用户名: 密码: 验证码:
大面积高分辨率数字X射线探测器关键技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
数字X射线探测器能够将不可见的X射线信号转换为数字式电信号,是X射线成像系统中的关键器件。“基于光栅微分干涉的X射线相衬成像系统”对数字X射线探测器提出了大面积和高空间分辨率这两个要求。但是目前的X射线探测器因存在两个主要问题而难以满足上述要求。第一个问题是探测器中X射线转换屏的空间分辨率因荧光的侧向扩散而大大降低。第二个问题是探测器中图像传感器的感光面积远小于实际应用中75×75mm2的最低需求。
     为了解决以上两个问题,本论文开展了大面积高分辨率数字X射线探测器的研制工作,主要内容分为以下两个部分:
     第一个部分是制作像素化X射线转换屏,以提高X射线转换屏的分辨率。
     像素化X射线转换屏适合于使用硅基深孔阵列来制作。硅基深孔阵列是一种高深宽比的微结构,而光助电化学刻蚀是制作硅基深孔阵列的理想方法。为了能在整个5英寸硅片上制作出均匀的深孔阵列,自行设计并制作了一套新型大面积硅片光助电化学刻蚀装置。该装置借助一个水冷隔热系统和一个花洒式溶液循环系统,解决了传统光助电化学刻蚀装置中溶液升温和气泡堆积的问题。所制作的深孔阵列边长有5μm和1.5μm两种,深宽比分别达到了30和100。深孔阵列经高温热氧化和X射线荧光材料CsI:T1的填充之后,完成了像素化X射线转换的制作。经测试,像素化X射线转换屏的空间分辨率达到了201p/mm,满足最初的设计要求。另外,还利用新型大面积硅片光助电化学刻蚀装置,通过逐步加大刻蚀电流的方法补偿侧向腐蚀给微结构形貌带来的不利影响,制作了两种形貌一致性很好的高深宽比深槽阵列,用于X射线光栅的制作。
     第二个部分是开发基于4颗CMOS芯片拼接的数据采集系统,以扩大探测器的成像面积。
     4颗CMOS芯片LUPA-4000与一个2×2光锥阵列耦合后,能够拼接成完整的图像,成像面积达到98.5×98.5mm2。受光锥阵列结构尺寸的制约,在本课题中只能使用CMOS芯片,从底层开始完成整个数据采集系统的开发。数据采集系统采用了基于以太网远程控制,并对4颗LUPA-4000芯片单独用DDR2 SDRAM进行数据缓存的方案。用基于Verilog的FPGA设计实现LUPA-4000芯片的驱动时序和DDR2 SDRAM芯片的控制器,用ARM作为整个系统的微控制器,采集到的图像数据在PC机中存储。为了便于LUPA-4000芯片与光锥小端的耦合,为每一颗LUPA-4000制作了一块独立的PCB板,各PCB板之间留有一定量的调整间隙。本论文完成了数据据采集系统从电路原理图设计和PCB板图设计,到FPGA设计、ARM软件设计和PC机软件设计的全过程。在实现了LUPA-4000拍照与图像数据存储等基本功能的基础上,开发了一套参数可调整的数据采集系统,实现了拍照参数可调整和开窗读出等实用的附加功能。
Digital X-ray detectors, which can convert invisible X-ray into digital electronic signal, are important components in X-ray imaging systems. High spatial resolution and large-area digital X-ray detectors are required in "Grating-differential Interference based X-ray Phase-contrast Imaging System". But nowadays X-ray detectors can hardly meet these requirements, because there are two main problems existing. The first problem comes from the fact that the spatial resolution of X-ray converter degrades seriously due to the lateral spreading of fluorescence. The second problem is that the area of light-sensitive part of the image sensor in X-ray detector is much less than the lowest requirement of 75 x 75mm2.
     To resolve these problems, research works were performed to manufacture a large-area high resolution digital X-ray detector. The works have emphases on two parts:
     The first part is the manufacture of a pixellated X-ray converter, in order to improve the spatial resolution.
     Silicon based pore arrays are essential for manufacturing pixellated X-ray converters. Silicon based pore arrays are high aspect ratio microstructure, which are suitable of manufactured by photoelectrochemical etching of silicon. To obtain uniform pore arrays in full 5 inch silicon wafers, a novel large area silicon wafer photoelectrochemical etching setup was established. With the help of a water-cooling system and a shower-head shaped circulator, the novel photoelectrochemical etching setup resolved the problems of electrolyte temperature going high and hydrogen bubbles assembling. There were two kinds of pore arrays manufactured, with side of 5μm and 1.5μm, and aspect ratio of 30 and 100 respectively. After high temperature oxidation and CsI:T1 filling of the pore arrays, the pixellated X-ray converter was finally manufactured. The spatial resolution of the pixellated X-ray converter was 201p/mm under test, which can meet the requirements of initial design. Additionally, by means of increasing the etching current gradually to compensate the influences of lateral etching, two kinds of high aspect ratio wall arrays with good morphology consistency were manufactured for X-ray gratings'fabrication by the novel photoelectrochemical etching setup.
     The second part is the development of a data acquisition system based on 4 CMOS chips'combination, in order to enlarge the imaging area.
     Four CMOS chips LUPA-4000 coupled with a 2×2 taper array can form a full image, with the area of 98.5×98.5mm2. Because the size of the taper array was fixed, the data acquisition system can only be developed from bare CMOS chips. The data acquisition system's scheme was that it can be controlled far-distance by Ethernet, and the four CMOS chips'data were temporarily stored each by a DDR2 SDRAM. LUPA-4000's driving timing and DDR2 SDRAM controller were accomplished by Verilog based FPGA design, and ARM was used as MCU, and image data were stored in PC. Every LUPA-4000 has an independent PCB board. There is some space between two boards, so it is convenient for LUPA-4000's coupling to taper's litter end. Besides the basic functions of taking photos and image data's storing, a parameters adjustable data acquisition system was developed, with additional some useful functions, such as photo parameters'adjusting and windowing readout.
引文
[1]陈建文,高鸿奕,李儒新等.X射线相衬成像.物理学进展,2005,225(2):175-194
    [2]朱佩平,吴自玉.X射线相位衬度成像.物理,2007,36(6):443-451
    [3]王燕,陈家璧,张学龙等.硬X射线相位相衬成像研究进展.激光与光电子学进展,2008,45(6):41-50
    [4]F. Pfeiffer, T. Weitkamp,O. Bunk, et al. Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources. Nature physics,2006,2:258-261
    [5]T. Weitkamp, A. Diaz, C. David, et al. X-ray phase imaging with a grating interferometer. OPTICS EXPRESS,2005,13(16):6296-6304
    [6]陈博,朱佩平,刘宜晋等.X射线光栅相位成像的理论和方法.物理学报,2008,57(3):1576-1581
    [7]T. Weitkamp, A. Diaz, B. Nohammer, et al. Hard x-ray phase imaging and tomography with a grating interferometer. SPIE,2004, (5535):137-142
    [8]左志和.X射线增感屏.感光材料,2000,(3):22-24
    [9]苟量,王绪本,曹辉.X射线成像技术的发展现状和趋势.成都理工学院学报,2002,29(2):227-231
    [10]温荣廉.医疗数字X射线成像及其发展趋势.影像技术,2009,5:3-7
    [11]暴忠坤,王洪柱,潘芝梅.直接数字化X线摄影的采购与安装过程.实用医技杂志,2006,13(20):3540-3542
    [12]桂建保.基于碘化汞的X射线成像探测器理论与实验研究:[博士学位论文].武汉:华中科技大学,2007
    [13]M. Simon, K. J. Engel, B. Menser, et al. X-ray imaging performance of scintillator-filled silicon pore arrays. Med. Phys.,2008,35(3):968-981
    [14]J. Yorkston. Recent developments in digital radiography detectors. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment,2007,580(2):974-985
    [15]M. Hoheisel. Review of medical imaging with emphasis on X-ray detectors. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers,
    Detectors and Associated Equipment,2006,563(1):215-224
    [16]C. Bo Kyung, S. Jeong-Hyun, K. Jong Yul, et al. Fabrication and comparison Gd2O2S(Tb) and CsI(T1) films for X-ray imaging detector application. in Nuclear Science Symposium Conference Record,2008,2008:1232-1235
    [17]M. Nikl. Scintillation detectors for x-rays. Measurement Science and Technology, 2006,17(4):R37
    [18]T. Martin, A. Koch. Recent developments in X-ray imaging with micrometer spatial resolution. Journal of Synchrotron Radiation,2006,13(2):180-194
    [19]A. L. Goertzen, et al. A comparison of x-ray detectors for mouse CT imaging. Physics in Medicine and Biology,2004,49(23):5251-5265
    [20]S. R. Miller, V. Gaysinskiy, I. Shestakova, et al. Recent advances in columnar CsI(Tl) scintillator screens. SPIE,2005(5923):59230F
    [21]V. V. Nagarkar, S. V. Tipnis, V. B. Gaysinskiy, et al. New design of a structured CsI(Tl) screen for digital mammography. SPIE.2003(5030):541-546
    [22]聂聪.不同平板探测器DR的比较研究.医疗设备信息,2007,21(4):87-88
    [23]杜昱平,张永顺.平板探测器DR与CCD探测器DR的基本结构与比较.医疗卫生装备,2006,27(8):60-62
    [24]M. Mahesh. Digital Mammography:An Overview. RadioGraphics,2004,24(6):1747-1760
    [25]L. Lanca, A. Silva. Digital radiography detectors-A technical overview:Part 1. Radiography,2009,15(1):58-62
    [26]R. Turchetta. CMOS monolithic active pixel sensors (MAPS) for scientific applications:Some notes about radiation hardness. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment,2007,583(1):131-133
    [27]R. Turchetta, A. Fant, P. Gasiorek, et al. CMOS Monolithic Active Pixel Sensors (MAPS):Developments and future outlook. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment,2007,582(3):866-870
    [28]R. Turchetta, P. P. Allport, G. Casse, et al. CMOS Monolithic Active Pixel Sensors
    (MAPS):New'eyes' for science. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment,2006,560(1):139-142
    [29]H. S. Cho, M. H. Jeong, B. S. Han, et al. Development of a portable digital radiographic system based on FOP-coupled CMOS image sensor and its performance evaluation. Nuclear Science, IEEE Transactions on,2005,52(5):1766-1772
    [30]M. A. Abdalla, C. Frojdh, C. S. Petersson. A CMOS APS for dental X-ray imaging using scintillating sensors. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment,2001, 460(1):197-203
    [31]N. Yagi, M. Yamamoto, K. Uesugi, et al. CMOS Imaging Detectors as X-ray Detectors for Synchrotron Radiation Experiments. AIP,2004,(705):885-888
    [32]J. A. Seibert, A. Kwan, J. M. Boone, et al. Evaluation of an optically coupled CCD digital radiography system. SPIE,2005,(5745):458-467
    [33]A. D. A. Maidment, M. J. Yaffe. Analysis of signal propagation in optically coupled detectors for digital mammography:Ⅱ. Lens and fibre optics. Phys. Med. Biol,1996, 41:475-493
    [34]A. D. A. Maidment, M. J. Yaffe. Analysis of signal propagation in optically coupled detectors for digital mammography:Ⅰ. Phosphor screens. Phys. Med. Biol,1995,40: 877-889
    [35]R. M. Gagne, K. J. Myers, P. W. Quinn. Effect of shift invariance and stationarity assumptions on simple detection tasks:spatial and spatial frequency domains. SPIE, 2001,(4320):373-380
    [36]崔志刚,白廷柱,高稚允.光锥耦合对ICCD成像系统分辨力的影响分析.光学技术,2008,34(6):803-805
    [37]汪丽,田维坚.光锥CCD耦合器件对提高CCD成像分辨率的探讨.光电子技术与信息,2004,17(3):21-25
    [38]Cypress. LUPA-4000 4M Pixel CMOS Image Sensor Datasheet. USA:CYP,2004. 11-17
    [39]S. Tang, J. Xie, Q. Ma. Plastic scintillation fiber array coupling CCD for X-ray
    imaging and detection. Measurement,2009,42(6):933-936
    [40]S.-B. Tang, Q. Ma, Z. Yin, et al. MeV X-ray imaging using plastic scintillating fiber area detectors:A simulation study. Applied Radiation and Isotopes,2008,66(2): 162-167
    [41]M. M. Nasseri, Q. Ma, Z. Yin, et al. Low energy X-ray imaging using plastic scintillating fiber:A simulation study. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2005,234(3): 362-368
    [42]M. M. Nasseri, Z. Yin, X. Wu, et al. X-ray imaging using a single plastic scintillating fiber. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2004,225(4):617-622
    [43]A. Ikhlef, M. Skowronek, A. S. Beddar. X-ray imaging and detection using plastic scintillating fibers. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,2000,442(1-3): 428-432
    [44]I. D. Jung, M. K. Cho, S. M. Lee, et al. Flexible Gd2O2S:Tb scintillators pixelated with polyethylene microstructures for digital x-ray image sensors. J. Micromech. Microeng,2009,19(015014):1-10
    [45]I. D. Jung, M. K. Cho, K. M. Bae, et al. Pixel-Structured Scintillator with Polymeric Microstructures for X-Ray Image Sensors. ETRI Journal,2008,30(5):747-749
    [46]V. V. Nagarkar, S. R. Miller, S. V. Tipnis, et al. A new large area scintillator screen for X-ray imaging. Nuclear Instruments and Methods in Physics Research B,2004,213: 205-254
    [47]V. V. Nagarkar, S. V. Tipnis, S. R. Miller, et al. A new X-ray scintillator for digital radiography. Nuclear Science, IEEE Transactions on,2003,50(3):297-300
    [48]B. K. Cha, J. H. Bae, C.-h. Lee, et al. Improvement of the sensitivity and spatial resolution of pixelated CsI:T1 scintillator with reflective coating. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment,2009,607(1):145-149
    [49]B. K. Cha, J.-H. Shin, J. H. Bae, et al. Scintillation characteristics and imaging performance of CsI:Tl thin films for X-ray imaging applications. Nuclear Instruments
    and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment,2009,604(1-2):224-228
    [50]I. Kandarakis, D. Cavouras, E. Kanellopoulos, et al. Experimental determination of detector gain, zero frequency detective quantum efficiency, and spectral compatibility of phosphor screens:comparison of CsI:Na and Gd2O2S:Tb for medical imaging applications. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,1998,417(1): 86-94
    [51]B.-J. Kim, B. K. Cha, H. Jeon, et al. A study on spatial resolution of pixelated CsI(T1) scintillator. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,2007,579(1):205-207
    [52]V. V. Nagarkar, T. K. Gupta, S. R. Miller, et al. Structured CsI(T1) scintillators for X-ray imaging applications. Nuclear Science, IEEE Transactions on,1998,45(3): 492-496
    [53]V. V. Nagarkar, I. Shestakova, V. Gaysinskiy, et al. Fast X-ray/[gamma]-ray imaging using electron multiplying CCD-based detector. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment,2006,563(1):45-48
    [54]V. V. Nagarkar, S. V. Tipnis. Pixellated micro-columnar film scintillator. USA, US Patent, US 2004/0042585 A1,2004
    [55]I. Valais, D. Nikolopoulos, N. Kalivas, et al. A systematic study of the performance of the CsI:T1 single-crystal scintillator under X-ray excitation. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment,2007,571(1-2):343-345
    [56]Z. Wu, B. Yang, P. D. Townsend. Low temperature radioluminescence spectra of CsI:T1. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2008,266(21):4757-4761
    [57]J. G V. da Rocha, S. Lanceros-Mendez.3-D Modeling of Scintillator-Based X-ray Detectors. Sensors Journal, IEEE,2006,6(5):1236-1242
    [58]J. Silva, S. Lanceros-Mendez, G. Minas, et al. CMOS X-ray Image Sensor Array. in
    14th IEEE International Conference on Electronics, Circuits and Systems,2007, 2007:1067-1070
    [59]J. G Rocha, N. F. Ramos, S. Lanceros-Mendez, et al. CMOS X-rays detector array based on scintillating light guides. Sensors and Actuators A:Physical,2004,110(1-3): 119-123
    [60]J. G. Rocha, C. G. J. Schabmueller, N. F. Ramos, et al. Comparison between bulk micromachined and CMOS X-ray detectors. Sensors and Actuators A:Physical,2004, 115(2-3):215-220
    [61]A. R. Sawant, L. E. Antonuk, Y. El-Mohri, et al. Exploring new frontiers in x-ray quantum limited portal imaging using active matrix flat-panel imagers (AMFPIs). SPIE,2003, (5030):478-489
    [62]J. G. Rocha, J. H. Correia. A high-performance scintillator-silicon-well X-ray microdetector based on DRIE techniques. Sensors and Actuators A:Physical,2001, 92(1-3):203-207
    [63]J. H. Daniel, B. Krusor, R. B. Apte, et al. Micro-electro-mechanical system fabrication technology applied to large area x-ray image sensor arrays. AVS,2001, (19):1219-1223
    [64]Y. Zhou, A. Avila-Munoz, S. Tao, et al. Resolution enhancement and performance characteristics of large-area a-Si:H x-ray imager with a high-aspect-ratio SU-8 micromold. SPIE,2002, (4925):156-165
    [65]J. G Rocha, G Minas, L. M. Goncalves, et al. Scintillating microcavities for X-ray imaging sensors. MicroMechanics Europe Workshop,2006.149-152
    [66]J. G Rocha, A. V. Fernandes, R. A. Dias, et al. X-Ray CMOS detector array with scintillating light guides, in Sensors,2008 IEEE,2008.1398-1401
    [67]J. G. Rocha, R. A. Dias, L. Goncalves, et al. X-Ray Image Detector Based on Light Guides and Scintillators. Sensors Journal, IEEE,2009,9(9):1154-1159
    [68]B.-J. Kim, G. Cho, B. Kyung Cha, et al. An X-ray imaging detector based on pixel structured scintillator. Radiation Measurements,2007,42(8):1415-1418
    [69]J. G Rocha, S. Lanceros-Mendez. X-ray imaging matrix with light guides and intelligent pixel sensors, radiation or high energy particle detector devices that contain it, its fabrication process and its use. USA, US Patent, US 2009/0146070 A1,2007.
    1-3
    [70]P. Kleimann, J. Linnros, C. Frojdh, et al. An X-ray imaging pixel detector based on scintillator filled pores in a silicon matrix. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment,2001,460(1):15-19
    [71]X. Badel, A. Galeckas, J. Linnros, et al. Improvement of an X-ray imaging detector based on a scintillating guides screen. Nuclear Instruments and Methods in Physics Research A,2002,487:129-135
    [72]X. Badel, J. Linnros, P. Kleimann, et al. Metallized and oxidized silicon macropore arrays filled with a scintillator for CCD-based X-ray imaging detectors. Nuclear Science, IEEE Transactions on,2004,51(3):1001-1005
    [73]S. Petersson, J. Linnros, C. Frojdh. X-ray pixel detector device and fabrication method. USA, US Patent, US 6744052 B1,2004.1-4
    [74]X. Badel, B. Norlin, P. Kleimann, et al. Performance of scintillating waveguides for CCD-based X-ray detectors. in Nuclear Science, IEEE Transactions on,2006, (53): 3-8
    [75]M. Simon, K.-J. Engel, B. Menser, et al. Challenges of pixelated scintillators in medical X-ray imaging. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment,2008, 591(1):291-295
    [76]U. L. Olsen, S. Schmidt, H. F. Poulsen, et al. Structured scintillators for X-ray imaging with micrometre resolution. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment,2009, 607(1):141-144
    [77]O. Svenonius, A. Sahlholm, P. Wiklund, et al. Performance of an X-ray imaging detector based on a structured scintillator. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment,2009,607(1):138-140
    [78]朱泳,闫桂珍,王成伟等.Fabrication of Ultra Deep Electrical Isolation Trenches.半导体学报,2005,26(1):16-21
    [79]F. Marty, L. Rousseau, B. Saadany, et al. Advanced etching of silicon based on deep
    reactive ion etching for silicon high aspect ratio microstructures and three-dimensional micro-and nanostructures. Microelectronics Journal,2005,36(7):673-677
    [80]W. J. Park, Y. T. Kim, J. H. Kim, et al. Etching characterization of shaped hole high density plasma for using MEMS devices. Surface and Coatings Technology,2005, 193(1-3):314-318
    [81]吕垚.硅深槽ICP刻蚀中刻蚀条件对形貌的影响.微电子学,2009,39(5):729-732
    [82]R. Kassing, I. W. Rangelow. Etching processes for High Aspect Ratio Micro Systems Technology (HARMST). Microsystem Technologies,1996,3(1):20-27
    [83]蔡长龙,马睿,刘卫国等.硅深刻蚀中掩蔽层材料刻蚀选择比的研究.半导体光电,2009,30(2):211-214
    [84]赵钢,褚家如,徐藻.硅基片微型通孔加工技术.微细加工技术,2004,(2):60-65
    [85]张永华,丁桂甫,彭军,等.LIGA相关技术及应用.传感器技术,2003,22(3):60-64
    [86]孔祥东,张玉林,宋会英.LIGA工艺的发展及应用.微纳电子技术,2004,(5):13-18
    [87]刘兴占.LIGA工艺技术.中国仪器仪表,1997,(8):10-14
    [88]陈浩,朱桂枫,谢嘉明等.深刻蚀的利器—ICP.集成电路应用,2002,(10):48-51
    [89]樊中朝,余金中,陈少武.ICP刻蚀技术及其在光电子器件制作中的应用.微细加工技术,2003,(2):21-28
    [90]姚刚,石文兰.ICP技术在化合物半导体器件制备中的应用.半导体技术,2007,32(6):474-477
    [91]朱泳,闫桂珍,王成伟等.高深宽比深隔离槽的刻蚀技术研究.微纳电子技术,2003,(7/8):113-115
    [92]卓敏,贾世星,朱健等.用于微惯性器件的ICP刻蚀工艺技术.传感技术学报,2006,19(5):1381-1383
    [93]杨小兵,王传敏,孙金池.工艺参数对Si深槽刻蚀的影响.微纳电子技术,2009,46(7):424-427
    [94]李群庆,张立辉,陈墨等.纳米级电子束光刻技术及ICP深刻蚀工艺技术的研究.中国科学E辑,2009,39(6):1047-1053
    [95]陈少军,李以贵.基于高深宽比Si干法刻蚀参数优化.微纳电子技术,2009,46(12):750-753
    [96]王成伟,闫桂珍,朱泳.ICP硅深槽刻蚀中的线宽控制问题研究.微纳电子技术,2003,7/8:104-107
    [97]张育胜.平滑陡直的Si深槽刻蚀方法.半导体技术,2009,34(3):214-216
    [98]朱泳,闫桂珍,王成伟等.用深反应离子刻蚀和介质填充技术制造具有高深宽比的超深电隔离槽.半导体学报,2005,26(1):16-21
    [99]王旭迪,张永胜,胡焕林等.深高宽比微结构的干法刻蚀.真空,2004,41(5):32-34
    [100]S. Aachboun, P. Ranson. Deep anisotropic etching of silicon. J. Vac. Sci. Technol. A., 1999,17(4):2270-2273
    [101]V. Lehmann, H. FoⅡ. Formation Mechanism and Properties of Electrochemically Etched Trenches in n-Type Silicon. J. Electrochem. Soc.,1990,137(2):653-659
    [102]M. Kruger, R. Arens-Fischer, M. Thonissen, et al. Formation of porous silicon on patterned substrates. Thin Solid Films,1996,276(1-2):257-260
    [103]陈瑜,吴俊徐,郭平生等.一种用于硅基MEMS加工的深刻蚀技术.微细加工技术,2005(4):37-41
    [104]向嵘,王国政,陈立等.Si基体二维深通道微孔列阵刻蚀技术.微纳电子技术,2008,45(12):729-733
    [105]V. Lehmann, S. Ronnebeck. MEMS techniques applied to the fabrication of anti-scatter grids for X-ray imaging. Sensors and Actuators A:Physical,2002,95(2-3): 202-207
    [106]H. Ohji, P. J. Trimp, P. J. French. Fabrication of free standing structure using single step electrochemical etching in hydrofluoric acid. Sensors and Actuators,1999,73: 95-100
    [107]H. Foll, M. Christophersen, J. Carstensen, et al. Formation and application of porous silicon. Materials Science and Engineering:R.,2002,39(4):93-141
    [108]T. Geppert, J. Schilling, R. Wehrspohn, et al. Silicon-Based Photonic Crystals. Silicon Photonics,2004:295-322
    [109]V. Lehmann, H. Foll. Minority Carrier Diffusion Length Mapping in Silicon Wafers
    Using a Si-Electrolyte-Contact. J. Electrochem. Soc.,1988,135(11):2831-2835
    [110]J. E. A. M. v. d. Meerakker, R. J. G. Elfrink, F. Roozeboom, et al. Etching of Deep Macropores in 6 in. Si Wafers. Journal of The Electrochemical Society,2000,147(7): 2757-2761
    [111]H. Ohji, S. Izuo, P. J. French, et al. Macroporous-based micromachining on full wafers. Sensors and Actuators A.,2001,92:384-387
    [112]张晚云,季家榕,袁晓东等.电化学制备P型硅基二维光子晶体优化参数.电化学,2005,11(4):377-381
    [113]H. C. Kim, D. H. Kim, K. Chun. Photo-assisted electrochemical etching of a nano-gap trench with high aspect ratio for MEMS applications. J. Micromech. Microeng,2006, 16:906-913
    [114]D. R. Turner. Electropolishing Silicon in Hydrofluoric Acid Solutions. Journal of The Electrochemical Society.1958,105(7):402-408
    [115]张乐欣,李志全,李葵英.多孔硅的电化学形成及微结构研究.燕山大学学报,2006,30(2):177-180
    [116]叶超,宁兆远,程珊华.用脉冲电化学法在低HF浓度下制备多孔硅的研究.功能材料,2002,33(2):183-187
    [117]李志全,乔淑欣,张乐欣等.多孔硅成核的电化学研究.化学通报,2006,(2):136-139
    [118]田斌,胡明,张之圣.用电化学方法制备多孔硅.天津大学学报,2004,37(9):823-826
    [1]9]房振乾,胡明,窦雁巍.双槽电化学腐蚀法制备多孔硅的孔隙率研究.压电与声光,2007,29(2):230-236
    [120]窦雁巍,胡明,崔梦等.多孔硅的电化学制备与研究.功能材料,2006,37(3):395-398
    [121]X. G Zhang. Morphology and Formation Mechanisms of Porous Silicon. Journal of The Electrochemical Society,2004,151(1):C69-C80
    [122]L. T. Canham. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett.,1990,57(10):1046-1048
    [123]V. Lehmann, U. Gosele. Porous silicon formation:A quantum wire effect. Appl. Phys. Lett.,1991,58(8):856-858
    [124]V. Lehmann, U. Gosele. Porous silicon:Quantum sponge structures grown via a self-adjusting etching process. Advanced Materials,1992,4(2):114-116
    [125]X. G. Zhang. Mechanism of Pore Formation on n-Type Silicon. J. Electrochem. Soc., 1991,138(12):3750-3756
    [126]K. Grigoras, A. J. Niskanen, S. Franssila. Plasma etched initial pits for electrochemically etched macroporous silicon structures. Journal of Micromechanics and Microengineering,2001.371-375
    [127]R. Gassilloud, P. Schmuki, J. Michler. Electrochemical trench etching of silicon triggered via mechanical nanocontacts. Electrochimica Acta,2007,53(1):758-762
    [128]T. Trifonov, L. F. Marsal, A. Rodriguez, et al. Fabrication of two-and three-dimensional photonic crystals by electrochemical etching of silicon. Phys. Stat. Sol. (c),2005,2(8):3104-3107
    [129]邓俊泳,冯勇建.TMAH单晶硅腐蚀特性研究.微纳电子技术,2003(12):32-34
    [130]Y. Tao, M. Esashi. Macroporous silicon-based deep anisotropic etching. J. Micromech. Microeng,2005,15:764-770
    [131]V. Lehmann. The Physics of Macropore Formation in Low Doped n-Type Silicon. J. Electrochem. Soc.,1993,140(10):2836-2843
    [132]R. Mlcak, H. L. Tuller. Electrochemical Etching Process. USA, US Patent,50338416, 1994.1-3
    [133]T. Trifonov, A. Rodriguez, F. Servera, et al. High-aspect-ratio silicon dioxide pillars. phys. stat. sol. (a),2005,202(8):1634-1638
    [134]Y. Kang, J. Jorne. Photoelectrochemical dissolution of N-type silicon. Electrochimica Acta,1998,43:2389-2398
    [135]V. Lehmann. Electrochemistry of Silicon. Munchen:Wiley-VCH Verlag GmbH,2002. 2-6
    [136]赵志刚,牛憨笨,郭金川.光助电化学刻蚀装置.中国,发明专利,200910105069.X,2009.1-3
    [137]B. Xiao-Qing, G. Dao-Han, J. Ji-Wei. Observation of a diverse deviation from macropore-formation theory in silicon electrochemistry. Chinese Phys. B,2008,17(8):
    3130-3137
    [138]J. Carstensen, M. Christophersen, G. Hasse, et al. Parameter Dependence of.Pore Formation in Silicon within a Model of Local Current Bursts. Phys. stat. sol. (a),2000, 182(1):63-69
    [139]W.-D. Jehng, J.-C. Lin, S.-L. Lee. Concentration Effect of HF on Energy Band Diagram for n-Si(100)/HF Photoelectrochemical Etching System. J. Electrochem. Soc., 2005,152(3):C124-C130
    [140]G Barillaro, A. Nannini, F. Pieri. Dimensional Constraints on High Aspect Ratio Silicon Microstructures Fabricated by HF Photoelectrochemical Etching. Journal of The Electrochemical Society,2002,149(3):C180-C185
    [141]G. Barillaro, A. Nannini, M. Piotto. Electrochemical etching in HF solution for silicon micromachining. Sensors and Actuators A,2002,102:195-201
    [142]Z. Zhao, C. Bai, J. Guo, et al. Fabrication of wall array by electrochemical etching of n-type silicon. in MEMS/MOEMS Technologies and Applications Ⅲ. Beijing, China. SPIE,2007, (6836):68360W
    [143]韩毅.基于CMOS传感器的以太网相机的研究与实现.计算机工程与设计,2008,29(13):3338-3341
    [144]张明宇,刘金国,李余等.基于Camera link接口的双目CMOS APS成像系统的研究.光电子技术,2008,28(4):270-273
    [145]单宝堂,沈庭芝,王廷豪.多传感器图像采集处理系统的设计与实现.传感技术学报,2009,22(2):235-239
    [146]廖高华,习俊梅.基于以太网的CMOS传感器图像监测系统.仪表技术与传感器.2008(10):69-71
    [147]卢笛,阮萍,陈良益.大面阵数码相机快门驱动机构的设计分析与改进.光学技术,2008,34(3):186-188
    [148]陆洲,王宝光.基于FPGA的嵌入式彩色图像检测系统.传感技术学报,2007,20(3):618-622
    [149]王科,房建成,全伟.CMOS APS图像传感器驱动时序的设计与实现.测试技术学报,2007,21:213-218
    [150]魏博,肖文王,丛琳等.基于FPGA的CMOS图像传感器的驱动开发.光学与光电技术,2008,6(5):56-58
    [151]吴作勇,韩新洁,孟宪尧.基于FPGA和ARM的图像采集传输系统.电子元器件应用,2007,9(10):57-59
    [152]张海兵,阮林波,李斌康.基于VHDL与ECS的CA-D6驱动时序设计.计算机工程与设计,2007,28(15):3621-3622
    [153]李剑雄,张策,杨军.基于ARM和DM9000的网卡接口设计与实现.微计算机信息,2008,24(5-2):123-124
    [154]李国辉,范科峰.基于ARM+DM9000的TCP/IP协议栈移植与实现.电子科技,2008,21(6):67-69
    [155]Xilinx. Spartan-3 Generation Configuration User Guide. USA:Xilinx Inc.,2007.5-10
    [156]Xilinx. Spartan-3 Generation FPGA User Guide. USA:Xilinx Inc.,2007.20-30
    [157]Xilinx. Xilinx Memory Interface Generator(MIG) User Guide. USA:Xilinx Inc.,2008. 35-40
    [158]Xilinx. Spartan-3 A FPGA Family Data Sheet. USA:Xilinx Inc.,2009.28-35
    [159]许丹.高速CMOS数字图像系统设计研究:[硕士学位论文].西安:西安工业大学,2007
    [160]汤少维.基于FPGA控制的高速数据采集系统设计与实现:[硕士学位论文].成都:电子科技大学,2004
    [161]何雷.基于FPGA的高速数字图像采集电路的设计:[硕士学位论文].哈尔滨:哈尔滨工业大学,2007
    [162]薛小刚,葛毅敏.Xilinx ISE 9.x FPGA/CPLD设计指南.(第1版).北京:人民邮电出版社,2007.21-26
    [163]云创工作室.Verilog HDL程序设计与实践.(第1版).北京:人民邮电出版社,2009.15-19
    [164]舒展.DDR2控制器IP的设计与FPGA实现:[硕士学位论文].合肥:合肥工业大学,2009
    [165]Micron.1Gb:×4, ×8, ×16 DDR2 SDRAM Features. USA:MIC,2004.2-6
    [166]陈肯.DDR Ⅱ SDRAM控制器设计实现:[硕士学位论文].杭州:浙江大学,2007
    [167]邓丽.高带宽低延时的DDR2内存控制器的研究与实现:[硕士学位论文].长沙:国防科技大学,2006
    [168]范泽明.DDR2 SDRAM控制器的设计与验证:[硕士学位论文].西安:西安电子科技大学,2009
    [169]赵天云,王洪迅,郭雷等.DDR2 SDRAM控制器的设计与实现.微电子学与计算机,2005,22(3):203-207
    [170]须文波,胡丹.DDR2 SDRAM控制器的FPGA实现.江南大学学报,2006,5(2):145-148
    [171]Xilinx. FIFO Generator User Guide. USA:Xilinx Inc.,2008.12-15

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700