytes. Journal of Power Sources,2003,113(1):173-178.
    [173]Chung, K.W., Kim, K.B., Han, S.-H.,et.al. Novel synthesis and electrochemical characterization of nano-sized cellular Fe3O4 thin film. Electrochemical and Solid-State Letters, 2005,8(5):A259-A262.
    [174]Chen, J., Huang, K.L., Liu, S.Q. Hydrothermal preparation of octadecahedron Fe3O4 thin film for use in an electrochemical supercapacitor. Electrochimica Acta,2009,55(1):1-5.
    [175]Deeke, A., Sleutels, T.H.J.A., Hamelers, H.V.M.,et.al. Capacitive bioanodes enable renewable energy storage in microbial fuel cells. Environmental Science & Technology,2012, 46(6):3554-3560.
    [176]Zhao, G., Feng, J.J., Zhang, Q.L.,et.al. Synthesis and characterization of prussian blue modified magnetite nanoparticles and its application to the electrocatalytic reduction of H2O2. Chemistry of Materials,2005,17(12):3154-3159.
    [177]Liu, X., Guo, Y., Wang, Y.,et.al. Direct synthesis of mesoporous Fe3O4 through citric acid-assisted solid thermal decomposition. Journal of materials science,2010,45(4):906-910.
    [178]Nong, G.Z., Wang, H., Li, W.C. Influence of the OMCs pore structures on the capacitive performances of supercapacitor. Asia-Pacific Journal of Chemical Engineering,2009, 4(5):654-659.
    [179]Frackowiak, E., Beguin, F. Carbon materials for the electrochemical storage of energy in capacitors. Carbon,2001,39(6):937-950.
    [180]Ren, J., Li, L., Chen, C.,et.al. Twisting carbon nanotube fibers for both wire-shaped micro-supercapacitor and micro-battery. Advanced Materials,2012,25(8):1155-1159.
    [181]Liu, Y, Kim, H., Franklin, R.R.,et.al. Linking spectral and electrochemical analysis to monitor c-type cytochrome redox status in living Geobacter sulfurreducens biofilms. ChemPhysChem,2011,12(12)=2235-2241.
    [182]Jacobson, K.S., Drew, D.M., He, Z. Efficient salt removal in a continuously operated upflow microbial desalination cell with an air cathode. Bioresource Technology,2011, 102(1):376-380.
    [183]Pinto, R., Srinivasan, B., Guiot, S.,et.al. The effect of real-time external resistance optimization on microbial fuel cell performance. Water Research,2011,45(4):1571-1578.
    [184]Mahdi Mardanpour, M., Nasr Esfahany, M., Behzad, T.,et.al. Single chamber microbial fuel cell with spiral anode for dairy wastewater treatment. Biosensors and Bioelectronics,2012,38:264-269.
    [185]Hong, Y, Call, D.F., Werner, C.M.,et.al. Adaptation to high current using low external resistances eliminates power overshoot in microbial fuel cells. Biosensors and Bioelectronics,2011,28(1):71-76.
    [186]Kim, Y, Logan, B.E. Microbial desalination cells for energy production and desalination. Desalination,2013,308:122-130.
    [187]Aelterman, P., Rabaey, K., Hai The Pham.et.al. Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environmental Science & Technology,2006,40(10):3388-3394.
    [188]Nien, P.C., Lee, C.Y., Ho, K.C.,et.al. Power overshoot in two-chambered microbial fuel cell (MFC). Bioresource Technology,2011,102(7):4742-4746.
    [189]Min, B., Roman,6.B., Angelidaki, I. Importance of temperature and anodic medium composition on microbial fuel cell (MFC) performance. Biotechnology letters,2008, 30(7):1213-1218.
    [190]Ieropoulos, I., Winfield, J., Greenman, J. Effects of flow-rate, inoculum and time on the internal resistance of microbial fuel cells. Bioresource Technology,2010,101(10):3520-3525.
    [191]Liu, L., Lee, C.Y., Ho, K.C.,et.al. Occurrence of power overshoot for two-chambered MFC at nearly steady-state operation. International Journal of Hydrogen Energy,2011, 36(21):13896-13899.
    [192]Winfield, J., Ieropoulos, I., Greenman, J.,et.al. The overshoot phenomenon as a function of internal resistance in microbial fuel cells. Bioelectrochemistry,2011,81:22-27.
    [193]Watson, V.J., Logan, B.E. Analysis of polarization methods for elimination of power overshoot in microbial fuel cells. Electrochemistry Communications,2011,13(1):54-56.
    [194]Zhu, X., Tokash, J.C., Hong, Y.et.al. Controlling the occurrence of power overshoot by adapting microbial fuel cells to high anode potentials. Bioelectrochemistry,2013,90:30-35.
    [195]Peng, X., Yu, H., Wang, X.,et.al. Enhanced performance and capacitance behavior of anode by rolling Fe3O4 into activated carbon in microbial fuel cells. Bioresource Technology, 2012,121:450-453.
    [196]Pandolfo, A., Hollenkamp, A. Carbon properties and their role in supercapacitors. Journal of Power Sources,2006,157(1):11-27.
    [197]Lee, B.J., Sivakkumar, S., Ko, J.M.,et.al. Carbon nanofibre/hydrous RuO2 nanocomposite electrodes for supercapacitors. Journal of Power Sources,2007,168(2):546-552.
    [198]Nian, Y.R., Teng, H. Influence of surface oxides on the impedance behavior of carbon-based electrochemical capacitors. Journal of Electroanalytical Chemistry,2003, 540:119-127.
    [199]Hoseinzadeh, E., Reza Rahmanie, A., Asgari, G.,et.al. Adsorption of acid black 1 by using activated carbon prepared from scrap tires:kinetic and equilibrium studies. Journal of Scientific and Industrial Research,2012,71(10):682.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700