用户名: 密码: 验证码:
光伏发电系统运行理论与关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界经济的不断发展、人口数量的不断增加,我们对能源的需求急剧增加,而化石能源的日益匮乏,以及不断恶化的环境问题,使得人们将目光转向了可再生能源技术。太阳能作为可再生能源中的一种,具有资源无限、无污染及可持续性等优点,发展潜力巨大。由于太阳光照的不稳定性以及太阳能光伏电站发电功率的不断增大,在系统的运行过程中,存在最大功率点跟踪、功率预测、光伏组件温度预测以及故障定位等一些实际问题。论文针对上述问题展开研究,主要内容包括如下五个方面:
     首先,论文对江苏省徐州地区的太阳能光照强度,以及光伏发电站的发电量进行了统计和分析。基于江苏艾德太阳能科技有限公司提供的光伏电站运转过程中的历史数据,对各月份的光照强度、温度变化以及光伏电站的发电规律进行了统计,给出了相应的图表,为徐州地区光伏电站的兴建和运行提供了数据支持。进一步分析了光伏系统运行过程中组件温度与环境温度的差别、光伏系统运行过程中输出功率的变化等,为本论文所针对的光伏发电系统运行中关键问题的解决奠定了基础。
     进而,针对光伏发电系统最大功率点跟踪问题进行了研究,提出了一种融入免疫优化算法具有自搜索最大功率点功能的光伏电池建模方法,对于给定的光照强度和给定的温度,此模型可以快速计算其相应的最大功率点,为后续最大功率点算法的验证提供了模型基础。在分析和研究了现有各种最大功率点算法优缺点的基础上,结合恒压法在最大功率点处无功率振荡以及扰动观测法使用方便的优点,提出了一种将恒压法和扰动观测法相结合的光伏发电系统最大功率点跟踪的算法,以光伏系统最大功率点工作时的近似电压和光伏发电系统当时的工作电压作为扰动步长变化的依据,解决了原有扰动观测法跟踪速度和功率振荡之间的矛盾,也解决了恒压法不是真正意义上的最大功率点跟踪算法的问题,仿真和实验都验证了所提方法的有效性。
     针对太阳光照强度变化的不可预知性导致的光伏阵列输出功率难预测性,提出了利用相似日和加权支持向量机对光伏电站输出功率进行短期预测的方法,给出了相似日的选择方法,并根据相似度确定加权支持向量机的权重系数;利用历史记录中与待预测日相似度比较高的历史日数据,对加权支持向量机进行训练;解决了光伏电站在发电过程中输出功率的不确定性,实现了对光伏电站输出功率的预测。通过与基于人工神经网络的功率预测算法进行对比,说明了所提算法的有效性。
     针对在最大功率点跟踪等关键问题中,简单采用环境温度代替光伏组件温度存在的不足,考虑温度变化存在的不确定性,提出了采用高斯模型对光伏发电系统中光伏阵列组件温度进行建模及预测的方法,建立了光伏组件温度与光伏阵列输出功率以及环境温度之间的仿真模型。将所提算法应用于实际系统中,通过与神经网络预测结果进行了对比分析,在考虑不同训练样本选择机制的情况下,通过对预测误差进行分析发现,采用高斯模型对光伏阵列组件温度预测,效果较好;在光伏阵列组件温度预测的过程中,高斯模型对小样本数据具有很好的预测效果,预测误差较小。
     针对光伏阵列运行过程中可能存在的故障问题,特别是其小样本特性,提出了将高斯分回归算法用于光伏阵列故障定位的方法。首先,结合光伏阵列传感器最优布置方式,采用二进制码表示光伏阵列工作状态;然后,构建了基于整数回归的故障定位模型,对光伏系统的故障进行定位。将所提算法应用于实际系统中,并与常用的神经网络算法进行对比,仿真结果表明本算法具有较高的定位准确度,验证了所提方法的有效性。
With the succesive development of the world economy and the increase of thepopulation size, the demand on energy is fast growing. The fossil fuels, however,isnow scaring daily, which will further worsen the environment. To deal with suchproblems, the renewable energy technologies have been attached more attentions inrecent years. The solar energy, one of the renewable energy resources, has greatdevelopment potential because it is a kind of unlimited resource, non-polluting andsustainable. Due to the instability of the sun light and the continues increase of powergeneration, there are some operational problems in the running process of aphotovoltaic system, such as the maximum power point tracking, power prediction,PV module temperature prediction and fault localization. These problems will befocused on in this thesis and the following five contents are studied.
     First, the solar light intensity and generating capacity of photovoltaic powerstations in Xuzhou, Jiangsu Province were counted and analyzed. Based on theobtained historical data of the photovoltaic power plant provided by Ed Solar EnergyTechnology Co., Ltd in Jiangsu, we thoroughly studied the monthly light intensity,temperature changes and the generation law of the photovoltaic power plant, and alsogave the corresponding charts and analytical results. These results provide somesupport on data for the building and operation of photovoltaic power plants in Xuzhouarea. The differences between the components temperature and the ambient one arefurther addressed. The corresponding results are expected to be bases of the followingstudies of those important problems existing in the running process of a photovoltaicsystem.
     In order to more accurately tracking the maximum power point of a photovoltaicsystem, an immune genetic algorithm based simulation model which can search itsmaximum power point is established here. For a given light intensity and temperature,the theoretical maximum power point of the current condition can be quicklycalculated with the simulation model, which can be adopted as a reference forvalidating the subsequent maximum power point tracking algorithm. Then, bycombining the advantages of constant voltage method and disturbance observermethod, we propose a novel maximum power point tracking algorithm. According tothe approximate voltage of maximum power point and photovoltaic system operatingvoltage, the disturbance steps are changed, which can well solve the contradiction of the tracking speed and the power oscillation of original disturbance observer method.Meanwhile, the problem of constant voltage method that the tracked maximum powerpoint may not a true one can also be refrained from. The effectiveness of the proposedmethod is experimentally validated.
     The output power of PV arrays is difficult to be predicted due to unpredictablechanges in sun light intensity. To solve this problem, the method of short-termforecasts of the output power is here addressed by introducing weighted supportvector machine and similar days. The weights of the training data for training thepredictive model are determined according to the similar degree of the selectedsimilar days. To demonstrate the performance of the proposed algorithm, we appliedthe obtained data to experimentally validate it. The effectiveness of our algorithm isillustrated and it outperforms the often used neural network in high predictionaccuracy with small number of training data.
     In existing research involving component temperature, its value is oftensubstituted with the ambient temperature for simplicity. But the two temperatures arequite different, which will greatly influence the accuracy of simulation and maximumpower point tracking in the constant voltage method. To solve these problems, wehere first focused on the prediction of the PV array components temperature by use ofGaussian Process. The prediction model based on Gaussian Process is constructedwith a set of samples. To sufficiently illustrate the performance of the algorithm,different sizes of samples are considered in the simulations. The results comparedwith the neural network based algorithm show that our method by use of GaussianProcess has a better prediction to a small sample of data.
     During the running process of a photovoltaic system, faults often occur atdifferent time and places, which will inevitably impact the output power of the system.Therefore, the accurate and reliable localization of the faults are very important. Tothis end, a fault localization method using Gaussian Process is then given here.According to the placement of the voltage and current sensors, the fault modesexpreesed by binary numbers are converted into integers and the Gaussian Process isconstructed to approximate these integers. With newly measured voltages and currents,the corresponding integer values of the system can be easily calculated and thecorresponding operating models can be obtained. A plenty of experiments e.g.,different fault modes, are conducted to validate the effectiveness of the algorithm, andthe results demonstrate that the proposed algorithm has a higher localization accuracy than the neural network one.
引文
[1]赵争鸣,刘建政,孙晓瑛,等.太阳能光伏发电及其应用[M].北京:科学出版社,2005.
    [2]惠晶,颜文旭,石晨曦.新能源转换与控制技术[M].北京:机械工业出版社,2008.
    [3]申彦波.近20年卫星遥感资料在我国太阳能资源评估中的应用综述[J].气象,2010,36(9):111-115.
    [4]卢晓平,魏光普,张文毓.太阳能动力船舶发展综述[J].海军工程大学学报,2008,20(4):45-50.
    [5]财政部,发展改革委,能源局.可再生能源电价附加补助资金管理暂行办法.2012.3.
    [6]赵晶,赵争鸣,周德佳.太阳能光伏发电技术现状及其发展[J].电气应用,2007,26(10):6-10.
    [7]狄丹.太阳能光伏发电是理想的可再生能源[J].华中电力,2008,21(5):59-62.
    [8]蔡洪彬.建筑设计的生态效益观研究[D].黑龙江:哈尔滨工业大学,2011.
    [9]张玮,杨景发,闫其庚.硅光电池特性的实验研究[J].实验技术与管理,2009,26(9):42-46.
    [10]杨紫光,叶芳,郭航,马重芳.航天电源技术研究进展[J].2011,31(6):1231-1237.
    [11]中国知网. Fraunhofer研究所的“n型”单晶硅太阳能电池效率达到23.4%.光机电信息2009(6):34.
    [13] Lior N.. Power from space[J]. Energy Conversion and Managemen,2001,42(15-17):1769-1805.
    [13]李国欣.航天器电源系统技术概论[M].北京:中国宇航出版社,2008.
    [14]张忠卫,陆剑峰,池卫英,等.砷化镓太阳电池技术的进展与前景[J].上海航天,2003(3):33-38.
    [15]崔容强,喜文华,魏一康,张兰英.太阳光伏发电[J].中国建设动态(阳光能源),2004(2):72-76.
    [16]李雷.我国光伏产业发展现状简析之一[J].阳光能源,2009(6):36-39.
    [17]张逊宝,吴庆辉,宁传科.我国太阳能建筑应用发展现状及发展方向探讨[J].节能,2012(3):15-18.
    [18]中华人民共和国国家发展与改革委员会.可再生能源中长期发展规划.2007.9.
    [19]李雷,杨春.我国光伏产业现状与可持续发展策略研究[J].中外能源,2012(4):28-37.
    [20]姜茜.太阳能发电的发展与展望[J].东方电机,2002(2):183-191.
    [21]国内可再生能源新闻.太阳能,2007(3):53-54.
    [22]光伏发电、激光投影电视在北京奥运会广泛应用.光机电信息,2008(8):54.
    [23]吴理博,赵争鸣,刘建政,等.独立光伏照明系统中的能量管理控制[J].中国电机工程学报,2005,25(22):68-72.
    [24]马一鸣.太阳能光伏发电的应用技术[J].沈阳工程学院学报(自然科学版),2008,4(4):301-305.
    [25] Duryea S., Islam S., Lawrance W.. A battery management system for stand-alone photovoltaicenergy systems[J]. IEEE Industry Applications Magazine,2001,7(1):67-72.
    [26] Salas V., Manzanas M.J., Lazaro A., et al. The control strategies for photovoltaic regulatorsapplied to stand-alone systems[C]. The28th Annual Conference of the IEEE IndustrialElectronics Society, Madrid, Spain,2002:3274-3279.
    [27] Kobayashi K., Matsuo H., Sekine Y.. An excellent operating point tracker of the solar-cellpower supply system[J].IEEE Trans. on Industrial Electronics,2006,53(2):495-499.
    [28]张超,何湘宁.短路电流结合扰动观察法在光伏发电最大功率点跟踪控制中的应用[J].中国电机工程学报,2006,26(20):98-102.
    [29]王飞.单相光伏并网系统的分析与研究[D].合肥:合肥工业大学,2005.
    [30] Zhang L., Sun K., Xing Y.. A modular grid-connected photovoltaic generation system basedon dc bus[J]. IEEE Transactions on power electronics,2011,26(2):523-531.
    [31]雷珽,艾芊.光伏并网策略及应用研究[J].电压电气,2010(2):21-26.
    [32] Koizumi H., Mizuno T., Kaito T., et al. A novel microcontroller for grid-connectedphotovoltaic systems[J]. IEEE Transactions on industrial electronics,2006,53(6):1889-1897.
    [33] Kjaer S.B., Pedersen J.K., Blaabjerg F.. A review of single-phase grid-connected inverters forphotovoltaic modules[J]. IEEE Transactions on Industry Applications,2005,41(5):1292-1306.
    [34] Li Q., Wolfs P.. A review of the single phase photovoltaic module integrated convertertopologies with three different dc link configurations[J]. IEEE Transactions on powerelectronics,2008,23(3):1320-1333.
    [35] Kwon J.M., Kwon B.H., Nam K. H.. High-efficiency module-integrated photovoltaic powerconditioning system[J]. IET Power Electronics,2009,2(4):410–420.
    [36] Rodriguez C., Amaratunga G.A.J.. Long-life time power inverter for photovoltaic ACmodules[J]. IEEE Transactions on industrial electronics,2008,55(7):2593-2601.
    [37]杨滔,吕征宇.三相光伏系统中一种新的最大功率点追踪方法[J].浙江大学学报(工学版),2012,46(8):1490-1497.
    [38]刘军,张成林.光伏发电系统最大功率点跟踪算法的研究[J].青岛科技大学学报(自然科学版),2012,33(1):78-81.
    [39]罗隆福,李鑫,李芬芬.光伏系统最大功率点跟踪算法的改进及应用[J].电力电子技术,2011,45(4):1-3.
    [40]陈剑,赵争鸣,袁立强,查澜曦.光伏系统最大功率点跟踪技术的比较[J].清华大学学报(自然科学版),2010,50(5):700-704.
    [41]余世杰,何慧若,曹仁贤,等.光伏水泵系统中CVT及MPPT的控制比较[J].太阳能学报,1998,19(4):394-398.
    [42] EI-Shibini M.A., Rakha H.H. Maximum power point tracking technique[C]. IntegratingResearch, Industry and Education in Energy and Communication Engineering:MELECON’89, Lisbon, Portugal,1989:21-24.
    [43] Hart G.W., Branz H.M., Cox C.H.. Experimental tests of open-loop maximum-power-pointtracking techniques for photovoltaic arrays[J]. Solar Cells,1984,13(2):913-917.
    [44] Ito M., Kato K., Komoto K.. An analysis of variation of very large-scale PV systems in theworld deserts[C]. Proceedings of3rd World Conference on Photovoltaic Energy Conversion,Osaka, Japan,2003:2809-2814.
    [45] Masoum M.A., Dehbonei H., Fuchs E.F.. Theoretical and experimental analyses ofphotovoltaic systems with voltage and current–based maximum power-point tracking[J].IEEE Transactions on Energy Conversion,2002,17(4):514-522.
    [46]傅诚,陈鸣,沈玉樑,等.基于输出参数的光伏电池最大功率点控制[J].电工技术学报,2007,22(2):1482152.
    [47] Kitano T., Matsui M., Xu D.H.. Power sensor-less MPPT control scheme utilizing powerbalance at DC link-system design to ensure stability and response[C]. The27th AnnualConference of the IEEE Industrial Electronics Society, Piscataway, USA,2001:1309-1314.
    [48] Matsui M., Kitano T., Xu D.H.. A simple maximum photovoltaic power tracking techniqueutilizing system in herent limit cycle phenomena[C]. The38th IAS Annual MeetingConference Record of the Industry Applications Conference. Salt LakeCity, USA,2003:2041-2047.
    [49] Andersen M., Alvsten T.B..200W low cost module integrated utility interface for modularphotovoltaic energy systems[C]. Proceedings of the1995IEEE IECON21st InternationalConference on Industrial Electronics, Control and Instrumentation, Orlando, USA,1995:572-577.
    [50] Abu Tariq, Jamil Asghar M.S.. Development of microcontroller-based maximum power-pointtracker for a photovoltaic panel[C]. IEEE Power India Conference, NewDelhi, India,2006:514-512.
    [51] Femia N., Petrone G., Spagnuolo G., et al. Optimization of perturb and observe maximumpower point tracking method[J]. IEEE Transactions on Power Electronics,2005,20(4):963-973.
    [52] Altas I.H., Sharaf A.M.. A novel on-line MPP searchal gorithm for PV arrays[J]. IEEETransactions on Energy Conversion,1996,11(4):748-754.
    [53] CheeWei Tan, Green T.C., Hernandez-Aramburo C.A.. An improved maximum power pointtracking algorithm with current-mode control for photovoltaic applications[C]. InternationalConference on Power Electronics and Drives Systems, Kuala Lumpur, Malaysia,2005:489-494.
    [54] Femia N., Petrone G., Spagnuolo G., et al. Optimizing duty-cy-cle perturbation of P&OMPPT technique[C]. IEEE35th Annual Power Electronics Specialists Conference, Aachen,Germany,2004:1939-1944.
    [55] Femia N., Petrone G., Spagnuolo G., et al. Optimizing sampling rate of P&O MPPTtechnique[C]. IEEE35th Annual Power Electronics Specialists Conference, Aachen,Germany,2004:1945-1949.
    [56] Yusof Y., Sayuti S.H., Abdul Latif M., et al. Modeling and simulation of maximum powerpoint tracker for photovoltaic system[C]. Proceedings of National Power and EnergyConference. KualaLumpur, Malaysia,2004:88-93.
    [57] Hussein K.H., MutaI Hoshino T., Osakada M.. Maximum photovoltaic power tracking: analgorithm for rapidly changing atmosphereic conditions[J]. IEE Proceedings Generation,Transmission and Distribution,1995,142(1):59-64.
    [58] Harada K., Zhao G.. Controlled power interface between solar cells and AC source[J]. IEEETransactions on Power Electronics,1993,8(4):654-662.
    [59] Esram T., Kimball J.W., Krein P.T., et al. Dynamic maximum power point tracking ofphotovoltaic arrays using ripple correlation control[J]. IEEE Transactions on PowerElectronics,2006,21(5):1282-1291.
    [60] Wilamowski B.M., Li X.L.. Fuzzy system based maximum power point tracking for PVsystem[C]. IEEE Conference of the Industrial Electronics Society, Sevilla, Spain,2002:3280-3284.
    [61]刘永军.自适应模糊算法在光伏系统MPPT中的应用[J].太阳能学报,2008,29(6):657-661.
    [62] Mahmoud A.M.A., Mashaly H.M., Kandil S.A., EI Khashab H., Nashed M.N.F.. Fuzzylogic implementation for photovoltaic maximum power tracking[J]. Proceedings of the2000IEEE International Workshop on Robot and Human Interactive Communication,2000:735-740.
    [63] Hiyama T., Kouzuma S., Imakubo T., Ortmeyer, T.H.. Evaluation of neural network basedreal time maximum power tracking controller for PV system[J]. IEEE Transactions onEnergy Conversion,1995,10(3):543-548.
    [64]陈昌松.基于神经网络的光伏阵列发电预测模型的设计[J].电工技术学报,2009,24(9):153-158.
    [65] Mashaly H.M., Sharaf A.M., Mansour M., El-Sattar A.A.. A photovoltaic maximum powertracking using neural networks[J]. Proceedings of the Third IEEE Conference on ControlApplications,1994,1(1):167-172.
    [66]崔岩,王丽霞.基于神经网络应用的光伏阵列最大功率点跟踪[J].系统仿真技术,2009,5(4):241-246.
    [67]苏海滨,卞晶晶,刘强,卜自珍.基于神经网络的光伏发电最大功率点跟踪算法[J].华北水利水电学院学报,2010,31(6):80-83.
    [68]史志扬,徐瑞东. SMVSC-PI最大功率跟踪策略在光伏系统中的应用.工矿自动化,2010(4):55-58.
    [69]张淼.滑模技术在PV最大功率追踪系统中的应用[J].电工技术学报,2005,20(3):90-93.
    [70]刘建光,方宇,王志彬,等.滑模控制在PV扰动法最大功率跟踪中的应用[J].电源学报,2012(1):90-93.
    [71]周峰,夏向阳,龚芬.一种改进准滑模控制在最大功率跟踪系统中的研究[J].电气开关,2011(6):62-64.
    [72]王飞,赵慧.基于滑模变结构理论太阳能最大功率跟踪研究[J].电测与仪表,2009,42(522):43-46.
    [73]李春来,朱慧敏,景满德,张杰.并网型光伏电站功率预测方法探讨[J].电工技术,2010(12):27-28
    [74] Mellit A., Arab A.H., Khorissi N., et al. An ANFIS-based forecasting for Solar radiation datafrom sunshine duration and ambient temperature[C]. IEEE Power Engineering SocietyGeneral Meeting, Tampa,2007:1-6.
    [75]程序,周海,王知嘉,丁宇宇.晴空工况光伏超短期功率预报方法[J].可再生能源,2011,29(6):142-145.
    [76]程序,周海,崔方,丁杰.大容量并网型光伏电站功率预测预报系统设计[J].水电自动化和大坝监测,2011,35(5):1-4.
    [77]李光明,廖华,李景天,赵恒利,黄波,何京鸿.并网光伏发电系统发电量预测方法的探讨[J].云南师范大学学报,2011,31(2):33-38.
    [78]粟然,李广敏.基于支持向量机回归的光伏发电出力预测[J].中国电力,2008,41(2):74-78.
    [79]朱永强,田军.最小二乘支持向量机在光伏功率预测中的应用[J].电网技术,2011,35(7):54-59.
    [80]兰华,廖志民,赵阳.基于ARMA模型的光伏电站出力预测[J].电测与仪表,2011,48(2):31-35.
    [81]朱晓荣,刘艳萍.基于稳健估计时间序列法的风功率预测[J].电力系统及其自动化学报,2012,24(3):107-110.
    [82]冬雷,王丽婕,高爽,廖晓钟.基于混沌时间序列的大型风电场发电功率预测建模与研究[J].电工技术学报,2008,23(12):125-129.
    [83]张岚,张艳霞,郭嫦敏,赵杰.基于神经网络的光伏系统发电功率预测[J].中国电力,2010,43(9):75-78.
    [84] Yona A., Senjyu T., Funabashi T.. Application of recurrent neural network to short-term-aheadgenerating power forecasting for photovoltaic system[C]. IEEE Power Engineering SocietyGeneral Meeting, Tampa,2007:1-6.
    [85] Sera D., Teodorescu R., Hantschel J., et al. Optimized maximum power point tracker forfast-changing environmental conditions[J]. IEEE Transactions on Industrial Electronics,2008,55(7):2629-2637.
    [86]刘敬,高志建.应用神经网络法预测光伏系统发电功率[J].大功率变流技术,2010(3):28-32.
    [87]姜侨娜,陈中. BP-马尔科夫组合预测方法在光伏发电量预测中的应用[J].电力需求侧管理,2011,13(6):21-24.
    [88]张礼平,丁一汇,李清泉,等.遗传神经网络释用气候模式预测产品的实验研究[J].气候与环境研究,2008,13(5):681-687.
    [89]张艳霞,赵杰.基于反馈型神经网络的光伏系统发电功率预测[J].电力系统保护与控制,2011,39(15):96–101.
    [90]陈昌松,段善旭,蔡涛,代倩.基于模糊识别的光伏发电短期预测系统[J].电工技术学报,2011,26(7):83-89.
    [91]曹双华,曹家枞.太阳逐时总辐射混沌优化神经网络预测模型研究[J].太阳能学报,2006,27(2):164-169.
    [92]王建军.太阳能光伏发电应用中的温度影响[J].青海师范大学学报,2005(1):28-30.
    [93] Meneses-Rodrguez D., Horley P. P., Jes_us Gonz_alez-Hern_andez, Vorobiev Y. V., GorleyP.N.. Photovoltaic solar cells performance at elevated temperatures[J]. Solar Energy,2005(78):243-250.
    [94] Yukawa M. et al., Estimation of photovoltaic module temperature rise[J]. IEEJ Trans. PE,1996,116(9):1101-1109.
    [95] Nishikawa S., Characteristics of PV Cell Temperature and Cooling Effect on A Stand-OffType PV Array[J]. Journal of JSES,1997,23,(1):52-59.
    [96] Akaki et al., Research about the influence of solar cell temperature in the prediction methodof photovoltaic system power generation. AIJ Kinki affiliate research report,2001:l-4.
    [97] King D. L. Kratochvil J.A., Boyson W.E.. Temperature Coefficients for PV modules andarrays: Measurement methods, difficulties, and results[C].26th IEEE Photovoltaic SpecialistsConference,1997:1183-1186.
    [98] A. D. Jones el al., A Thermal Model for Photovoltaic Systems[J], Solar Energy,2001,70(4):349-359.
    [99] Matsukawa H., Kurokawa, K.. Temperature fluctuation analysis of photovoltaic modules atshort time interval[C]. Proceedings of JSES/JWEA Joint Conference, Japan,2004:153-156.
    [100]杨维翰,王培珍,周雷.太阳能光伏阵列故障诊断的研究[J],安徽工业大学学报.2003,20(4):345-348.
    [101]钟丹.基于复合信息融合技术的光伏阵列故障诊断研究[D].天津:天津大学,2012.
    [102]胡义华,陈昊,徐瑞东.基于电压扫描的光伏阵列故障诊断策略[J],电机工程学报.2011,30(增刊):185-191.
    [103]王培珍,郑诗程.基于红外图像的太阳能光伏阵列故障分析[J].太阳能学报,2010,31(2):197-202.
    [104]王培珍,沈玉樑,杨维翰.太阳能光伏阵列的温度与红外特性分析[J].太阳能学报,2005,26(1):82-85.
    [105]兰琴丽,章乐多. BP神经网络在光伏发电系统故障诊断中的应用[J].通信电源技术,2011,28(4):38-40.
    [106]王培珍,王群京,杨维翰.太阳能光伏阵列的红外特性研究[J].合肥工业大学学报(自然科学版),2007,27(7):769-773.
    [107] Schirone L., Califano F.P., Moschella U. et al.Fault finding in a1MW photovoltaic plant byreflectometry[C]. IEEE Photovoltaic Specialists Conference.Hawaii,1994:846-849.
    [108] Chao K.H., Ho S.H., Wang M.H.. Modeling and fault diagnosis of a photovoltaicsystem[J]. Electric Power Systems Research,2008,78(1):97-105.
    [109] Gautam N.K., Kaushika N.D.. Reliability evaluation of solar photovoltaic arrays[J]. SolarEnergy,2002,72(2):129-141.
    [110] Takashima T., Yamaguchi J.. Experimental studies of failure detection methods in PVmodule strings[C].2006IEEE4th World Conference on Photovoltaic Energy Conversion.Waikoloa,2006:2227-2230.
    [111] Patel H., Agarwal V.. MATLAB-based modeling to study the effects of partial shading onPV array characteristics[J]. IEEE Transactions on Energy Conversion,2008,23(1):302-310.
    [112] Velasco-Quesada G., Guinjoan-Gispert F., Piqué-López R., et al. Electrical PV arrayreconfiguration strategy for energy extraction improvement in grid-connected PVsystems[J]. IEEE Transactions on Industrial Electronics,2009,56(11):4319-4331.
    [113] Drews A., Keizer A.C., Beyer H.G.. Monitoring and remote failure detection ofgrid-connected PV systems based on satellite observations[J]. Solar Energy,2007(81):548-564.
    [114] Chouder A., Silvestre S.. Automatic supervision and fault detection of PV systems based onpower losses analysis [J]. Energy Conversion and Management,2010(51):1929-1937.
    [115] Yagi Y., Kishi H., Hagihara R., et al. Diagnostic technology and an expert system forphotovoltaic systems using the learning method[J].Solar Energy Materials&Solar Cells,2003(75):655-663.
    [116]胡义华,陈昊,徐瑞东,李瑞.基于最优传感器配置的光伏阵列故障诊断[J].电机工程学报.2011,31(33):19-31.
    [117]胥义,刘道平.徐州地区的太阳能资源利用前景分析.能源研究与利用,2011(4):18-20.
    [118] Hohm D.P., Ropp M. E.. Comparative Study of maximum power point tracking algorithmsusing an experimental programmable, maximum power point tracking test bed. IEEE28thPhotovoltaic Specialists Conference, Anchorage, AK,2000:1699-1792.
    [119]孙宁.人工免疫优化算法及其应用研究[D],黑龙江:哈尔滨工业大学.2006.
    [120] Liu Z.H., Zhang Y.J., Zhang J., Wu J.H.: A Novel binary-state immune particle swarmoptimization algorithm[J]. Control Theory&Applications,2011,28(1):65-75.
    [121] Hu F.X., Guo H.J., Sun Y.F.. Research on immune algorithm theory and its application[J].Computer&Digital Engineering,2009,37(7):46-49.
    [122] Wang Q., Lv W., Ren W.J.. Immune genetic algorithm and applications in optimization[J].Application Research of Computers.2009,26(12):4428-4431.
    [123]蔡自兴.智能控制导论[M].北京:中国水利水电出版社.2007
    [124]蔡自兴.智能控制原理与应用[M].北京:清华大学出版社.2007
    [125]吴海涛,孔娟,夏东伟.基于MATLAB/Simulink的光伏电池建模与仿真[J].青岛大学学报(工程技术版),2006,21(4):74-77.
    [126]茆美琴,余世杰,苏建徽.带有MPPT功能的光伏阵列Matlab通用仿真模型[J].系统仿真学报,2005,17(5):1248-1251.
    [127]傅望,周林,郭珂,等.光伏电池工程用数学模型研究[J].电工技术学报,2011,26(10):211-216.
    [128]徐鹏威,刘飞,刘邦银,等.几种光伏系统MPPT方法的分析比较及改进[J].电力电子技术,2007,41(5):3-6.
    [129]张超,何湘宁.短路电流结合扰动观察法在光伏发电最大功率点跟踪控制中的应用[J].中国电机工程学报,2006,26(20):98-102.
    [130] TaeYeop K., HoGyun A., EungKyu P., et al. A Novel Maximum Power Point TrackingControl for Photovoltaic Power System under Rapidly Changing Solar Radiation[C]. Proc.IEEE Conference International Symposium on Industrial Electronics, Pusan,2001:1011-1014.
    [131] Huang Y.J., LIN D.H.. A New Method for Optimal Output of a Solar Cell Array[C]. Proc.IEEE Conf. International Symposium on Industria Electronics, Xi'an,1992:456-459.
    [132] Yona A., Senjyu T., Saber A.Y., Funabashi T., Sekine H., Chul-Hwan K.. Application ofneural network to24-hour-ahead generating power forecasting for PV system. Power andEnergy Society General Meeting-Conversion and Delivery of Electrical Energy in the21stCentury, Pittsburgh, PA,2008:1-6.
    [133] Cai T., Duan S.X., Chen C.S.. Forecasting power output for grid-connected photovoltaicpower system without using solar radiation measurement. The2nd IEEE InternationalSymposium on Power Electronics for Distributed Generation Systems, Hefei, China,2010:773-777.
    [134] Wang S.X., Zhang N., Zhao Y.S., Zhan J.. Photovoltaic system power forecasting based oncombined grey model and BP neural network[C]. International Conference on Electrical andControl Engineering (ICECE), Tianjin, China.2011:4623–4626.
    [135] Sulaiman S.I., Abdul Rahman T.K., Musirin I., Shaari S., Optimizing three-layer neuralnetwork model for grid-connected photovoltaic system output prediction. Conference onInnovative Technologies in Intelligent Systems and Industrial Applications, Monash,2009:338-343.
    [136] Ding M., Xu N.Z.. A method to forecast short-term output power of photovoltaic generationsystem based on Markov Chain[J]. Power System Technology,2011,35(1):152-157.
    [137]朱永强,田军.最小二乘支持向量机在光伏功率预测中的应用.电网技术,2011,35(7):54-59.
    [138] Cortes C., Vapnik V.. Support-vector networks[J]. Machine Learning (S0885-6125),1995,20(2):273-297.
    [139] Fortuna J., Capson D.. Improved support vector classification using PCA and ICA featurespace modification[J]. Pattern Recognition(S0031-3203),2004,37(6):1117-1129.
    [140] Chapelle O., Haffner P., Vapnik V.N.. Support vector machines for histogram-based imageclassification. IEEE Transactions on Neural Networks[J],1999,10(5):1055-1064.
    [141] Adriano L. I. Oliveira, Carolina Baldisserotto, Julio Baldisserotto. A comparative studyon support vector machine and constructive RBF neural network for prediction of success ofdental implants[J]. Lecture Notes in Computer Science,2005:1015-1026.
    [142] Guo L., Wu Y.X., Zhao L., Cao T., et al. Classification of mental task from EEG signalsusing immune feature weighted support vector machines[J], IEEE Transactions onMagnetics,2011,47(5):866-869.
    [143] Hu G.S., Zhu F.F., Ren Z.. Power quality disturbance identification using wavelet packetenergy entropy and weighted support vector machines[J], Expert Systems with Applications,2008,35(1):143-149.
    [144] Wang X.Z., Han M., Wang J.. Applying input variables selection technique on inputweighted support vector machine modeling for BOF endpoint prediction[J]. EngineeringApplications of Artificial Intelligence (The International Journal of Intelligent Real-TimeAutomation),2010,23(6):1012-1018,.
    [145] Chen X.L., Liu P.Y., Zhu Z.F., et al. A method of spam filtering based on weighted supportvector machines[C]. The Second IEEE International Symposium on IT in Medicine andEducation. Washington, DC,2009:947-950.
    [146]汪廷华,田盛丰,黄厚宽.特征加权支持向量机[J].电子与信息学报,2009,31(3):514-518.
    [147]张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42.
    [148]杜树新,吴铁军.回归型加权支持向量机方法及其应用[J].浙江大学学报(工学版),2004,38(3):302-306.
    [149]莫维仁,张伯明,孙宏斌,胡子珩.短期负荷预测中选择相似日的探讨[J].清华大学学报(自然科学版),2004,44(1):106-109.
    [150]蔡佳宏,刘俊勇.超短期负荷预测中相似日的选择方法[J].华北电力大学学报,2006,33(1):38-41.
    [151]黎灿兵,李晓辉,赵瑞,李金龙,刘晓光.电力短期负荷预测相似日选取算法[J].电力系统自动化,2008,32(9):69-73.
    [152]王一波,李晶,许洪华.考虑电网安全稳定约束的光伏电站最大安装容量计算与分析[J].太阳能学报,2008,29(8):971-975.
    [153]茆美琴,余世杰,苏建徽.带有MPPT功能的光伏阵列Matlab通用仿真模型[J].系统仿真学报.2005,17(5):1248-1251.
    [154] VIOREL B..Dynamic model of a complex system including PV cells, electric battery,electrical motor and water pump[J]. Energy,2003,28(12):1165-1181.
    [155] Gow A.,Maning C.D..Development photovoltaic array model for use in power—electronics simulation studies[J]. IEE Procelectr Power Appl,1999(146)193-200.
    [156] Yushaizad Y., Siti H.S., Muhammad A.L., et a1. Modeling and simulation of maximumpower point tracker for photovoltaic system[J]. National Power&Energy Conference,2004(29-30):88-93.
    [157] Deng Y., Research on IGBT model for complex circuits and solar array model forlarge-scale photovoltaic arrays[C], Tsinghua University,2010:23-52.
    [158] Krishnamoorthy H. S., Essakiappan S., Enjeti P. N., Balog R. S., Ahmed S.. A newmultilevel converter for Megawatt scale solar photovoltaic utility integration. APEC,2012:1431-1438.
    [159] Spertino F., Akilimali J.S., Are manufacturing I-V mismatch and reverse currents key factorsin large photovoltaic arrays? Industrial Electronics, IEEE Transactions on,2009:4520-4531.
    [160]王长贵,王斯成.太阳能光伏发电实用技术[M],北京:化学工业出版社,2009.
    [161]李军,张友鹏.基于高斯过程的混沌时间序列单步与多步预测[J].物理学报,2011,60(7):070513.1-9.
    [162] Rasmussen C. E., Williams C. K. I., Gaussian Processes for Machine Learning, NewYork:MIT Press,2006.
    [163] Sofiane B.B., Amine B.. Gaussian process for nonstationary time series prediction[J],Computational Statistics&Data Analysis,2004(47):705-712.
    [164] Shi J.Q., Choi T., Gaussian Process Regression Analysis on Functional Data. Florida: CRCPress,2011.
    [165] Chu W., Ghahramani Z.B., Gaussian processes for ordinal regression[J], Journal of MachineLearning Research,2005(6):1-48.
    [166]苏建徽,余世杰,赵为,吴敏达,沈玉梁,何慧若.硅太阳电池工程用数学模型[J].太阳能学报,2001,22(4):409-412.
    [167]张恩勤,施颂椒,高卫华,翁正新.模糊控制系统近年来的研究与发展[J].控制理论与应用,2001,18(1):7-11.
    [168]刘永红.神经网络理论的发展与前沿问题[J].信息与控制.1999,28(1):31-46.
    [169]刘豹,胡代平.神经网络在预测中的一些应用研究[J].系统工程学报,1999,14(4):338-344.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700