用户名: 密码: 验证码:
三维条件下的岩石破裂过程分析及其数值试验方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
岩石破裂是一个复杂的非平衡、非线性的演化过程。研究岩土工程材料的破裂过程,对揭示材料破裂过程的宏观非线性力学行为,评价岩石以及岩石工程的安全状态,了解岩土工程结构的稳定性以及采取合理的支护措施,都具有重要的理论意义和工程价值。
     岩石力学与工程问题本身就是三维的力学问题。除了少数的岩石力学问题可以简化为平面问题或者轴对称问题来进行处理外,二维模型的应用都是很有限的。由于岩石和岩体中非均匀性的存在,很容易产生不对称破坏。一旦涉及到不对称性的破坏,几乎所有的二维破坏问题都变成了三维破坏问题。
     一方面,岩石介质是非透明材料,给岩石内部三维裂纹扩展和试件破坏观测带来非常大的困难。即使对于均质材料,经典断裂力学在三维破裂中遇到数学的困难,而对于极不均匀性的岩石介质的破裂问题还更难通过解析理论进行准确的描述。另一方面,在实验室的三轴试验中,因为试件制作以及加载条件的困难,往往采用伪三轴试验代替真三轴试验。数学理论上的复杂性、实验室试验和现场观测试验条件和技术的限制,都给岩石三维破裂过程的研究带来很大的困难。有限元方法仍然是解决这些问题的强有力的工具之一。以往数值模拟分析的目的往往是为了得到一个满意的初始应力场变形场或者最终受力结果,随着计算环境的改善和实际问题的客观要求的发展,岩石破裂过程分析正在转向整个结构和一个发展过程的全程模拟。
     本文的研究工作可以总结为以下几个方面:
     1、岩石三维破裂过程分析模型研究:采用Weibull等各种随机分布函数描述岩石材料的细观非均匀性,并通过Monte-Carlo方法实现单元力学属性的随机赋值。在考虑细观单元非均匀性的基础上,建立三维弹性损伤演化本构模型,通过非均匀介质变形过程中微破裂积累造成的力学性质弱化来反映岩石宏观变形非线性的本质特征。
     2、分析系统开发:采用数值计算速度较快的Fortran语言在PowerStation平台开发RFPA~(3D)系统的应力分析模块,并在Linux Redhat 9.0平台下开发并行有限元计算模块,采用功能强大的Microsoft Visual C++语言开发RFPA~(3D)系统的独特的三维破坏分析模块,并利用Microsoft Visual C++语言开发RFPA~(3D)和RFPA~3D-Parallel系统方便友好高效的前后处理界面及其接口,采用SGL公司跨平台强大图形库模块OpenGL来实现软件模拟结果的图形图像的显示。
     3、基本力学试验及其机理模拟分析:分析岩石不同非均匀性、压拉比和残余强度下的变形破坏行为,模拟分析试件尺寸效应、试件形状效应、加载端部刚度效应,以及不同的加载方式以及采用不同的破坏准则、细观单元不同的随机分布类型、不同的损伤模型对岩石破裂过程的影响,分析了围压效应和真三轴试验下的中间主应力效应。
     4、断裂力学试验模拟:研究空间三维裂纹的萌生、扩展、相互作用和贯通的机理,以及裂纹角度、裂纹长度和裂纹深度对表面裂纹扩展和贯通的影响。模拟岩石在单轴压缩破坏、单轴拉伸断裂、剪切断裂以及复合断裂破坏过程,综合分析试验结果和声发射空间分布图像、数值试验图像以及这些图像与各自应力应变曲线之间的关系,研究岩石破裂过程中应力场、位移场和微破裂空间演化的基本规律以及非线性行为(包括自组织临界现象、分形和逾渗行为)。
     5、高性能并行计算:编制大规模并行计算软件,通过物理实验和数值试验对比分析了含
Rock failure process is a complicated non-equilibrium nonlinear progressive process with the evolution of associated cracks initiation, propagation and coalesces. Due to the heterogeneities contained in the rocks, it is difficult to describe the structures and components accurately. In rock failure process study, the formation and interactions between all kinds of weakness on different scales are so intricate that more work is paid attention to stress field investigation and failure criterions of materials.
    However, the investigation of fracture process is much more significant than stress field investigation. Since the first complete stress-strain curve was obtained by Cook in 1963, large numbers of rock failure experiments were undertaken to study the rock progressive failure process. The results showed that unstable point was found after the peak strength point in the complete stress-strain curve, and it explained that pillars or wall rocks had carrying capacity to some extent in mining engineering after their peak strength. The rocks or rock masses we encounter in mining engineering are not intact, and how to make most use of the residual strength of fractured rock masses to save support and excavation costs is much important than the acquirement of the peak strength of rock or rock masses.
    The problems in rock mechanics and engineering are all of three dimensions to some extent. Rock and rock masses composing the earth's crust are under three-dimensional stress condition, and fracture formation in rocks, including crack propagation, interaction and coalescence shows three-dimensional features. In geophysical studies, the distribution of faults and seismic evens are all three-dimensional. Many rock mechanical problems, except plain strain problems and plain stress problems, such as crack propagation and crack interaction are related to many directions and cannot be simplified to two-dimensional problems. Few presentations can be found to explain the progressive failure of rock in three-dimension and related nonlinear behavior resulting from material heterogeneities.
    On the one hand, it brings enormous difficulties to observe the three-dimensional fracture process in rocks, because of the non-transparency of rocks. Some transparent materials, such as PMMA or glass, used in experiments instead of rocks are homogeneous. Rocks belong to heterogeneous materials that contain micro cracks and flaws, and heterogeneity plays an important role in fracturing process. However, there are no proper approaches in mathematics to describe three-dimensional crack propagation even in homogenous material. On the other hand, artificial triaxial tests are undertaken in experimental investigations instead of triaxial tests, due to difficulties in rock sample preparation and the loading conditions. It has been approved theoretically and experimentally that the intermediate principal stress has great effects on rock failure process and the intermediate principal stress can not be considered in artificial triaxial tests.
    Numerical test provides an utmost means to study the failure process of rock-like materials. Finite element method is a useful and effective tool among various numerical methods to analysis the rock mechanical problems. However, the traditional finite element method should adopt new techniques and other methods to meet the need of mesomechanics. The traditional numerical methods are applied to get a satisfactory initial stress, initial strain fields or the final stress state. With the improvement of computing environment and the practical demands in rock mechanics, rock failure process analysis is turning its steps to
引文
[1] 中国力学学会.带缺陷物体流变学国际研讨会介绍[J].力学进展,1998.2:142.
    [2] 唐春安.岩石破裂过程中的灾变.煤炭工业出版社[M],北京,1993.
    [3] 傅宇方.脆性材料破裂过程的数值模拟研究[D].东北大学博士论文,沈阳,2000.
    [4] 李世愚,滕春凯,刘绮亮等.三维破裂及其在地震和断层研究中的应用[J].地震地磁观测与研究.1998,19(1):11-24.
    [5] 滕春凯,尹祥础,李世愚等.非穿透裂纹平板试件三维破裂的试验研究[J].地球物理学报.1987,30(4):371-378.
    [6] 李世愚,滕春凯,卢振业等.裂纹间动态相互作用的实验观测与理论分析[J].地球物理学报.1998,41(1):79-88.
    [7] 尹祥础,李世愚,李红等.脆性材料中非穿透裂纹扩展的研究[C].中国学者论文集锦——第十七届国际理论与应用力学大会.北京,北京大学出版社,1998.
    [8] 李世愚.三维脆性破裂的拉应力判据[J].地球物理学报,1990,33(5):547-555.
    [9] 李世愚.平面内剪切断层的自然扩展[D].北京.国家地震局地球物理研究所博士学位论文,1991.
    [10] Adams M, Sines G. Crack extension from flaws in brittle material subjected t ocompression[J]. Tectonophysics. 1978, 49:97-118.
    [11] Scholz C.H.. The mechanics of earthquakes and faulting [M]. Cambridge university press, Cambridge, 1990.
    [12] Germanovich L.N., Dykin A.V. and Tsyulnikov M.N.. Mechanicsm of dilatancy and columnar failure of brittle rocks under uniaxial compression [J]. Transcriptions of the USSR Academy of Science. Earth Sci. Sections, 1990, 313(4):6-10.
    [13] Dyskin A.V., Jewell R.J., Joer H, Sahouryeh E, Ustinov K.B. Experiments on 3-D crack grouth in uniaxial compression [J]. Int. J. Fracture. 1994, 65(4):77-83.
    [14] Dyskin A.V., Germanovich L.N. et al. Study on 3-D mechanisms of crack growth and interaction in uniaxial compression. ISRM News Journal. 1994, 2(1):17-24.
    [15] Dyskin A.V., Germanovich L. N. and Ustinov K. B.. Asymptotic analysis of crack interaction with free boundary, International Journal of Solids and Structures, 2000, 37(6):857-886.
    [16] Dyskin A. V.. Self-similar crack patterns induced by spatial stress fluctuations, Fatigue Fracture Engineering Magazine, 2002, 25(2):187-200.
    [17] Dyskin A. V.. Germanovich L. N. Fracture mechanisms and instability of openings in compression. International Journal of Rock Mechanics and Mining Sciences. 2000. 37(2):263-284.
    [18] 杨庆生.复合材料细观结构力学与设计[M].北京,中国铁道出版社,2000.204-205.[19] N. G. W. Cook. The failure of rock [J], Int. J. Rock Mech. Min. Sci., 1965, 2: 389-403.
    [20] 朱之芳,刚性试验机,北京:煤炭工业出版社,1985
    [21] Z.T. Bieniawski, H. C. Denkhaus, U. K. Volger, Failure of fracture rock [J], Int. J. Rock Mech. Min. Sci., 1969, 6(3): 323-341
    [22] W.R. Wawersik, C. Fairhurst, A study of brittle rock fracture in laboratory compression experiments [J], Int. J. Rock Mech. Min. Sci., 1970, 7:561-575
    [23] 唐春安,测试系统的频率响应对岩石载荷—位移全过程曲线测试结果的影响[J].岩石力学与工程学报,1987,6(3).
    [24] 尚嘉兰,孔常静,李廷芥等.岩石细观损伤破坏的观测研究[J].实验力学,1999:14(3):373—383.
    [25] 黄明利,唐春安,朱万成.岩石单轴压缩下破坏失稳过程SEM即时研究[J].东北大学学报(自然科学版),1999,20(4):724-728.
    [26] 凌建明.压缩载荷条件下岩石细观损伤特征的研究[J].同济大学学报,1993,21(2):219-226.
    [27] Okstuka K, Data H. Fracture process zone in concrete tension specimen [J]. Engineering Fracture Mechanics. 2000, 65:111-131.
    [28] 仵彦卿,丁卫华.单轴条件下砂岩三维破裂过程的CT观测[J].工程地质学报,2002,10(1):93-97.
    [29] 任建喜,葛修润等.岩石卸荷损伤演化机理CT实时分析初探[J].岩石力学与工程学报,2000,19(6):697-701.
    [30] 任建喜,葛修润等.岩石单轴细观损伤演化特征的CT实时分析[J].土木工程学报,2000,33(6):99-104.
    [31] 任建喜,杨更社,葛修润.裂隙花岗岩卸围压作用下损伤破坏机理CT检测[J].长安大学学报(自然科学版),2002,22(6):45-49.
    [32] 任建新.单轴压缩下岩石蠕变损伤扩展细观机理CT实时试验[J].水利学报,2002,1:10-14.
    [33] Mogi K., Earthquake prediction [M], Academic Press, Harcourt Brace Jovanovich, Publishers, Tokyo, 1985
    [34] 陈颐,阎红,1989,实验室中岩石破裂的变形前兆[J],地球物理学报,32,Supp.1:246-251
    [35] K. Mogi, Study of elastic shocks caused by the fracture of heterogeneous materail and its relation to earthquake phynomena [J], Bulletin of Earthquake Research Institute, 1962, 40:125.
    [36] C.H. Scholz, Experimental study of the fracturing process in brittle rock [J], J. Geophys. Res., 1968, 74(4): 1447-1454
    [37] R.E Goodman, 1963, Subaudible noise during compression of rock [J], Geo. Soc. Am. Bull., Vol.74, pp.487-490
    [38] 陈颐,岩石声发射技术在岩石力学研究中的应用[J],地球物理学报,1977,20(4):312-322
    [39] Chen Z. and Tang C.A, A Double Rock Sample Model for Rock Bursts [J], Int. Journal of Rock Mechanic and Mining Science. 1997, 34 (6), 991-1000.
    [40] 崔承禹、邓明德、耿乃光:在不同压力下岩石光谱辐射特性研究[J],科学通报,1993,38(6),538-544
    [41] 吕琪琦等,张北6.2级地震前的卫星热红外异常[J],地震,1998,18(3),240-244
    [42] 耿乃光等:热红外震兆成因的模拟实验研究[J],地震,1998,18(1),83-88
    [43] 吴立新、王金庄,煤岩受压红外热像与辐射温度特征实验[J],中国科学,1998,28(1),41-46
    [44] Wu L. X., Wang J. Z., Infrared radiation features of coal and rocks under loading [J], Int. J. Rock Mech. Min. Sci., 1998, 35(7): 969-976
    [45] Paterson M. S., Experimental deformation and faulting in Wombayan Marble [J]. Bull. Geol. Soc. Am. 1958, 69:456-476.
    [46] Hnadin J., Higgs D. V. and Brien J. K., Torsion of Yule Marble Under Confining Pressure in Rock Deformation [J], Geo. Soc. Am. Mere., 1960, 79:245-274.
    [47] Hoskins E. R., The failure of Thick-walled hollow cylinder of isotropie rock [J], Int. J. Rock Mech. Min. Sci., 1969, 6:99-125.
    [48] Jaeger J. C., and Hoskins E. R., Rock failure under the confined Brazilian Test [J], J. Gcophs. Res., 1966, 71:2651-2659.
    [49] Hojem J. P. M., and Cook N. G, W., The design and construction of a triaxial and polyaxial cell for testing rock specimens [J], S. African Mech. Eng., 1968, 18:57-61.
    [50] Mogi K., Effect of the triaxial stress system on the failure of dolomite and limestone [J], Tectonophysics, 1971, 11:111-127.
    [51] Mogi K., Dilatancy of rocks under general triaxial stress states with special reference to earthquakes precursors [J], J. Phys. Earth, 1977:25:203-217.
    [52] 许东俊,茂木清夫.岩石真三轴压缩仪的结果及特点[J],岩土力学,1980,2(3):77-84.
    [53] 李小春.岩石中间主应力效应研究及强度理论的验证与发展[D].中国科学院武汉岩土力学研究??所硕士论文,1990.
    [54] 许东俊,章志坚等.RT3型岩石高压真三轴仪的研制[J].岩土力学,1990,11(2):1-13.
    [55] 黄明利,脆性材料三维裂纹扩展贯通机制试验研究[M].中国科学院武汉岩土力学所博士后研究工作报告.武汉,2003.
    [56] Brady BHG, Brown ET. Rock Mechanics [M]. 2nd ed. London: Chapman & Hall, 1993.
    [57] E. Hock, E. T. Brown, Emperical strength criterion for rock masses [J]. J. Geotech. Engng Div., ASCE, 1980, 106:1013-1035
    [58] E. Hock, E. T. Brown, Underground excavations in rock [M], London: Instn. Min. Metall, 1980
    [59] 俞茂宏.工程强度理论[M].北京:高等教育出版社,1999
    [60] J.C.耶格,N.G.W.库克.岩石力学基础[M].北京:科学出版社,1981
    [61] 张清,杜静.岩石力学基础[M].北京:中国铁道出版社,1997
    [62] K. Mogi, Fracture frature and of rocks under general triaxial compression [J], J. Geophys. Res. 1971, 76:1255-1269
    [63] 余寿文,冯西桥.损伤力学 [M],北京:清华大学出版社,1997.
    [64] Nemat-Nasser S and Hori M. Micromechanics: Overall Properties ofHeterogeneous Materials [M]. Elsevier, The Netherlands, 1993.
    [65] Tvergaard V. Material Failure by Void Grouth to Goalscence. The Danish Center for Applied Mathematics and Mechanics, Report No. S45, The Technical University of Denmark, 1988.
    [66] Gilormini P. Licht C and Suquer P. Growth of voids in a Ductile Matrix: a Review [J] Arch. Mech., 1988, 40(1):43-80.
    [67] Krajcinovic D. Damage Mechanics [J]. Mech. Mater., 1989, 8:117-197.
    [68] Yang W and Lee W. B. Mesoplasticity and its Applications [M]. Springer-Verlag, Berlin, 1993.
    [69] Kachanov M. Effective Elastic Properties of Crack Solids, Critical Review of Some Basic Concepts [J]. Appl. Mech. Review, 1992, 45(7):304-335.
    [70] Bazant Z P. Mechanics of Distributed Cracking. Applied Mechnics [J]. Review, 1986, 39(11):675-705.
    [71] 冯西桥,余寿文.准脆性材料细观损伤力学[M].北京:高等教育出版社,2002.
    [72] 赵爱红,虞吉林.准脆性料的细观损伤演化模型[J].清华大学学报(自然科学版),2000,40(5):88-91.
    [73] 尹双增.断裂损伤理论及应用[M].北京:清华大序出版社,1992.
    [74] 尹双增.断裂判据与在混凝土工程中的应用[M].北京:科学出版社,1996.
    [75] 唐春安,王述红,傅宇方.岩石破裂过程数值试验[M].北京:科学出版社,2003.
    [76] 陈永强,郑小平,姚振汉.三维非均匀脆性材料破坏过程的数值模拟[J].力学学报.2002,34(3):351-361.
    [77] 杨强,程勇刚,张浩.基于格构模型的岩石类材料开裂数值模拟[J].工程力学,2003,20(1):117-120.
    [78] 杨强,张浩,周维垣.基于格构模型的岩石材料破坏过程的数值模拟[J].水利学报,2002,4:46-50.
    [79] 傅宇方.脆性材料破裂过程的数值模拟研究[D].东北大学博士论文,2000.
    [80] Wilins M L. Calculation of elasto-plastic flow. Research Report UCRL-7322, Rev. I. Lawrence Radiation Laboratory. University of California, 1964.
    [81] ITASCA Consulting Groups, Inc. FLAC Manuals, 1993.
    [82] Desai C S, Zamman M M, Lightner J G, Sirwardange H J. Thin-layer element for interfaces and joints [J]. Int J Numer Anal Methods Geomech, 1984, 8:19-43.
    [83] Gens A, Carol I, Alonso E E. An interface element formulation for the analysis of soil-renforeement interaction [J]. Comput Geotech, 1987, 7:133-151.
    [84] Buezkowaski R, Kleiber M. Elasto-plastic interface model for 3D-frictional orthotropic contact problems [J]. Int J Numer Methods Eng, 1997, 40:599-619.
    [85] Belytsehko T, Black T. Elastic crack grouth in finite elements with minimal re-meshing [J]. Numer Methods Eng, 1999, 45:601-620.
    [86] Wan R C. The numerical modeling of shear bands in geological materials, Ph D. Thsis, University of Alberta, Edmonton, Alberta, 1990.
    [87] Belytschko T, Black T. Elastic crack growth in finite elements with minimal re-meshing [J]. Int J Numer Methods Eng 1999, 45:601-20.
    [88] Belytsehko T, Mo.es N, Usui S, Padmi C. Arbitrary discontinuities in finite elements [J]. Int J Numer Methods Eng 2001,50: 993-1013.
    [89] Daux C, Mo.es N, DolbowJ, Sukumar N, Belytschko T. Arbitrary branched and intersecting cracks with the extended finite element method [J]. Int J Numer Methods Eng 2000;48:1741-60.
    [90] Duarte CA, BabuSska I, Oden Jr. Generalized finite element methods for three-dimensional structural mechanics problems [J]. Comput Struct 2000;77:215-32.[91] Duarte CA, Hamzeh ON, Liszka TJ, Tworzydlo WW. A generalized finite element method for the simulation of threedimensional dynamic crack propagation [J]. Comput Methods Appl Mech Eng 2001;190:2227-62.
    [92] DolbowJ, Mo.es N, Belytschko T. Discontinuous enrichment in finite elements with a partition of unity method [J]. Finite Element Anal Design 2000;36:235-60.
    [93] Jirasek M, Zimmermann T. Embedded crack model: I. Basic formulation [J]. Int J Numer Methods Eng 2001;50:1269-90.
    [94] Jirasek M, Zimmermann T. Embedded crack model: II: Combination with smeared cracks [J]. Int J Numer Methods Eng 2001;50:1291-305.
    [95] Mo.es N, DolbowJ, Belytschko T. A finite element method for crack growth without remeshing [J]. Int J Numer Methods Eng 1999;46:131-50.
    [96] Sukumar N, Mo.es N, Moran B, Belytschko T. Extended finite element method for three-dimensional crack modeling [J]. Int J Numer Methods Eng 2000;48:1549-70.
    [97] Duarte AVC, Rochinha FA, do Carmo EDG Discontinuous finite element formulations applied to cracked elastic domains [J]. Comput Methods Appl Mech Eng 2000;185:21-36.
    [98] Strouboulis T, Babu$ska I, Copps K. The design and analysis of the generalized finite element method [J]. Comput Methods Appl Mech Eng 2000; 181:43-69.
    [99] Strouboulis T, Copps K, Banu$ska I. The generalized finite element method. Comput Methods [J]. Appl Mech Eng 2001;190: 4081-193.
    [100] Arnold DN. Discretization by finite elements of a model parameter dependent problem [J]. Numer Math 1981;37:405-21.
    [101] Babuska I, Suri M. On the locking and robustness in the finite element method [J]. SIAM J Numer Anal 1992;29:1261-93.
    [102] Suri M. Analytical and computational assessment of locking in the hp finite element method [J]. Comput Methods Appl Mech Eng 1996;133:347-71.
    [103] Bucalen M, Bathe KJ. Locking behaviour of isoparametric curved beam finite elements [J]. Appl Mech Rev 1995;48/ll/2: S25-9.
    [104] Babuska I, Suri M. The p and h-p versions of the finite element method, an overview [J]. Comput Methods Appl Mech Eng 1990;80:5-26.
    [105] Chilton L, Suri M. On the selection of a locking-free hp element for elasticity problems [J]. Int J Numer Methods Eng 1997;40:2045-62.
    
    [106] Oden JT. The best FEM [J]. J Finite Element Anal Design 1990; 7(2):103-14.
    [107] Belytchko T, Krongauz Y, Organ D, Fleming M, Krysl P. Meshless methods: an overviewand recent developments [J]. Comput Methods Appl Mech Eng 1996;139:3-47.
    [108] Monaghna JJ. An introduction to SPH [J]. Comput Phys Commun 1988;48:89-96.
    [109] Randies PW, Libersky LD. Smoothed particle hydrodynamics: some recent improvements and applications [J]. Comput Methods Appl Mech Eng 1996;139:375-408.
    [110] Nayroles B, Touzot G, Villon P. Generalizing the finite element method: diffuse approximation and diffuse elements [J]. Comput Mech 1992;10:307-18.
    [111] Belytschko T, Lu YY, Gu L. Element-free Galerkin method [J]. Int J Numer Methods Eng 1994;37:229-56.
    [112] Liu KW, Jun S, Zhnag YF. Reproducing kernel particle methods [J]. Int J Numer Eng 1995;20:1081-106.
    [113] Liu KW, Chen Y, Uras RA, Chang CT. Generalized multiple scale reproducing kernel particle methods [J]. Comput Methods Appl Mech Eng 1996; 139:91-157.
    [114] Chen JS, Pan C, Wu CT, Liu WK. Reproducing kernel particle methods for large deformation analysis of non-linear structures [J]. Comput Methods Appl Mech Eng 1996;139:195-227.
    [115] Liu WK, Li S, Belytschko T. Moving least-square reproducing kernel methods, Part I: methodology and convergence [J]. Comput Methods Appl Mech Eng 1997;143:113-54.
    [116] Duarte CA, Oden JT. H-p clouds—an hp-meshless method [J]. Numer ethods Partial Differential Equations 1996;12:673-705.
    [117] Liszka TJ, Durate CA, Twozydlo WW. Hp-meshless cloud method [J]. Comput Methods Appl Mech Eng 1996:139:263-88.
    [118] Melenk JM, Babu$ska I. The partition of unity finite element method: basic theory and applications [J]. Comput Methods Appl Mech Eng 1996;139:289-314.
    [119] Atluri SN, Zhu T. A newmeshless local Petrov-Galerkin (MLPG) approach in computational mechanics. Comput Mech 1998;22:117-27.
    [120] Atluri SN, Kim HG, Cho JY. A critical assessment of the truly local Petrov-Galerkin (MLPG) and local??boundary integral equation (LBIE) methods [J]. Comput Mech 1999;24:348-72.
    [121] De S, Bathe K J. The method of finite spheres [J]. Comput Mech 2000;25:329-45.
    [122] Blandford GE, Ingraffea AR, Ligget JA. Two-dimensional stress intensity factor computations using the boundary element method [J]. Int J Num Methods Eng 1981;17:387-406.
    [123] Portela A. Dual boundary element incremental analysis of crack growth. Ph.D. thesis, Wessex Institute of Technology, Portsmouth University, Southampton, UK, 1992.
    [124] Mi Y, Aliabadi MH. Dual boundary element method for threedimensional fracture mechanics analysis [J]. Eng Anal Boundary Elements 1992;10:161-71.
    [125] Yamada Y, Ezawa Y, Nishiguchi I. Reconsiderations on singularity or crack tip elements [J]. Int J Numer Methods Eng 1979;14:1525-44.
    [126] Aliabadi MH, Rooke DP. Numerical fracture mechanics [M]. Southampton: Computational Mechanics Publications. Dordrecht: Kluwer Academic Publishers, 1991.
    [127] L. Jing, J.A. Hudson. International Journal of Rock Mechanics & Mining Sciences 39 (2002) 409-427 420.
    [128] Bonnet M, Maier G, Polizzotto C. Symmetric Galerkin boundary element methods [J]. Appl Mech Rev 1998;51(11): 669-704.
    [129] Wang J, Mogilevskaya SG, Crouch SL. A Galerldn boundary integral method for non-homogenous materials with crack [M]. Elsworth, Tunicci, Heasley, editors. Rock mechanics in the national interest. Rotterdam: Balkema, 2001. p. 1453-60.
    [130] Brebbia CA, Telles JCF, Wrobel LC. Boundary element techniques: theory & applications in engineering[M]. Berlin: Springer, 1984
    [131] 宋文洲,新概念土木结构分析系统2D-s和3D-s简介[J],岩石力学与工程学报,1996,15(3):301-303
    [132] 王泳嘉、邢纪波,离散单元法及其在岩土工程中的应用[M],沈阳:东北工学院出版社,1991
    [133] 石根华(著),裴觉民(译),数值流形元方法与非连续变形分析[M],北京:清华大学出版社,1987
    [134] Jan G. M. van Mier, Fracture processes of concrete[M], New York: CRC press, 1997
    [135] D.F. Malan, J. A. L. Napier, Computer modeling of granular material micro fracturing [J], Teetonophysics, 1995, 248:21-37
    [136] Zhong Liu, Larry R. Myer, Neville G. W. Cook, Numerical simulation of the effects of heterogeneity on macro-behavior of granular materials [J], Computer method and advances in Geomeehanics, Siriwardance & Zaman (eds.), 1994, Balkema, Rotterdam.
    [137] C. Faihurst, Geomaterials and recent developments in micro-mechanical numerical models [J], News Journal, 1997, 4(2): 11-14
    [138] S.C.Blair, N.G.W.Cook, Analysis of Compressive Fracture in Rock Using Statistical Techniques: Part Ⅰ. A Non-linear Rule-based Model [J], Int. J. Rock Mech. Min. Sci., 1998, 35(7): 837-848
    [139] A. Fakhimia F. Carvalhoc T. Ishidad J.F. Labuze Simulation of failure around a circular opening in rock [J]. International Journal of Rock Mechanics & Mining Sciences. 2002, 39(4): 507-515.
    [140] 邢纪波(著),梁—颗粒模型导论[M],北京:地震出版社,1999
    [141] A. Fakhimia F. Carvalhoc T. Ishidad J.F. Labuze Simulation of failure around a circular opening in rock [J]. International Journal of Rock Mechanics & Mining Sciences. 2002, 39(4): 507-515.
    [142] A. Hrennikoff, Solution of problem of elasticity by framework method [J], J. Appl. Mech, 1941, A, 169
    [143] H.J. Herrmann, H. Hansen & S. Roux, Fracture of disorder elastic lattices in two dimension [J], Phys. Rev. B, 1989, 39:637
    [144] E. Sehlangen & J. G. M. Van Mier, Crack propagation in sandstone: A combined experimental and numerical approach [J], Rock Mech. Rock Eng., 1995, 28(2): 93
    [145] 刘光延,王宗敏,用随机骨料模型数值模拟混凝土材料的断裂[J],清华大学学报(自然科学版),1996,36(1):84-89
    [146] J. G. M. Van Mier, M. R. A. Van Vliet, Experimentation, numerical simulation and the role of enginneering judgement in the fracture mechanics of concrete and concrete structures [J], Construction and Building Materials, 1999, 13:3-14
    [147] 刘耀儒.三维有限元并行计算及其在水利工程中的应用[D].清华大学博士论文,2003.
    [148] Nayroles B., Touzot G. and Villon P., Generalizing the finite element method: diffuse approximation and diffuse elements [J], Comput. Mech., 1992, 10, 307-318
    [149] Belytschko T., Lu Y.Y. and Gu L., Element-free Galerkin Methods [J], Int. J. for Num. Methods in Engrg., 1994, 37, 229-256
    [150] Lu Y.Y. , Belytschko T. and Gu L., A New implementation of the element-free Galerkin method [J], Comput. Methods Appl. Mech. Engrg., 1994, 113,397-414[151] 周维垣,寇晓东,无单元法及其工程应用[J],力学学报,1998,30(2):193-201
    [152] 寇晓东,周维垣,应用无单元法追踪裂纹扩展[J],岩石力学与工程学报,2000,19(1):18-23
    [153] S.C. Yuan, J.P. Harrison NUMERICAL MODELLING OF PROGRESSIVE DAMAGE AND ASSOCIATED FLUID FLOW USING A HYDRO-MECHANICAL LOCAL DEGRADATION APPROACH [J]. Int. J. Rock Mech. Min. Sci. 2004, 41(3): 417-418.
    [154] Hui Zhou, Xia-ting Feng, Ming-tian Li, Shi-min Wang, Yong-jia Wang A NEW MESO-MECHANICAL APPROACH FOR MODELING THE ROCK FRACTURING PROCESS [J]. Int. J. Rock Mech. Min. Sci. 2004, 41(3): 420.
    [155] 周维垣,剡公瑞,岩石、混凝土类材料断裂损伤过程区的细观力学研究[J].水电站设计1997,13(1).
    [156] 张德海,邢纪波,朱浮声.三维梁-颗粒模型在岩石材料破坏模拟中的应用[J].岩土力学,2004,9(25):33-36.
    [157] 陈永强,郑小平,姚振汉.三维非均匀脆性材料破坏过程的数值模拟[J].力学学报.2002,34(3):351-361.[1] 唐春安,朱万成.混凝土损伤与断裂——数值试验[M].北京:科学出版社,2003.
    [2] 唐春安.岩石破裂过程中的灾变[M].北京:煤炭工业出版社,1992.
    [3] Krajcinovic D. and Silva M. A. G., Statistical aspects of the continuous damage theory [J], Int. J. Solids Struetures, 1982, 18(7): 551-562.
    [4] W. Weibull, A statistical theory of the strength of materials [M]. Stockholm, 1939
    [5] Zdenek BaZant & Er-Ping Chen. 结构破坏尺度律[J]. 力学进展. 1999, 29 (3): 383-433
    [6] 唐春安,王述红,傅宇方.岩石破裂过程数值试验[M].北京:科学出版社,2003.
    [7] 陈永强,郑小平,姚振汉.三维非均匀脆性材料破坏过程的数值模拟[J].力学学报.2002,34(3):351-361.
    [8] 陈永强,姚振汉,郑小平.非均匀脆性材料本构关系统计解析解[J].清华大学学报(自然科学版),2002,42(11):1515-1518.
    [9] 杨强,张浩,周维垣.基于格构模型的岩石材料破坏过程的数值模拟[J].水利学报,2002,4:46-50.
    [10] 傅宇方.脆性材料破裂过程的数值模拟研究[D].东北大学博士论文,2000.
    [11] 冯西桥,余寿文.准脆性材料细观损伤力学[M].北京:高等教育出版社,2002.
    [12] 陈忠辉,唐春安,傅宇方.岩石试样声发射的加载体刚度效应[J]煤炭学报,1996,21(4):364-369.
    [13] 吴政,张成娟.单向载荷作用下岩石损伤模型及其力学特性研究[J].岩石力学与工程学报,1996,15(1):55—61.
    [14] 陈忠辉,傅宇方,唐春安.岩石破裂声发射过程的围压效应[J]岩石力学与工程学报,1997,16(1):65-67.
    [15] 曹文贵,方祖烈,唐学军.岩石损伤软化本构模型之研究[J],岩石力学与工程学报,1998,17(6):628-633.
    [16] 曹文贵,赵明华,唐学军.岩石破裂过程的统计损伤模拟研究[J].岩土工程学报,2003,25(2):184-187.[1] 杨庆生.复合材料细观结构力学与设计[M].北京:中国铁道出版社,2000.204~205.
    [2] Z.Z. Hang, C. A. Tang, H. X. H, Y. B. Zhang. Numerical simulation of 3D failure process in heterogeneous rocks [J]. Int. J. Rock Mech. Min. Sci. 41(3). 419-419.
    [3] 冯西桥,余寿文.准脆性材料细观损伤力学[M].北京:高等教育出版社,2002.
    [4] 唐春安.岩石破裂过程中的灾变.煤炭工业出版社[M].北京,1993.
    [5] 唐春安,朱万成.混凝土损伤与断裂——数值试验[M].北京:科学出版社,2003.
    [6] 夏蒙棼,韩闻生,柯孕久,白以龙.统计细观损伤力学和损伤演化诱致突变Ⅱ[J].力学进展,1995,25(2):145-173.
    [7] 陈永强,郑小平,姚振汉.三维非均匀脆性材料破坏过程的数值模拟[J].力学学报.2002,34(3):351-361.
    [8] Dragon A and Mróz Z. A continuum model for plastic-brittle behavior of rock and concret [J]. Int. J. Eng. Sci., 1979, 17, 121-137.
    [9] Mazars J. Application de la mecanique de I'endommagement au comportement non lineare et la rupture du beton de structure [D]. These de doctorat d'Etat. Univ. Paris Ⅵ, 1984.
    [10] Loland KE. Continuum damage model for load response estimation of concret [J]. Cement and Concrete Research, 1980, 10, 395-402.
    [11] 余天庆,混凝土的分段线性损伤模型[J]. 岩石、混凝土断裂与强度,1982,2,14-16.
    [12] Dems K, Mroz Z. Stability condition for brittle plastic structure with propagation damage surface[J]. Struct. Meeh., 1985, 13(1): 85~122
    [13] 方德平.岩石应变软化的有限元计算[J].华侨大学学报(自然科学版),1991,12(2):177~181
    [14] 沈新普,岑章志,徐秉业.弹脆塑性软化本构理论的特点及其数值计算[J].清华大学学报,1995,35(2):22~27
    [15] 王勖成 邵敏,有限单元法基本原理和数值方法[M].清华大学出版社,北京,1997:168-225.
    [16] 傅宇方.岩石脆性破裂过程的数值模拟试验研究[M].东北大学博士论文.沈阳:2000.
    [17] 俞茂宏,何丽南,宋凌宇.双剪强度理论及其推广[J].中国科学,A辑,1985,28(12):1113-1120.
    [18] 蔡美峰,何满潮,刘东燕 岩石力学与工程[M].北京,科学出版社:110-111.[1] 唐春安.岩石破裂过程中的灾变[M].北京:煤炭工业出版社,1992.
    [2] Mogi K., Earthquake prediction [M], Academic Press, Harcourt Brace Jovanovich, Publishers, Tokyo, 1985
    [3] 蔡美峰等.岩石力学与工程,科学出版社[M].北京,2002:35-43.
    [4] 夏蒙棼,韩闻生,柯孚久,白以龙.统计细观损伤力学和损伤演化诱致突变Ⅱ[J].力学进展,1995,25(2):145-173.
    [5] 傅宇方.脆性岩石破裂过程的数值模拟研究[D],东北大学博士论文,沈阳,2000.
    [6] 陈永强,郑小平,姚振汉.三维非均匀脆性材料破坏过程的数值模拟[J].力学学报.2002,34(3):351-361.
    [7] 俞茂宏,杨松岩,范寿昌,冯达清.双剪统一弹塑性本构模型及其工程应用[J],岩土工程学报,1997,19(6):2-10.
    [8] 陈津民,李树森.岩石断裂破坏的机理研究[J].地球科学进展,2004,19(19)。
    [9] 张清.岩石力学基础[M],中国铁道出版社.北京,1997:55-56.
    [10] 唐春安,王述红,傅宇方.岩石破裂过程试验[M].科学出版社.2002:54—55.
    [11] 俞茂宏.工程强度理论[M].北京:高等教育出版社,1998.
    [12] 高峰,谢和平,赵鹏.岩石块度的分形性质及细观结构特征[J].岩石力学与工程学报,1994,13(3):240-246.
    [13] 谢和平.分形—岩石力学导论[M].科学出版社,1997:129-186.[1] Tang CA, Tham LG, Lee PKK, Tsui Y, Liu H. Numerical studies of the influence of microstructure on rock failure in uniaxial compression—Part Ⅱ: constraint, slenderness and size effect [J]. International Journal of Rock Mechanics and Mining Sciences. 2000, 37:571-583,[2] Polls PJN Hudson JA, editors. Uniaxial strength testing, comprehensive rook engineering— Principles, practice & projects. Oxford: Pergamon Press, 1993. Vol. 3. p. 67-86.
    [3] Hojem J. P. M., and Cook N. G W., The design and construction of a triaxial and polyaxial cell for testing rock specimens [J], S. African Mech. Eng., 1968, 18:57-61.
    [4] Mogi K., Effect of the triaxial stress system on the failure of dolomite and limestone [J], Teetonophysies, 1971, 11:111-127.
    [5] Mogi K., Dilataney of rocks under general triaxial stress states with special reference to earthquakes precursors, J. Phys. Earth, 1977:25:203-217.
    [6] 许东俊,茂木清夫.岩石真三轴压缩仪的结果及特点[J],岩土力学,1980,2(3):77-84.
    [7] Hudson JA. Brown ET, Fairhurst C. Shape of the complete stress-strain curve. Proceedings of the Thirteenth US Symposium on Rock Mechanics, Stability of Rock Slopes. ASCE, 1971, 773-95.
    [8] Van Mier JGM. In: Fracture process of concrete. New York: CRC Press, 1997. p. 253.
    [9] Andreev GE. Brittle failure of rock materials. Rotterdam: Balkema, 1995.
    [10] 蔡美峰等.岩石力学与工程,科学出版社.北京,2002:35-43.
    [11] Wawersik WR, Fairhurst C. A study of brittle rock failure in laboratory compression experiments. Int J Rock Mech Min SCI, 1970, 7: 561-75.
    [12] Kotsovos MD. Effect of testing techniques on the post-ultimate behavior of concrete in compression. In: Materials and structures, vol. 16. London: RILEM, 1983. p. 3-12.
    [13] Paterson MS. In: Experimental rock deformation/the brittle field. Berlin, Heidelberg, New York: Springer-Verlag, 1978. p. 33.
    [14] 夏蒙棼,韩闻生,柯孚久,白以龙.统计细观损伤力学和损伤演化诱致突变Ⅱ.力学进展,1995,25(2):145-173.
    [15] 魏悦广,王自强.扩展裂纹尖端弹塑性场[J].力学学报,1994,26(1):39-48.
    [16] 杨庆生.复合材料细观结构力学与设计[M].北京:中国铁道出版社,2000.204~205.
    [17] Mogi K., Earthquako prediction, Academic Press, (Harcourt Brace Jovanovich, Publishers), Tokyo, 1985
    [18] 俞茂宏,杨松岩,范寿昌,冯达清.双剪统一弹塑性本构模型及其工程应用[J],岩土工程学报,1997,19(6):2-10.
    [19] 陈津民,李树森.岩石断裂破坏的机理研究[J].地球科学进展,2004,19(19)。
    [20] 傅宇方.脆性岩石破裂过程的数值模拟研究[D],东北大学博士论文,沈阳,2000.
    [21] 张清.岩石力学基础,中国铁道出版社.北京,1997:55-56.
    [22] 唐春安,王述红,傅宇方.岩石破裂过程试验.科学出版社.2002:54-55.
    [23] 陈永强,郑小平,姚振汉.三维非均匀脆性材料破坏过程的数值模拟[J].力学学报.2002,34(3):351-361.
    [24] Jeager J C. Rock failure at lower confining pressure. Engineering, 1960,189:283-284
    [25] 张流,薛丽霞,施良骐等.高围压下岩石破坏和摩擦滑动过程中的声发射活动性.岩石力学与工程学报,1990,9(1):38~47
    [26] 尤明庆,华安增.岩石试样的三轴卸围压试验.岩石力学与工程学报,1998,17(1):24~29
    [27] 葛修润,任建喜,蒲毅彬,等.煤岩三轴细观损伤演化规律的CT动态试验.岩石力学与工程学报,1999,18(5):497~502
    [28] 孟召平,彭苏萍,凌标灿.不同侧压下沉积岩石变形与强度特征.煤炭学报,2000,25(1):15~18
    [29] 陈忠辉,傅宇方,唐春安.岩石破裂声发射过程的围压效应.岩石力学与工程学报,1997,16(1):65~70
    [30] Faihurst C. Geomatorial and Recent Development in Micro-Mechanical Numerical Models. News Journal, 1997, 4(2): 11~14
    [31] Liu Z, Myer L R, Cook N G W. Numerical simulation of the effect of heterogeneities on maern-behavior of granular materials. Computer Mechanics and Advances in Geomeehanics, Siriqardane&Zaman(eds), Balkema, Rotterdam, 1994
    [32] Paterson M. S., Experimental deformation and faulting in Wombayan Marble [J]. Bull. Geol. Soc. Am. 1958, 69:456-476.
    [33] Hnadin J., Higgs D. V. and Brien J. K., Torsion of Yule Marble Under Confining Pressure in Reck Deformation [J], Geo. Soe. Am. Mere, 1960, 79:245-274.
    [34] 李小春.岩石中间主应力效应研究及强度理论的验证与发展.中国科学院武汉岩土力学研究所硕士论文,1990.
    [35] 许东俊,章志坚等.RT3型岩石高压真三轴仪的研制[J].岩土力学,1990,11(2):1-13.
    [36] 李贺,尹光志,徐江.岩石断裂力学[M].重庆:重庆大学出版社,1988,106-112.
    [37] 耶格JC,库克NGW.岩石力学基础[M].中国科学院工程力学研究所译.北京:科学出版社,1981.
    [38] Miehelis P. True triaxial cycle behavior of concrete and rock in compression [J]. Int J Plasticity, 1987, 3: 249-270.[39] 俞茂宏.工程强度理论[M].北京:高等教育出版社,1998.
    [40] 许东俊,耿乃光.岩石强度随中间主应力的变化规律[J].固体力学学报,1985,6(1):159-166.
    [41] 许东俊,耿乃光.中等主应力变化引起的岩石破坏与地震[J].地震学报,1984,6(2):159-166.
    [42] 王传志,过镇海,张秀琴.二轴和三轴受压混凝土的强度试验[J].土木工程学报.1987,20(2):15-26.
    [43] 尤明庆.岩石试样的强度及变形破坏过程[M].北京:地质出版社.2000.
    [44] 夏蒙棼,韩闻生,柯孚久,等.统计细观损伤力学和损伤演化诱致突变Ⅱ[J].力学进展,1995,25(2):145~173.
    [45] 张流,薛丽霞,施良骐等.高围压下岩石破坏和摩擦滑动过程中的声发射活动性[J].岩石力学与工程学报,1990,9(1):38-47.
    [46] 卢春生,柯孚久,白以龙等.演化诱致突变的计算机模拟[J].中国科学A,1995,25(1):54-60.
    [47] 谢和平.分形—岩石力学导论[M].科学出版社,1997:129-186.
    [48] 卫宏,张玉三,李太任,程东.岩石显微空隙粒度分布的分形特征与岩石强度的关系[J].岩石力学与工程学报,2000,19(3):318-320.
    [49] 张玉三,李太任等.岩石结构分形维数与岩石压缩强度关系的探讨[J].煤田地质与勘探,1995,23(3):22-25.
    [50] 杨双锁,靳钟铭,王春夫.裂隙分布的分形特征与岩石强度的相关性研究[J].山西矿业学院学报.1996,14(2);119-124.
    [51] 高峰,谢和平,赵鹏.岩石块度的分形性质及细观结构特征[J].岩石力学与工程学报,1994,13(3):240-246.
    [52] 谢卫红,谢和平,赵鹏.光弹模拟岩石分形节理的抗剪强度[J].力学与实践.1996,18(5):
    [53] 许强,黄润秋.岩石破裂过程的自组织临界特征初探[J].地质灾害与环境保护.1996,7(1):25-30.
    [54] 彭自正,王殚业,许云廷,牛志仁.逾渗与岩石破裂的计算机模拟研究[J].西北地震学报.1996,18(1):22-28.
    [55] 柯善明,顾浩鼎,翟文杰.地震活动的逾渗模型及临界状态的研究[J].地震学报,1999,21(4):379-386.
    [56] 吴忠良.逾渗模型的地震学含义[J].地球物理学进展.1992,7(4):38-45.[1] 李世愚,滕春凯,刘绮亮等.三维破裂及其在地震和断层研究中的应用(综述)[J].地震地磁观测与研究.1998,19(1):11-24.[2] 滕春凯,尹祥础,李世愚等.非穿透裂纹平板试件三维破裂的试验研究[J].地球物理学报.1987,30(4):371-378.
    [3] 李世愚,滕春凯,卢振业等.裂纹间动态相互作用的实验观测与理论分析[J].地球物理学报.1998,41(1):79-88.
    [4] 尹祥础,李世愚,李红等.脆性材料中非穿透裂纹扩展的研究[C].中国学者论文集锦——第十七届国际理论与应用力学大会.北京,北京大学出版社,1998.
    [5] 李世愚.三维脆性破裂的拉应力判据[J].地球物理学报,1990,33(5):547-555.
    [6] 李世愚.平面内剪切断层的自然扩展[D].北京,国家地震局地球物理研究所博士学位论文,1991.
    [7] 李红,李世愚,许征宇,尹祥础.1992.高围压下岩石材料的断裂力学实验[J].地震学报,14(1):124~127.
    [8] Adams M, Sines G. Crack extension from flaws in brittle material subjected t compression[J]. Tectonophysics. 1978, 49:97-118.
    [9] Scholz C.H.. The mechanics of earthquakes and faulting[J]. Cambridge university press, Cambridge, 1990.
    [10] Germanovich L.N., Dyskin A.V. and Tsyulnikov M.N.. Mechanics of dilatancy and columnar failure of brittle rocks under uniaxial compression[J]. Transcriptions of the USSR Academy of Science. Earth Sci. Sections, 1990, 313(4):6-10.
    [11] Dyskin A.V., Jewell R.J., Joer H, Sahouryeh E, Ustinov K.B. Experiments on 3-D crack grouth in uniaxial compression [J]. Int. J. Fracture. 1994, 65(4):77-83.
    [12] Dyskin A.V., Germanovieh L.N. et al. Study on 3-D mechanisms of crack growth and interaction in uniaxial compression [J]. ISRM News Journal. 1994, 2(1):17-24.
    [13] Dyskin A.V., Germanovich L. N. and Ustinov K. B.. Asymptotic analysis of crack interaction with free boundary [J], International Journal of Solids and Structures, 2000, 37(6):857-886.
    [14] Dyskin A. V.. Self-similar crack patterns induced by spatial stress fluctuations [J], Fatigue Fracture Engineering Magazine, 2002, 25(2):187-200.
    [15] Dyskin A. V.. Germanovich L. N. Fracture mechanisms and instability of openings in compression [J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(2):263-284.
    [16] 黄明利.脆性材料三维裂纹扩展贯通机制试验研究[D].中国科学院武汉岩土力学所博士后研究工作报告.2003.
    [17] 金丰年,钱七虎.岩石的单轴拉伸及其本构模型[J].岩土工程学报,1998,20(6):5-8.
    [18] 杨更社,孙钧.中国岩石力学的研究现状及其展望分析[J].西安公路交通大学学报,2001,21(3):5-9.
    [19] 张少华,赵海云.岩石抗拉强度试验方法及其特征[J].矿山压力及顶板管理,1994(3):68-71.
    [20] 张少华,缪协兴,赵海云等.试验方法对岩石抗拉强度测定的影响[J].中国矿业大学学报,1999,28(3):243-246.
    [21] 王金星,王灵敏,杨小林.对岩石拉伸试验方法的探讨[J].焦作工学院学报(自然科学版),2004,123(13):205-208.
    [22] Nova R. and Zaninetti A., An investigation into the tensile behavior of a schistose rock [J], Int. J. Rock Mech. Min. Sci., 27, 231-242(1990)
    [23] Okubo S. and Fukui K., Complete stress-strain curves for various rock types in uniaxial tension [J], Int. J. Rock Mech. Min. Sci., 1996, 33: 549-556.
    [24] Pells P.J.N., Uniaxial strength testing, Comprehensive Rock Engineering [M], Ed. J.A. Hudson, Pergamon Press, Oxford, 1993.
    [25] Peng S.S., A note on the fracture propagation and time-dependent behavior of rocks in uniaxiai tension [J], Int. J. Rock Mech. Min. Sci., 1975, 12: 125-127.
    [26] Van Mier J.G.M, Fracture process of concrete [M], CRC Press, New York, p.253. 1997.
    [27] Berthelot, J.M., and Robert, J.L. Damage evaluation of concrete test specimens related to failure analysis [J]. Journal of Engineering Mechanics, ASCE, 1990, 116(3): 587-604.
    [28] Otsuka, K., and Date, H. Fracture process zone in concrete tension specimen [J]. Engineering Fracture Mechanics, 2000, 65: 111-131.
    [29] Barton, N. & Choubey, V., Rock Mechanics. 1977, 10: 1-65.
    [30] Jaeger, J. C., Friction of rock and stability of rock slopes. Geotechnique [M]. 1971, 21: 97-134.
    [31] Carr, J. R. & Warriner, J. B., Rock mass classification using fraetal dimension [C], in 28th US Syrup. On Rock Mechanics, Tucson, 1987, 73-80..
    [32] Turk, N., et al., Characterization of rock joint surfaces by fractal dimension [C[, in 28th US Syrup. On Rock Mechanics, Tucson, 1987, 1223-1236.
    [33] Lee, Y. H.,et al., The fractal dimension as a measure of the roughness of rock discontinuity profies [J], Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1990, 27: 453-464.
    [34] 谢和平.分形—岩石力学导论[M].科学出版社,1997:129-186.
    [35] Mandelbrot, B. B., et al., Fractal character of fracture surfaces of metals [J]. Nature, 1984, 208: 721-723.
    [36] Pander, C. S., et al. Fractal characterization of fracture surface [J]. Acta Metal, 1987, 35(7):1633-1637.[37] Underwood, E. E. & Banerji, K., Invited review fractals in fractography [J], Material Sci. & Eng. 1986, 80: 1-14.
    [38] Nolen-Hoeksema, R.C. and Gordon, R. B., Optical detection of crack patterns in the opening-mode fracture of marble [J], Int. J. Rock Mech. Min. Sci., 1987, 24: 135-144.
    [39] 许江,李贺,鲜学福.对单轴应力状态下砂岩微观断裂发展全过程的试验研究[J].力学与实践.1986,4:16-21.
    [40] Guinea, G. V., Elices, M., and Planas, J. Assessment of the tensile strength through size effect curves [J]. Engineering Fracture Mechanics, 2000, 65: 189-207.
    [41] 周小平,张永兴,朱可善.单轴拉伸条件下岩石本构理论研究[J].岩土力学,2003,24(增刊):143—147.
    [42] Ba ant, Z. P.; Tabbara, M.R.; Kazemi, M.T.; and Pijaudier-Cabot, G. Random particle model for fracture of aggregate or fiber composites [J], Journal of Engineering Mechanics, ASCE, 1990, 116(8): 1686-1705.
    [43] 唐春安,朱万成.混凝土损伤与断裂——数值试验[M].科学出版社,2003.
    [44] 刘宝琛,张家生,杜齐中等.岩石抗压强度的尺寸效应[J].岩石力学与工程学报,1998,17(6):611—614.
    [45] 山口梅太郎.花岩强度试验试验片数[J].材料,1966,16(160):520—528.
    [46] 尤明庆,邹友峰.关于岩石非均质性与强度尺寸效应的讨论[J].岩石力学与工程学报,2000,19(3):391—395.
    [47] McCabe, W.M., Koerner, R.M., Lord, A.E. Acoustic emission behavior of concrete laboratory specimens [J]. ACI Journal, 1976, 367-371.
    [48] Ohtsu, M, Kaminaga, Y, and Munwam, M.C. Experimental and numerical crack analysis of mixed-mode failure in concrete by acoustic emission and boundary element method. [J]. Construction and Building Materials, 1999, 13: 57-64.
    [49] Landis, E.N. Micro-macro fracture relationship and acoustic emission in concrete [J]. Construction and Building Materials, 1999, 13(1-2):.65-72.
    [50] Hsu, N.N., Simmons, J.A., and Hardy, S.C. An approach to acoustic emission signal analysis [J]. Material Evaluation, 1977, 35: 100-106.
    [51] Ouyang, C.S., Eric, L., and Surendra, P.S. (1991). "Damage assessment in concrete using quantitative acoustic emission." Journal of Engineering Mechanics, ASCE, Vol.117, No.11, pp.2681-2698.
    [52] Suaris, W., Van Mier, J.G.M. (1995). "Acoustic emission source characterization in concrete under biaxial loading." Materials and Structures, Vol.28, pp.87-95.
    [53] Maji, A.K., Sahu, R. (1994). "Acoustic emissions from reinforced concrete." Experimental Mechanics, Vol.34, pp.379-388.
    [54] 吴智敏,徐世,王金来,刘毅.三点弯曲梁法研究砼双K断裂参数及其尺寸效应.水力发电学报.2000,4:16-24.
    [55] 张东,刘娟淯,陈兵,吴科如.关于三点弯曲法确定混凝土断裂能的分析[J].建筑材料学报,1999,2(3):206-211.
    [56] 张东.水泥基复合材料断裂模型及断裂行为的研究[D].上海:同济大学,1996。
    [57] 陈兵,张立新,刘娟育.混凝土梁三点弯曲负荷下声发射特性研究[J].无损检测,2000,22(3):109—118.
    [58] 黄志鹏,朱可善,郭映忠。重庆砂岩三点弯曲断裂及声发射试验研究[J].地下空间,1998,18(1):23—26.
    [59] Carpinteri, A. Valente, S., Ferrara, G. and Melchiorri, G. Is Mode Ⅱ fracture energy a real material properties [J]. Computers & Structures, 1993, 48(3): 397-413.
    [60] Bazant, Z.P., and Pfeiffer, P.A. Shear fracture tests of concrete. [J]. Materials and Structures, 1986, 19: 111-120.
    [61] Richard, H.A. A new compact shear specimen [J]. International Journal of Fracture, 1981, 17(5): 105-107.
    [62] Ingraffea, A.R., and Panthaki, M.J. Analysis of Shear Fracture Tests of Concrete Beams, Finite Element Analysis of Reinforced Concrete Structures, Meyer, C. and Okamura, H., ed., ASCE, 1986, New York, pp.151-152.
    [63] Schlangen, E., and Garboczi, E.J. New method for simulating fracture using an elastically uniform random geometry lattice. International Journal of Engineering Science, 1996, 34(10): 1131-1144.
    [64] Van Mier, J.G.M., and Van Vliet, M.R.A. Experimentation, Numerical Simulation and the Role of Engineering Judgement in the Fracture Mechanics of Concrete and Concrete Structures, Construction and Building Materials, 1999, 13: 3-14.
    [65] Van Mier. J.G.M. Fracture Processes of Concrete: Assessment of Material Parameters for Fracture Models. CRC Press, 1997, Inc, Boca Raton, Florida, U.S., pp. 3-5.
    [66] 郝圣旺,李慧剑,黎振兹,周洪彬,赵庆新.紧凑四点剪切砼Ⅱ型断裂实验研究与数值分析[J].工程??力学,2003,20(2):138-141.
    [67] Jeng, Y.S., and Shah, S.P. Mixed-mode fracture of concrete. Engineering Fracture Mechanics, 1988, 38: 123-142.
    [68] Xeidakis, G.S., Samaras, I.S., Zacharopoulos, D.A., and Papakaliatakis, G.E. (1997). "Trajectories of unstably growing cracks in mixed mode Ⅰ-Ⅱ loading of marble beam." Rock Mechanics and Rock Engineering, Vol.30, pp.19-33.
    [69] Galvez, J., Elices, M., Guinea, G.V., and Planas, J. (1996). "Crack trajectories under mixed mode and non-proportional loading." International Journal of Fracture, Vol.81, pp.171-193.
    [70] 黎立云,黎振兹,孙宗颀.岩石的复合型断裂实验及其分析,岩石力学与工程学报,1994,Vol.13,No.2,pp.134-140.
    [71] 徐平,夏熙伦.花岗岩Ⅰ—Ⅱ复合型断裂试验及断裂数值分析,岩石力学与工程学报,1996,Vol.15,No.1,pp.62~70.
    [72] 黄建安,王思敬.岩石断裂韧度的实验研究.岩土工程学报,1982,4(2):67—75.[1] 李蔚泽.Redhat Linux7.2系统管理[M].北京:清华大学出版社,2002.
    [2] 周树荃,梁维泰,郑绍忠.有限元结构分析并行计算[M].北京:科学出版社,1999.
    [3] 刘绍鹏.并行有限元程序自动生成系统及其应用[D].中国科学院研究生院博士学位论文.北京,2004.
    [4] 张永彬,唐春安,张怀,梁正召,马天辉.岩石破裂过程分析RFPA系统中的应力并行求解[J1.岩石力学与工程学报,2006,(1)(待发中).
    [5] 郁志辉.高性能计算之并行编程技术——MPI并行程序设计[M].北京:清华大学出版社,2001.
    [6] Lajtai, E.Z. and Lajtai,V.N., The collapse of cavities, Int. J. Rock. Mech. Min. Sci and Geomech. Abstr. 12, 81-86, 1975
    [7] Lajtai, E.Z., Shear strength of weakness planes in rock, Int. J. Rock Mech. Min. Sci., 6, 499-515, 1969
    [8] Kobayashi, A. S., Johnson B.& Wade B.G., Crack approaching a hole, In Proc. 1973 Nat'1. Symp. Fracture Mech. Part 2, ASTMSTP 560, 53-68, 1974.
    [9] Robert, L. K., Crack-crack and crack-pore interactions in stressed granite [J], Int.J.Rock Mech.Min.Sci. & Geomech. Abstr., 16, 37-47, 1979.
    [10] Ashby, M.F. and Sammis, C.G., The damage mechanics of brittle solids in compression [J, Damage mechanics of brittle solids, 133, 489-521, 1990.
    [11] Rice, J.R. and Tracey, D.M., On the ductile enlargement of voids in triaxial stress fields [J, J.Mech. Phys.??Solids, 17, 201-217, 1969.
    [12] McClintock, F.A., Walsh, J.B., Friction on Griffth cracks in rocks under pressure [J, Fourth U.S. Nat.Congr. Appl. Mech.1015-1021, 1961.
    [13] Tvergaard, V., Material failure by void growth to coalescence, The Danish center for applied mathematics and mechanics, Report No. S45, The technical university of denmark,1988Bai T., David D. Pollard. Fracture spacing in layered rocks: a new explanation based on the stress transition [J]. Journal of Structure Geology, Vol.22(2000):43-57.
    [14] 林鹏.含孔洞缺陷岩石破裂过程的物理与数值试验研究[D].东北大学博士论文,沈阳,2002.
    [15] Bai, T., Pollard, D. D., and Gao H. Explanation for fracture spacing in layered materials [J]. Nature, Vol.403(2000): 753-756.
    [16] Chang X, Tang C.A. et al., Numerical approach to fracture spacing in two layer material [C], Asian Pacific Conference for Fracture and Strength 2004, South Korea
    [17] Gross M. R. The origin and spacing of cross joints: examples from Monterey Formation, Santa Barbara Coastline, and California [J]. Journal of Structural Geology, 15(1993): 737-751.
    [18] Hobbs D.W., The formation of tension joints in sedimentary rocks: an explanation [J]. Geological Magazine. Vol.104(1967): 550-556.
    [19] Helgeson D.E., Aydin A. Characteristics of joint propagation across layer interfaces in sedimentary rocks [J]. Journal of Structural Geology, Vol.13(1991):897-911.
    [20] Huang Q. and Angelier J. Fracture spacing and its relation to bed thickness [J]. Geological Magazine, Vol.126(1989):355-362.
    [21] Ji S.C. and Saruwatari K. A revised model for the relationship between joint spacing and layer thickness [J]. Journal of Structural Geology, Vol.20(1998): 1495-1508
    [22] Ladeira F.L. and Price N.J. Relationship between fracture spacing and bed thickness [J]. Journal of Structural Geology, Vol.3(1981): 179-183.
    [23] Liang Z. Z., Tang C. A., and Zhang Y. B., 3D modeling of brittle fracture in heterogeneous rocks [J], The International Conference on Computational Methods, 2004, Singapore.
    [24] Mc Q. Small-scale fracture density in Asmari Formation of southwest Iron and its relation to bed thickness and structural setting [J]. American Association of Petroleum Geologists Bulletin, Vol.57(1973), 2367-2385.
    [25] Nahta and Moran, Crack spacing in brittle films on dissimilar planar and axisymmetric elastic substrates [J], Engineering Fracture Mechanics, Vol.52(1995): 513-524
    [26] Narr W. and Suppe J. Joint spacing in sedimentary rocks. Journal of Structural Geology [J], Vol.13 (1991): 1037-1048.
    [27] Tang C.A. et al., Numerical modeling of the influence of heterogeneity on 3D polygonal fracture in layered materials. Failure Mechanics Letters (www.rfpa.cn/fml), Vol.1(2005):1-2
    [28] Wang K.L, Cassidy J., et al., Effects of metamorphic crustal densification on earthquake size in warm slabs [J]. Geophysical Research Letters, Vol.31(2004), L01605, 1-4
    [29] Wu H.Q. and Pollard D.D., An experimental study of the relationship between joint spacing and layer thickness [J]. Journal of Structural Geology, Vol.17(1995): 887-905.
    [30] Kelly A. Shorlin, John R. De Bryun. Development and geometry of isotropic and directional shrinkage crack pattern. Phys. Rev. 2000, 3.
    [31] T. Hornig, I. M. Sokolov, and A. Blumen. Patterns and scaling in surface fragmentation processes. PHYSICAL REVIEW E, 1996, 54(4): 4293-4298.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700