用户名: 密码: 验证码:
猫高级视皮层PMLS区和21a区的反馈投射对初级视皮层信息处理的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
猫和猴的视皮层存在着两条将视觉信息由低级视皮层向高级视皮层传递的并行前馈信息处理通路,即形状信息处理通路(腹侧通路)和运动信息处理通路(背侧通路)。大量围绕这些前馈信息输入通路结构与功能的研究早已广泛开展,但对于与前馈输入同样大量存在的、高级视皮层到低级视皮层的反馈投射的功能却仍不清楚。功能上类似于灵长类MT区和V4区(或V3区)的猫的视皮层后内侧部外侧上薛氏区(Posteromedial Lateral Suprasylvian,PMLS)和21a区分别负责运动信息和形状信息的处理,是运动信息处理通路和形状信息处理通路里的两个重要区域。它们与初级视皮层17区之间具有相互的、紧密的突触连接,但它们对初级视皮层17区的反馈作用仍不清楚。在本研究中,我们利用内源信号光学成像技术及定点微量注射药物的可逆失活技术对高级视皮层PMLS区和21a区对17区的反馈作用进行了研究。研究结果显示,不论是PMLS区还是21a区,它们对17区神经元感受野的特性都发挥着兴奋性为主的调控作用,但调控作用的性质并不相同:失活PMLS区显著降低了17区神经元的方向选择性强度而且改变了部分17区神经元的最优方向角,但对于17区神经元的方位选择性却没有作用;与PMLS区不同,失活21a区显著降低了17区神经元的方位选择性强度而且改变了部分17区神经元的最优方位角。此外,PMLS区和21a区对17区的反馈作用还具有一定的感受野特征的倾向性。由于PMLS区与21a区对17区具有明显不同的作用,本研究结果表明,属于不同信息处理通路的高级视皮层对初级视皮层的神经元感受野的基本特性(如方位选择性和方向选择性)具有明显不同的调控作用。
In visual cortices of high mammals such as cats and monkeys there are two major, largely parallel, 'feedforward' processing streams which carry visual information from the primary visual cortices respectively to the parietal and temporal visual cortices. In the present study, using the optical imaging technique based on intrinsic signals combined with pharmacological methods, we examined the influence of 'feedback' signals both from the posteromedial lateral suprasylvian (PMLS) area which is a dominant motion processing region and area 21a which is a dominant form processing region on the responsiveness of neurons and 'orientational and directional maps' in area 17 (striate cortex, area V1). Despite the fact that area 17, unlike area PMLS, is mainly involved in the form/pattern rather than motion-processing, the reversible deactivation of both area PMLS and area 21a resulted in the reduction of the magnitude of responses of area 17 cells. Furthermore, whereas inactivation of area PMLS did not affect the basic structure of the 'orientation maps' in area 17, deactivation of area PMLS virtually abolished the global layout of 'direction maps' in area 17. By contrast, inactivation of area 21a did affect partial structure of the 'orientation maps' in area 17. In addition, the feedback functions of both area PMLS and area 21a had somehow specificity. Thus, it appears that higher-order cortical areas in one information processing stream may exert differential modulatory effects on fundamental properties of neurons located in the lower-order areas of another information processing stream.
引文
[1] Alonso, J. M., Cudeiro, J., Perez, R., Gonzalez, E, and Acuna, C. Influence of layer V of area 18 of the cat visual cortex on responses of cells in layer V of area 17 to stimuli of high velocity [J]. Exp Brain Res, 1993a, 93(2): 363-366.
    [2] Alonso, J. M., Cudeiro, J., Perez, R., Gonzalez, F., and Acuna, C. Orientational influences of layer V of visual area 18 upon cells in layer V of area 17 in the cat cortex [J]. Exp Brain Res, 1993b, 96(2): 212-220.
    [3] Angelucci, A., and Bullier, J. Reaching beyond the classical receptive field of V1 neurons: horizontal or feedback axons? [J]. J Physiol Paris, 2003, 97(2-3): 141-154.
    [4] Arieli, A., and Grinvald, A. Optical imaging combined with targeted electrical recordings, microstimulation, or tracer injections [J]. J Neurosci Methods, 2002, 116(1): 15.
    [5] Arieli, A., Grinvald, A., and Slovin, H. Dural substitute for long-term imaging of cortical activity in behaving monkeys and its clinical implications [J]. J Neurosci Methods, 2002, 114(2): 119.
    [6] Bakin, J. S., Kwon, M. C, Masino, S. A., Weinberger, N. M., and Frostig, R. D. Suprathreshold auditory cortex activation visualized by intrinsic signal optical imaging [J]. Cereb Cortex, 1996, 6(2): 120.
    [7] Basole, A., White, L. E., and Fitzpatrick, D. Mapping multiple features in the population response of visual cortex [J]. Nature, 2003, 423(6943): 986-990.
    [8] Bell, A. J., and Sejnowski, T. J. An Information Maximization Approach To Blind Separation And Blind Deconvolution [J]. Neural Comput, 1995,7(6): 1129-1159.
    [9] Berman, N. E., Wilkes, M. E., and Payne, B. R. Organization of orientation and direction selectivity in areas 17 and 18 of cat cerebral cortex [J]. J Neurophysiol, 1987, 58(4): 676.
    [10] Blakemore, C., and Zumbroich, T. J. Stimulus selectivity and functional organization in the lateral suprasylvian visual cortex of the cat [J]. J Physiol, 1987, 389: 569.
    [11] Blasdel, G. G., and Salama, G. Voltage-sensitive dyes reveal a modular organization in monkey striate cortex [J]. Nature, 1986, 321(6070): 579.
    [12] Bonhoeffer, T., and Grinvald, A. Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns [J]. Nature, 1991, 353(6343): 429.
    [13] Bonhoeffer, T., and Grinvald, A. The layout of iso-orientation domains in area 18 of cat visual cortex: optical imaging reveals a pinwheel-like organization [J]. J Neurosci, 1993a, 13(10): 4157.
    [14] Bonhoeffer, T., and Grinvald, A. Optical imaging of the functional architecture in cat visual cortex: the layout of direction and orientation domains [J]. Adv Exp Med Biol, 1993b, 333: 57.
    [15] Bonhoeffer, T., Kim, D. S., Malonek, D., Shoham, D., and Grinvald, A. Optical imaging of the layout of functional domains in area 17 and across the area 17/18 border in cat visual cortex [J]. Eur J Neurosci, 1995, 7(9): 1973.
    [16] Bosking, W. H., Kretz, R., Pucak, M. L., and Fitzpatrick, D. Functional specificity of callosal connections in tree shrew striate cortex [J]. J Neurosci, 2000, 20(6): 2346.
    [17] Bosking, W. H., Zhang, Y., Schofield, B., and Fitzpatrick, D. Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex [J]. J Neurosci, 1997, 17(6): 2112.
    [18] Budd, J. M. Extrastriate feedback to primary visual cortex in primates: a quantitative analysis of connectivity [J]. Proc R Soc Lond B Biol Sci, 1998, 265(1400): 1037.
    [19] Bullier, J. Integrated model of visual processing [J]. Brain Res Brain Res Rev, 2001, 36(2-3): 96-107.
    [20] Bullier, J., Hupe, J. M., James, A., and Girard, P. Functional interactions between areas V1 and V2 in the monkey [J]. J Physiol Paris, 1996, 90(3-4): 217-220.
    [21] Bullier, J., Kennedy, H., and Salinger, W. Branching and laminar origin of projections between visual cortical areas in the cat [J]. J Comp Neurol, 1984, 228(3): 329-341.
    [22] Bullier, J., McCourt, M. E., and Henry, G. H. Physiological studies on the feedback connection to the striate cortex from cortical areas 18 and 19 of the cat [J]. Exp Brain Res, 1988, 70(1): 90-98.
    [23] Burke, W., Dreher, B., Michalski, A., Cleland, B. G, and Rowe, M. H. Effects of selective pressure block of Y-type optic nerve fibers on the receptive-field properties of neurons in the striate cortex of the cat [J]. Vis Neurosci, 1992, 9(1): 47.
    [24] Burke, W., Dreher, B., and Wang, C. Selective block of conduction in Y optic nerve fibres: significance for the concept of parallel processing [J]. Eur J Neurosci, 1998, 10(1): 8.
    [25] Buzas, P., Eysel, U. T., and Kisvarday, Z. F. Functional topography of single cortical cells: an intracellular approach combined with optical imaging [J]. Brain Res Brain Res Protoc, 1998,3(2): 199.
    [26] Cannestra, A. F., Black, K. L., Martin, N. A., Cloughesy, T., Burton, J. S., Rubinstein, E., Woods, R. P., and Toga, A. W. Topographical and temporal specificity of human intraoperative optical intrinsic signals [J]. Neuroreport, 1998a, 9(11): 2557-2563.
    [27] Cannestra, A. F., Blood, A. J., Black, K. L., and Toga, A. W. The evolution of optical signals in human and rodent cortex [J]. Neuroimage, 1996, 3(3): 202-208.
    [28] Cannestra, A. F., Bookheimer, S. Y, Pouratian, N., O'Farrell, A., Sicotte, N., Martin, N. A., Becker, D., Rubino, G, and Toga, A. W. Temporal and topographical characterization of language cortices using intraoperative optical intrinsic signals [J]. Neuroimage, 2000, 12(1): 41-54.
    [29] Cannestra, A. F., Pouratian, N., Bookheimer, S. Y, Martin, N. A., Beckerand, D. P., and Toga, A. W. Temporal spatial differences observed by functional MRI and human intraoperative optical imaging [J]. Cereb Cortex, 2001, 11(8): 773-782.
    [30] Cannestra, A. F., Pouratian, N., Shomer, M. H., and Toga, A. W. Refractory periods observed by intrinsic signal and fluorescent dye imaging [J]. J Neurophysiol, 1998b, 80(3): 1522-1532.
    [31] Carmona, R. A., Hwang, W. L., and Frostig, R. D. Wavelet Analysis For Brain-Function Imaging [J]. IEEE Trans Med Imaging, 1995, 14(3): 556-564.
    [32] Chapman, B., Godecke, I., and Bonhoeffer, T. Development of orientation preference in the mammalian visual cortex [J]. J Neurobiol, 1999,41(1): 18.
    [33] Chen-Bee, C. H., Kwon, M. C, Masino, S. A., and Frostig, R. D. Areal extent quantification of functional representations using intrinsic signal optical imaging [J]. J Neurosci Methods, 1996, 68(1): 27.
    
    [34] Chen-Bee, C. H., Polley, D. B., Brett-Green, B., Prakash, N., Kwon, M. C., and Frostig, R. D. Visualizing and quantifying evoked cortical activity assessed with intrinsic signal imaging [J]. J Neurosci Methods, 2000, 97(2): 157.
    [35] Chen, F., Xu, J., Gu, F., Yu, X., Meng, X., and Qiu, Z. Dynamic process of information transmission complexity in human brains [J]. Biol Cybern, 2000, 83(4): 355-366.
    [36] Chen, L. M., Friedman, R. M., Ramsden, B. M., LaMotte, R. H., and Roe, A. W. Fine-scale organization of SI (area 3b) in the squirrel monkey revealed with intrinsic optical imaging [J]. J Neurophysiol, 2001, 86(6): 3011.
    [37] Chen, L. M., Friedman, R. M., and Roe, A. W. Optical imaging of a tactile illusion in area 3b of the primary somatosensory cortex [J]. Science, 2003a, 302(5646): 881.
    [38] Chen, X., and Shou, T. D. [Accurate establishment of the retinotopic topography of area 17 in cats by intrinsic signal optical imaging] [J]. Sheng Li Xue Bao, 2003, 55(5): 541.
    [39] Chen, X., Sun, C, Huang, L., and Shou, T. Selective loss of orientation column maps in visual cortex during brief elevation of intraocular pressure [J]. Invest Ophthalmol Vis Sci, 2003b, 44(1): 435.
    [40] Cohen, L. B. Changes in neuron structure during action potential propagation and synaptic transmission [J]. Physiol Rev, 1973, 53(2): 373-418.
    [41] Cohen, L. B., Keynes, R. D., and Hille, B. Light scattering and birefringence changes during nerve activity [J]. Nature, 1968, 218(140): 438-441.
    [42] Coogan, T. A., and Burkhalter, A. Conserved patterns of cortico-cortical connections define areal hierarchy in rat visual cortex [J]. Exp Brain Res, 1990, 80(1): 49.
    [43] Coogan, T. A., and Burkhalter, A. Hierarchical organization of areas in rat visual cortex [J]. J Neurosci, 1993, 13(9): 3749.
    [44] Crick, F., and Koch, C. Constraints on cortical and thalamic projections: the no-strong-loops hypothesis [J]. Nature, 1998, 391(6664): 245-250.
    [45] Crook, J. M., Kisvarday, Z. F., and Eysel, U. T. GABA-induced inactivation of functionally characterized sites in cat striate cortex: effects on orientation tuning and direction selectivity [J]. Vis Neurosci, 1997, 14(1): 141.
    [46] DeYoe, E. A., Felleman, D. J., Van Essen, D. C., and McClendon, E. Multiple processing streams in occipitotemporal visual cortex [J]. Nature, 1994, 371(6493): 151.
    [47] Domenici, L., Harding, G. W., and Burkhalter, A. Patterns of synaptic activity in forward and feedback pathways within rat visual cortex [J]. J Neurophysiol, 1995, 74(6): 2649.
    [48] Douglas, R. J., Koch, C., Mahowald, M., Martin, K. A., and Suarez, H. H. Recurrent excitation in neocortical circuits [J]. Science, 1995, 269(5226): 981.
    [49] Douglas, R. J., and Martin, K. A. A functional microcircuit for cat visual cortex [J]. J Physiol, 1991,440:735.
    [50] Dragoi, V., Rivadulla, C., and Sur, M. Foci of orientation plasticity in visual cortex [J]. Nature, 2001a, 411(6833): 80.
    [51] Dragoi, V., Turcu, C. M., and Sur, M. Stability of cortical responses and the statistics of natural scenes [J]. Neuron, 2001b, 32(6): 1181.
    [52] Dreher, B. Thalamocortical and corticocortical interconnections in the cat visual system: relation to the mechanisms of information processing. [M]. Cambridge, UK: Cambridge University Press, 1986, (Issue): Pages.
    [53] Dreher, B., Djavadian, R. L., Turlejski, K. J., and Wang, C. Areas PMLS and 21 a of cat visual cortex are not only functionally but also hodologically distinct [J]. Prog Brain Res, 1996a, 112:251.
    [54] Dreher, B., Michalski, A., Cleland, B. G., and Burke, W. Effects of selective pressure block of Y-type optic nerve fibers on the receptive-field properties of neurons in area 18 of the visual cortex of the cat [J]. Vis Neurosci, 1992,9(1): 65.
    [55] Dreher, B., Michalski, A., Ho, R. H., Lee, C. W., and Burke, W. Processing of form and motion in area 21a of cat visual cortex [J]. Vis Neurosci, 1993, 10(1): 93.
    [56] Dreher, B., Wang, C, and Burke, W. Limits of parallel processing: excitatory convergence of different information channels on single neurons in striate and extrastriate visual cortices [J]. Clin Exp Pharmacol Physiol, 1996b, 23(10-11): 913.
    [57] Dreher, B., Wang, C, Turlejski, K. J., Djavadian, R. L., and Burke, W. Areas PMLS and 21a of cat visual cortex: two functionally distinct areas [J]. Cereb Cortex, 1996c, 6(4): 585.
    [58] Essock, E. A., DeFord, J. K., Hansen, B. C, and Sinai, M. J. Oblique stimuli are seen best (not worst!) broad-band stimuli: a horizontal effect [J]. Vision Res, 2003, 43(12): 1329-1335.
    [59] Everson, R., Knight, B. W., and Sirovich, L. Separating spatially distributed response to stimulation from background. 1. Optical imaging [J]. Biol Cybern, 1997a, 77(6): 407-417.
    [60] Everson, R., Knight, B. W, and Sirovich, L. Separating spatially distributed response to stimulation from background. I. Optical imaging [J]. Biol Cybern, 1997b, 77(6): 407-417.
    [61] Everson, R. M., Prashanth, A. K., Gabbay, M., Knight, B. W., Sirovich, L., and Kaplan, E. Representation of spatial frequency and orientation in the visual cortex [J]. Proc Natl Acad Sci U S A, 1998, 95(14): 8334-8338.
    [62] Eysel, U. T. Lateral inhibitory interactions in areas 17 and 18 of the cat visual cortex [J]. Prog Brain Res, 1992, 90: 407.
    [63] Eysel, U. T., Muche, T., and Worgotter, F. Lateral interactions at direction-selective striate neurones in the cat demonstrated by local cortical inactivation [J]. J Physiol, 1988, 399: 657.
    [64] Eysel, U. T., Shevelev, I. A., Lazareva, N. A., and Sharaev, G. A. Orientation tuning and receptive field structure in cat striate neurons during local blockade of intracortical inhibition [J]. Neuroscience, 1998, 84(1): 25.
    [65] Felleman, D. J., Burkhalter, A., and Van Essen, D. C. Cortical connections of areas V3 and VP of macaque monkey extrastriate visual cortex [J]. J Comp Neurol, 1997, 379(1): 21.
    [66] Felleman, D. J., and Van Essen, D. C. Distributed hierarchical processing in the primate cerebral cortex [J]. Cereb Cortex, 1991, 1(1): 1.
    [67] Fernald, R., and Chase, R. An improved method for plotting retinal landmarks and focusing the eyes [J]. Vision Res, 1971, 11(1): 95-96.
    [68] Ferrera, V. R, Rudolph, K. K., and Maunsell, J. H. Responses of neurons in the parietal and temporal visual pathways during a motion task [J]. J Neurosci, 1994,14(10): 6171-6186.
    [69] Ferster, D., Chung, S., and Wheat, H. Orientation selectivity of thalamic input to simple cells of cat visual cortex [J]. Nature, 1996, 380(6571): 249.
    [70] Ferster, D., and Jagadeesh, B. Nonlinearity of spatial summation in simple cells of areas 17 and 18 of cat visual cortex [J]. J Neurophysiol, 1991, 66(5): 1667.
    [71] Ferster, D., and Miller, K. D. Neural mechanisms of orientation selectivity in the visual cortex [J]. Annu Rev Neurosci, 2000, 23: 441.
    [72] Fries, W. The projection from the lateral geniculate nucleus to the prestriate cortex of the macaque monkey [J]. Proc R Soc Lond B Biol Sci, 1981,213(1190): 73-86.
    [73] Frostig, R. D., Lieke, E. E., Ts'o, D. Y., and Grinvald, A. Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals [J]. Proc Natl Acad Sci U S A, 1990, 87(16): 6082.
    [74] Funke, K., and Eysel, U. T. EEG-dependent modulation of response dynamics of cat dLGN relay cells and the contribution of corticogeniculate feedback [J]. Brain Res, 1992, 573(2): 217.
    [75] Gabbay, M., Brennan, C, Kaplan, E., and Sirovich, L. A principal components-based method for the detection of neuronal activity maps: application to optical imaging [J]. Neuroimage, 2000, 11(4): 313-325.
    [76] Galuske, R. A., Schmidt, K. E., Goebel, R., Lomber, S. G., and Payne, B. R. The role of feedback in shaping neural representations in cat visual cortex [J]. Proc Natl Acad Sci U S A, 2002, 99(26): 17083.
    [77] Gattas, R., Sousa, A. P., Mishkin, M, and Ungerleider, L. G. Cortical projections of area V2 in the macaque [J]. Cereb Cortex, 1997, 7(2): 110-129.
    [78] Geisert, E. E., Langsetmo, A., and Spear, P. D. Influence of the cortico-geniculate pathway on response properties of cat lateral geniculate neurons [J]. Brain Res, 1981, 208(2): 409.
    [79] Gibber, M., Chen, B., and Roerig, B. Direction selectivity of excitatory and inhibitory neurons in ferret visual cortex [J]. Neuroreport, 2001,12(10): 2293-2296.
    [80] Girard, P., Hupe, J. M., and Bullier, J. Feedforward and feedback connections between areas V1 and V2 of the monkey have similar rapid conduction velocities [J]. J Neurophysiol, 2001,85(3): 1328-1331.
    
    [81] Girard, P., Lomber, S. G., and Bullier, J. Shape discrimination deficits during reversible deactivation of area V4 in the macaque monkey [J]. Cereb Cortex, 2002, 12(11): 1146-1156.
    [82] Girard, P., Salin, P. A., and Bullier, J. Visual activity in macaque area V4 depends on area 17 input [J]. Neuroreport, 1991, 2(2): 81-84.
    [83] Girard, P., Salin, P. A., and Bullier, J. Response selectivity of neurons in area MT of the macaque monkey during reversible inactivation of area V1 [J]. J Neurophysiol, 1992, 67(6): 1437-1446.
    [84] Godde, B., Leonhardt, R., Cords, S. M., and Dinse, H. R. Plasticity of orientation preference maps in the visual cortex of adult cats [J]. Proc Natl Acad Sci U S A, 2002, 99(9): 6352-6357.
    [85] Godecke, I., and Bonhoeffer, T. Development of identical orientation maps for two eyes without common visual experience [J]. Nature, 1996,379(6562): 251.
    [86] Goodale, M. A., and Milner, A. D. Separate visual pathways for perception and action [J]. Trends Neurosci, 1992, 15(1): 20.
    [87] Grant, S., Shipp, S. D., and Wilson, R. I. Differences In Connectivity Of 2 Visual Areas Within The Lateral Suprasylvian (Ls) Complex Of Cat Visual-Cortex [J]. Journal Of Physiol, 1984, 353(AUG): P21-P21.
    [88] Gratton, G., and Fabiani, M. The event-related optical signal: a new tool for studying brain function [J]. Int J Psychophysiol, 2001, 42(2): 109-121.
    [89] Gratton, G., Fabiani, M., Corballis, P. M., Hood, D. C, Goodman Wood, M. R., Hirsch, J., Kim, K., Friedman, D., and Gratton, E. Fast and localized event-related optical signals (EROS) in the human occipital cortex: Comparisons with the visual evoked potential and fMRI [J]. Neuroimage, 1997, 6(3): 168-180.
    [90] Graybiel, A. M. Some Ascending Connections Of Pulvinar And Nucleus Lateralis Posterior Of Thalamus In Cat [J]. Brain Res, 1972a, 44(1): 99-&.
    [91] Graybiel, A. M. Some Extrageniculate Visual Pathways In Cat [J]. Invest Ophthalmol, 1972b, 11(5):322-&.
    [92] Grinvald, A., Anglister, L., Freeman, J. A., Hildesheim, R., and Manker, A. Real-time optical imaging of naturally evoked electrical activity in intact frog brain [J]. Nature, 1984, 308(5962): 848.
    [93] Grinvald, A., Frostig, R. D., Siegel, R. M, and Bartfeld, E. High-resolution optical imaging of functional brain architecture in the awake monkey [J]. Proc Natl Acad Sci U S A, 1991, 88(24): 11559.
    [94] Grinvald, A., Lieke, E., Frostig, R. D., Gilbert, C. D., and Wiesel, T. N. Functional architecture of cortex revealed by optical imaging of intrinsic signals [J]. Nature, 1986, 324(6095): 361.
    [95] Grinvald, A., Shoham, D., Shmuel, A., Glaser, D., Vanzetta, I., Shtoyerman, E., Slovin, H., Wijnbergen, C, Hildesheim, R., and Arieli, A. In-vivo optical imaging of cortical architecture and dynamics. [M]. Berlin: Springer, 1999, (Issue): Pages.
    [96] Grossberg, S., Mingolla, E., and Ross, W. D. Visual brain and visual perception: how does the cortex do perceptual grouping? [J]. Trends Neurosci, 1997, 20(3): 106.
    [97] Grossberg, S., and Raizada, R. D. Contrast-sensitive perceptual grouping and object-based attention in the laminar circuits of primary visual cortex {J]. Vision Res, 2000,40(10-12): 1413.
    [98] Gu, F. J., Meng, X., Shen, E. H., and Cai, Z. J. Can we measure consciousness with EEG complexities? [J]. International Journal Of Bifurcation And Chaos, 2003, 13(3): 733-742.
    [99] Haglund, M. M., Ojemann, G. A., and Hochman, D. W. Optical Imaging Of Epileptiform And Functional-Activity In Human Cerebral-Cortex [J]. Nature, 1992, 358(6388): 668-671.
    [100] Hammond, P., and Kim, J. N. Role of suppression in shaping orientation and direction selectivity of complex neurons in cat striate cortex [J]. J Neurophysiol, 1996, 75(3): 1163.
    
    [101] Hendry, S. H., and Reid, R. C. The koniocellular pathway in primate vision [J]. Annu Rev Neurosci, 2000, 23: 127-153.
    
    [102] Henry, G. H., Michalski, A., Wimborne, B. M., and McCart, R. J. The nature and origin of orientation specificity in neurons of the visual pathways [J]. Prog Neurobiol, 1994, 43(4-5): 381-437.
    [103] Henry, G. H., Salin, P. A., and Bullier, J. Projections from Areas 18 and 19 to Cat Striate Cortex: Divergence and Laminar Specificity [J]. Eur J Neurosci, 1991, 3(2): 186-200.
    [104] Hensch, T. K., and Stryker, M. P. Columnar architecture sculpted by GABA circuits in developing cat visual cortex [J]. Science, 2004, 303(5664): 1678.
    [105] Hess, A., and Scheich, H. Optical and FDG mapping of frequency-specific activity in auditory cortex [J]. Neuroreport, 1996, 7(15-17): 2643-2647.
    [106] Hu, X. P., Le, T. H., and Ugurbil, K. Evaluation of the early response in fMRI in individual subjects using short stimulus duration [J]. Magn Reson Med, 1997, 37(6): 877-884.
    [107] Huang, L., Chen, X., and Shou, T. Spatial frequency-dependent feedback of visual cortical area 21a modulating functional orientation column maps in areas 17 and 18 of the cat [J]. Brain Res, 2004, 998(2): 194.
    [108] Hubel, D. H., and Wiesel, T. N. Receptive fields of single neurones in the cat's striate cortex [J]. J Physiol, 1959, 148:574.
    [109] Hubel, D. H., and Wiesel, T. N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex [J]. J Physiol, 1962, 160: 106.
    [110] Hubel, D. H., and Wiesel, T. N. Shape and arrangement of columns in cat's striate cortex [J]. J Physiol, 1963, 165:559.
    [111] Hubel, D. H., and Wiesel, T. N. RECEPTIVE FIELDS AND FUNCTIONAL ARCHITECTURE IN TWO NONSTRIATE VISUAL AREAS (18 AND 19) OF THE CAT [J]. J Neurophysiol, 1965, 28: 229.
    [112] Hubel, D. H., and Wiesel, T. N. Early exploration of the visual cortex [J]. Neuron, 1998, 20(3): 401.
    [113] Hubel, D. H., Wiesel, T. N., and Stryker, M. P. Orientation columns in macaque monkey visual cortex demonstrated by the 2-deoxyglucose autoradiographic technique [J]. Nature, 1977, 269(5626): 328.
    [114] Hung, C. P., Ramsden, B. M., Chen, L. M., and Roe, A. W. Building surfaces from borders in Areas 17 and 18 of the cat [J]. Vision Res, 2001,41(10-11): 1389.
    [115] Hupe, J. M., Chouvet, G., and Bullier, J. Spatial and temporal parameters of cortical inactivation by GABA [J]. J Neurosci Methods, 1999, 86(2): 129-143.
    [116] Hupe, J. M., James, A. C., Girard, P., and Bullier, J. Response modulations by static texture surround in area V1 of the macaque monkey do not depend on feedback connections from V2 [J]. J Neurophysiol, 2001a, 85(1): 146-163.
    [117] Hupe, J. M., James, A. C., Girard, P., Lomber, S. G., Payne, B. R., and Bullier, J. Feedback connections act on the early part of the responses in monkey visual cortex [J]. J Neurophysiol, 2001b, 85(1): 134-145.
    [118] Hupe, J. M., James, A. C., Payne, B. R., Lomber, S. G., Girard, P., and Bullier, J. Cortical feedback improves discrimination between figure and background by V1, V2 and V3 neurons [J]. Nature, 1998, 394(6695): 784-787.
    [119] Hyvarinen, A., and Oja, E. A fast fixed-point algorithm for independent component analysis [J]. Neural Comput, 1997, 9(7): 1483-1492.
    [120] Issa, N. P., Trepel, C, and Stryker, M. P. Spatial frequency maps in cat visual cortex [J]. J Neurosci, 2000, 20(22): 8504.
    [121] Johnson, R. R., and Burkhalter, A. Evidence for excitatory amino acid neurotransmitters in forward and feedback corticocortical pathways within rat visual cortex [J]. Eur J Neurosci, 1994, 6(2): 272.
    [122] Johnson, R. R., and Burkhalter, A. Microcircuitry of forward and feedback connections within rat visual cortex [J]. J Comp Neurol, 1996, 368(3): 383.
    [123] Johnson, R. R., and Burkhalter, A. A polysynaptic feedback circuit in rat visual cortex [J]. J Neurosci, 1997, 17(18): 7129.
    
    [124] Kalatsky, V. A., and Stryker, M. P. New paradigm for optical imaging: temporally encoded maps of intrinsic signal [J]. Neuron, 2003, 38(4): 529-545.
    [125] Kaschube, M., Wolf, F., Geisel, T., and Lowel, S. Genetic influence on quantitative features of neocortical architecture [J]. J Neurosci, 2002,22(16): 7206-7217.
    [126] Kaschube, M., Wolf, F., Puhlmann, M., Rathjen, S., Schmidt, K. F., Geisel, T., and Lowel, S. The pattern of ocular dominance columns in cat primary visual cortex: intra- and interindividual variability of column spacing and its dependence on genetic background [J]. Eur J Neurosci, 2003, 18(12): 3251-3266.
    [127] Kim, D. S., Duong, T. Q., and Kim, S. G. High-resolution mapping of iso-orientation columns by fMRI [J]. Nat Neurosci, 2000, 3(2): 164-169.
    [128] Kisvarday, Z. R, Kim, D. S., Eysel, U. T., and Bonhoeffer, T. Relationship between lateral inhibitory connections and the topography of the orientation map in cat visual cortex [J]. Eur J Neurosci, 1994,6(10): 1619.
    [129] Lamme, V. A., Super, H., and Spekreijse, H. Feedforward, horizontal, and feedback processing in the visual cortex [J]. Curr Opin Neurobiol, 1998, 8(4): 529.
    [130] Lee, C., Weyand, T. G., and Malpeli, J. G. Thalamic control of cat lateral suprasylvian visual area: relation to patchy association projections from area 18 [J]. Vis Neurosci, 1998, 15(1): 15.
    [131] LeVay, S., and Voigt, T. Ocular dominance and disparity.coding in cat visual cortex [J]. Vis Neurosci, 1988, 1(4): 395.
    [132] Levitt, J. B., Kiper, D. C, and Movshon, J. A. Receptive fields and functional architecture of macaque V2 [J]. J Neurophysiol, 1994, 71(6): 2517.
    [133] Livingstone, M. S., and Hubel, D. H. Do the relative mapping densities of the magno- and parvocellular systems vary with eccentricity? [J]. J Neurosci, 1988, 8(11): 4334-4339.
    [134] Lomber, S. G. Behavioral cartography of visual functions in cat parietal cortex: areal and laminar dissociations [J]. Prog Brain Res, 2001, 134: 265.
    [135] Lomber, S. G., and Payne, B. R. Translaminar differentiation of visually guided behaviors revealed by restricted cerebral cooling deactivation [J]. Cereb Cortex, 2000, 10(11): 1066.
    [136] Lomber, S. G., and Payne, B. R. Task-specific reversal of visual hemineglect following bilateral reversible deactivation of posterior parietal cortex: a comparison with deactivation of the superior colliculus [J]. Vis Neurosci, 2001, 18(3): 487.
    
    [137] Lomber, S. G., Payne, B. R., and Cornwell, P. Learning and recall of form discriminations during reversible cooling deactivation of ventral-posterior suprasylvian cortex in the cat [J]. Proc Natl Acad Sci U S A, 1996a, 93(4): 1654.
    [138] Lomber, S. G., Payne, B. R., Cornwell, P., and Long, K. D. Perceptual and cognitive visual functions of parietal and temporal cortices in the cat [J]. Cereb Cortex, 1996b, 6(5): 673.
    [139] Lund, J. S., and Wu, C. Q. Local circuit neurons of macaque monkey striate cortex: IV. Neurons of laminae 1-3A [J]. J Comp Neurol, 1997, 384(1): 109-126.
    [140] Malach, R. Patterns of connections in rat visual cortex [J]. J Neurosci, 1989, 9(11): 3741.
    [141] Malach, R., Amir, Y., Harel, M., and Grinvald, A. Relationship between intrinsic connections and functional architecture revealed by optical imaging and in vivo targeted biocytin injections in primate striate cortex [J]. Proc Natl Acad Sci U S A, 1993, 90(22): 10469.
    [142] Malach, R., Tootell, R. B., and Malonek, D. Relationship between orientation domains, cytochrome oxidase stripes, and intrinsic horizontal connections in squirrel monkey area V2 [J]. Cereb Cortex, 1994,4(2): 151.
    
    [143] Maldonado, P. E., Godecke, I., Gray, C. M., and Bonhoeffer, T. Orientation selectivity in pinwheel centers in cat striate cortex [J]. Science, 1997, 276(5318): 1551.
    
    [144] Malonek, D., Dirnagl, U., Lindauer, U., Yamada, K., Kanno, I., and Grinvald, A. Vascular imprints of neuronal activity: relationships between the dynamics of cortical blood flow, oxygenation, and volume changes following sensory stimulation [J]. Proc Natl Acad Sci U SA, 1997, 94(26): 14826.
    [145] Malonek, D., and Grinvald, A. Interactions between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implications for functional brain mapping [J]. Science, 1996, 272(5261): 551.
    [146] Malonek, D., Tootell, R. B., and Grinvald, A. Optical imaging reveals the functional architecture of neurons processing shape and motion in owl monkey area MT [J]. Proc R Soc Lond B Biol Sci, 1994, 258(1352): 109.
    [147] Malpeli, J. G. Activity of cells in area 17 of the cat in absence of input from layer a of lateral geniculate nucleus [J]. J Neurophysiol, 1983,49(3): 595.
    [148] Malpeli, J. G., Lee, C, Schwark, H. D., and Weyand, T. G. Cat area 17.I. Pattern of thalamic control of cortical layers [J]. J Neurophysiol, 1986, 56(4): 1062.
    [149] Malpeli, J. G., Schiller, P. H., and Colby, C. L. Response properties of single cells in monkey striate cortex during reversible inactivation of individual lateral geniculate laminae [J]. J Neurophysiol, 1981,46(5): 1102.
    [150] Marrocco, R. T., McClurkin, J. W., and Young, R. A. Modulation of lateral geniculate nucleus cell responsiveness by visual activation of the corticogeniculate pathway [J]. J Neurosci, 1982, 2(2): 256.
    [151] Martinez-Conde, S., Cudeiro, J., Grieve, K. L., Rodriguez, R., Rivadulla, C, and Acuna, C. Effects of feedback projections from area 18 layers 2/3 to area 17 layers 2/3 in the cat visual cortex [J]. J Neurophysiol, 1999, 82(5): 2667.
    [152] Masino, S. A., and Frostig, R. D. Quantitative long-term imaging of the functional representation of a whisker in rat barrel cortex [J]. Proc Natl Acad Sci U S A, 1996, 93(10): 4942.
    [153] Masino, S. A., Kwon, M. C, Dory, Y., and Frostig, R. D. Characterization of functional organization within rat barrel cortex using intrinsic signal optical imaging through a thinned skull [J]. Proc Natl Acad Sci U S A, 1993, 90(21): 9998.
    
    [154] Maunsell, J. H., Nealey, T. A., and DePriest, D. D. Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey [J]. J Neurosci, 1990, 10(10): 3323-3334.
    [155] Maunsell, J. H., and Newsome, W. T. Visual processing in monkey extrastriate cortex [J]. Annu Rev Neurosci, 1987, 10: 363-401.
    [156] McClurkin, J. W., Optican, L. M, and Richmond, B. J. Cortical feedback increases visual information transmitted by monkey parvocellular lateral geniculate nucleus neurons [J]. Vis Neurosci, 1994, 11(3): 601.
    [157] Mignard, M., and Malpeli, J. G. Paths of information flow through visual cortex [J]. Science, 1991,251(4998): 1249.
    [158] Mizobe, K., Itoi, M., Kaihara, T., and Toyama, K. Neuronal responsiveness in area 21a of the cat [J]. Brain Res, 1988,438(1-2): 307.
    [159] Molgedey, L., and Schuster, H. G. Separation Of A Mixture Of Independent Signals Using Time-Delayed Correlations [J]. Physical Review Letters, 1994, 72(23): 3634-3637.
    [160] Montero, V. M. A quantitative study of synaptic contacts on interneurons and relay cells of the cat lateral geniculate nucleus [J]. Exp Brain Res, 1991, 86(2): 257-270.
    [161] Mooser, F., Bosking, W. H., and Fitzpatrick, D. A morphological basis for orientation tuning in primary visual cortex [J]. Nat Neurosci, 2004, 7(8): 872-879.
    [162] Morley, J. W., and Vickery, R. M. Spatial and temporal frequency selectivity of cells in area 21a of the cat [J]. J Physiol, 1997, 501 (Pt 2): 405-413.
    [163] Morley, J. W., Yuan, L., and Vickery, R. M. Corticocortical connections between area 21a and primary visual cortex in the cat [J]. Neuroreport, 1997, 8(5): 1263.
    [164] Movshon, J. A., Thompson, I. D., and Tolhurst, D. J. Spatial and temporal contrast sensitivity of neurones in areas 17 and 18 of the cat's visual cortex [J]. J Physiol, 1978, 283: 101.
    [165] Murphy, P. C, and Sillito, A. M. Functional morphology of the feedback pathway from area 17 of the cat visual cortex to the lateral geniculate nucleus [J]. J Neurosci, 1996, 16(3): 1180.
    [166] Nealey, T. A., and Maunsell, J. H. Magnocellular and parvocellular contributions to the responses of neurons in macaque striate cortex [J]. J Neurosci, 1994, 14(4): 2069-2079.
    [167] Nelson, S., Toth, L., Sheth, B., and Sur, M. Orientation selectivity of cortical neurons during intracellular blockade of inhibition [J]. Science, 1994, 265(5173): 774.
    [168] Nowak, L. G., James, A. C, and Bullier, J. Corticocortical connections between visual areas 17 and 18a of the rat studied in vitro: spatial and temporal organisation of functional synaptic responses [J]. Exp Brain Res, 1997, 117(2): 219-241.
    [169] Ohki, K., Chung, S., Ch'ng, Y. H., Kara, P., and Reid, R. C. Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex [J]. Nature, 2005, 433(7026): 597-603.
    [170] Orban, G. A. Neuronal operations in the visual cortex. [M]. Berlin: Springer Verlag, 1984, 11 (Issue): Pages.
    [171] Palmer, L. A., Rosenquist, A. C, and Tusa, R. J. The retinotopic organization of lateral suprasylvian visual areas in the cat [J]. J Comp Neurol, 1978, 177(2): 237-256.
    [172] Pasternak, T., Horn, K. M., and Maunsell, J. H. Deficits in speed discrimination following lesions of the lateral suprasylvian cortex in the cat [J]. Vis Neurosci, 1989, 3(4): 365.
    [173] Payne, B. R. Evidence for visual cortical area homologs in cat and macaque monkey [J]. Cereb Cortex, 1993,3(1): 1.
    [174] Payne, B. R., and Lomber, S. G. Quantitative analyses of principal and secondary compound parieto-occipital feedback pathways in cat [J]. Exp Brain Res, 2003, 152(4): 420.
    [175] Payne, B. R., Lomber, S. G, Villa, A. E., and Bullier, J. Reversible deactivation of cerebral network components [J]. Trends Neurosci, 1996, 19(12): 535-542.
    [176] Pettigrew, J. D., Cooper, M. L., and Blasdel, G G. Improved use of tapetal reflection for eye-position monitoring [J]. Invest Ophthalmol Vis Sci, 1979, 18(5): 490-495.
    [177] Polimeni, J. R., Granquist-Fraser, D., Wood, R. J., and Schwartz, E. L. Physical limits to spatial resolution of optical recording: clarifying the spatial structure of cortical hypercolumns [J]. Proc Natl Acad Sci U S A, 2005, 102(11): 4158-4163.
    [178] Polley, D. B., Chen-Bee, C. H., and Frostig, R. D. Two directions of plasticity in the sensory-deprived adult cortex [J]. Neuron, 1999,24(3): 623.
    [179] Pouratian, N., Bookheimer, S. Y., O'Farrell, A. M., Sicotte, N. L., Cannestra, A. F., Becker, D., and Toga, A. W. Optical imaging of bilingual cortical representations - Case report [J]. J Neurosurg, 2000, 93(4): 676-681.
    [180] Pouratian, N., Cannestra, A. F., Martin, N. A., and Toga, A. W. Intraoperative optical intrinsic signal imaging: a clinical tool for functional brain mapping [J]. Neurosurg Focus, 2002,13(4): el.
    
    [181] Pouratian, N., Sheth, S. A., Martin, N. A., and Toga, A. W. Shedding light on brain mapping: advances in human optical imaging [J]. Trends Neurosci, 2003, 26(5): 277-282.
    [182] Prakash, N., Cohen-Cory, S., and Frostig, R. D. RAPID and opposite effects of BDNF and NGF on the functional organization of the adult cortex in vivo [J]. Nature, 1996, 381(6584): 702.
    [183] Raczkowski, D., and Rosenquist, A. C. Connections of the multiple visual cortical areas with the lateral posterior-pulvinar complex and adjacent thalamic nuclei in the cat [J]. J Neurosci, 1983, 3(10): 1912-1942.
    [184] Rauschecker, J. P., von Grunau, M. W., and Poulin, C. Thalamo-cortical connections and their correlation with receptive field properties in the cat's lateral suprasylvian visual cortex [J]. Exp Brain Res, 1987, 67(1): 100.
    [185] Redecker, C, Hagemann, G., Kohling, R., Straub, H., Witte, O. W., and Speckmann, E. J. Optical imaging of epileptiform activity in experimentally induced cortical malformations [J]. Exp Neurol, 2005, 192(2): 288-298.
    [186] Reid, R. C. Divergence and reconvergence: multielectrode analysis of feedforward connections in the visual system [J]. Prog Brain Res, 2001, 130: 141-154.
    [187] Reid, R. C., and Alonso, J. M. Specificity of monosynaptic connections from thalamus to visual cortex [J]. Nature, 1995, 378(6554): 281.
    [188] Reid, R. C., and Alonso, J. M. The processing and encoding of information in the visual cortex [J]. Curr Opin Neurobiol, 1996, 6(4): 475.
    [189] Rockland, K. S. Configuration, in serial reconstruction, of individual axons projecting from area V2 to V4 in the macaque monkey [J]. Cereb Cortex, 1992,2(5): 353-374.
    [190] Rockland, K. S., and Pandya, D. N. Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey [J]. Brain Res, 1979, 179(1): 3-20.
    [191] Rockland, K. S., Saleem, K. S., and Tanaka, K. Divergent feedback connections from areas V4 and TEO in the macaque [J]. Vis Neurosci, 1994, 11(3): 579-600.
    [192] Rockland, K. S., and Virga, A. Organization of individual cortical axons projecting from area V1 (area 17) to V2 (area 18) in the macaque monkey [J]. Vis Neurosci, 1990, 4(1): 11-28.
    [193] Rodman, H. R., Gross, C. G., and Albright, T. D. Afferent basis of visual response properties in area MT of the macaque. I. Effects of striate cortex removal [J]. J Neurosci, 1989, 9(6): 2033.
    
    [194] Roerig, B., and Chen, B. Relationships of local inhibitory and excitatory circuits to orientation preference maps in ferret visual cortex [J]. Cereb Cortex, 2002, 12(2): 187-198.
    
    [195] Rosenquist, A. C., Ciaramitaro, V. M., Durmer, J. S., Wallace, S. F., and Todd, W. E. Ibotenic acid lesions of the superior colliculus produce longer lasting deficits in visual orienting behavior than aspiration lesions in the cat [J]. Prog Brain Res, 1996, 112: 117-130.
    [196] Rubin, B. D., and Katz, L. C. Optical imaging of odorant representations in the mammalian olfactory bulb [J]. Neuron, 1999, 23(3): 499-511.
    [197] Rudolph, K. K., and Pasternak, T. Lesions in cat lateral suprasylvian cortex affect the perception of complex motion [J]. Cereb Cortex, 1996, 6(6): 814.
    [198] Salin, P. A., and Bullier, J. Corticocortical connections in the visual system: structure and function [J]. Physiol Rev, 1995, 75(1): 107-154.
    [199] Sandell, J. H., and Schiller, P. H. Effect of cooling area 18 on striate cortex cells in the squirrel monkey [J]. J Neurophysiol, 1982,48(1): 38.
    [200] Sastry, P. S., Shah, S., Singh, S., and Unnikrishnan, K. P. Role of feedback in mammalian vision: a new hypothesis and a computational model [J]. Vision Res, 1999, 39(1): 131.
    [201] Sato, K., Nariai, T., Sasaki, S., Yazawa, I., Mochida, H., Miyakawa, N., Momose-Sato, Y., Kamino, K., Ohta, Y., Hirakawa, K., and Ohno, K. Intraoperative intrinsic optical imaging of neuronal activity from subdivisions of the human primary somatosensory cortex [J]. Cereb Cortex, 2002, 12(3): 269-280.
    [202] Sawatari, A., and Callaway, E. M. Convergence of magno- and parvocellular pathways in layer 4B of macaque primary visual cortex [J]. Nature, 1996, 380(6573): 442-446.
    [203] Schiller, P. H., and Malpeli, J. G. The effect of striate cortex cooling on area 18 cells in the monkey [J]. Brain Res, 1977, 126(2): 366.
    [204] Schuett, S., Bonhoeffer, T., and Hubener, M. Pairing-induced changes of orientation maps in cat visual cortex [J]. Neuron, 2001, 32(2): 325.
    [205] Schuett, S., Bonhoeffer, T., and Hubener, M. Mapping retinotopic structure in mouse visual cortex with optical imaging [J]. J Neurosci, 2002, 22(15): 6549.
    [206] Schummers, J., Marino, J., and Sur, M. Synaptic integration by V1 neurons depends on location within the orientation map [J]. Neuron, 2002, 36(5): 969.
    [207] Shao, Z., and Burkhalter, A. Different balance of excitation and inhibition in forward and feedback circuits of rat visual cortex [J]. J Neurosci, 1996, 16(22): 7353.
    [208] Shapley, R., Hawken, M., and Ringach, D. L. Dynamics of orientation selectivity in the primary visual cortex and the importance of cortical inhibition [J]. Neuron, 2003, 38(5): 689-699.
    [209] Sherk, H. Location and connections of visual cortical areas in the cat's suprasylvian sulcus [J]. J Comp Neurol, 1986, 247(1): 1.
    [210] Sherk, H., and Fowler, G. A. Lesions of extrastriate cortex and consequences for visual guidance during locomotion [J]. Exp Brain Res, 2002, 144(2): 159.
    [211] Sherk, H., and Mulligan, K. A. A reassessment of the lower visual field map in striate-recipient lateral suprasylvian cortex [J]. Vis Neurosci, 1993, 10(1): 131.
    [212] Sherk, H., and Ombrellaro, M. The retinotopic match between area 17 and its targets in visual suprasylvian cortex [J]. Exp Brain Res, 1988, 72(2): 225-236.
    [213] Shevelev, I. A., Eysel, U. T., Lazareva, N. A., and Sharaev, G. A. The contribution of intracortical inhibition to dynamics of orientation tuning in cat striate cortex neurons [J]. Neuroscience, 1998a, 84(1): 11.
    
    [214] Shevelev, I. A., Jirmann, K. U., Sharaev, G. A., and Eysel, U. T. Contribution of GABAergic inhibition to sensitivity to cross-like figures in striate cortex [J]. Neuroreport, 1998b, 9(14): 3153.
    [215] Shipp, S., and Grant, S. Organization of reciprocal connections between area 17 and the lateral suprasylvian area of cat visual cortex [J]. Vis Neurosci, 1991, 6(4): 339.
    [216] Shipp, S., and Zeki, S. The Organization of Connections between Areas V5 and V1 in Macaque Monkey Visual Cortex [J]. Eur J Neurosci, 1989a, 1(4): 309.
    [217] Shipp, S., and Zeki, S. The Organization of Connections between Areas V5 and V2 in Macaque Monkey Visual Cortex [J]. Eur J Neurosci, 1989b, 1(4): 333.
    [218] Shipp, S., and Zeki, S. Segregation and convergence of specialised pathways in macaque monkey visual cortex [J]. J Anat, 1995, 187 (Pt 3): 547.
    [219] Shmuel, A., and Grinvald, A. Functional organization for direction of motion and its relationship to orientation maps in cat area 18 [J]. J Neurosci, 1996, 16(21): 6945.
    [220] Shmuel, A., Korman, M., Sterkin, A., Harel, M., Ullman, S., Malach, R., and Grinvald, A. Retinotopic axis specificity and selective clustering of feedback projections from V2 to V1 in the owl monkey [J]. J Neurosci, 2005,25(8): 2117-2131.
    [221] Shoham, D., and Grinvald, A. The cortical representation of the hand in macaque and human area S-I: high resolution optical imaging [J]. J Neurosci, 2001,21(17): 6820.
    [222] Shoham, D., Hubener, M., Schulze, S., Grinvald, A., and Bonhoeffer, T. Spatio-temporal frequency domains and their relation to cytochrome oxidase staining in cat visual cortex [J]. Nature, 1997, 385(6616): 529.
    [223] Shostak, Y., Ding, Y., and Casagrande, V. A. Neurochemical comparison of synaptic arrangements of parvocellular, magnocellular, and koniocellular geniculate pathways in owl monkey (Aotus trivirgatus) visual cortex [J]. J Comp Neurol, 2003,456(1): 12.
    [224] Shou, T., Ruan, D., and Zhou, Y. The orientation bias of LGN neurons shows topographic relation to area centralis in the cat retina [J]. Exp Brain Res, 1986,64(1): 233.
    [225] Shou, T. D., and Leventhal, A. G. Organized arrangement of orientation-sensitive relay cells in the cat's dorsal lateral geniculate nucleus [J]. J Neurosci, 1989, 9(12): 4287.
    [226] Shtoyerman, E., Arieli, A., Slovin, H., Vanzetta, I., and Grinvald, A. Long-term optical imaging and spectroscopy reveal mechanisms underlying the intrinsic signal and stability of cortical maps in V1 of behaving monkeys [J]. J Neurosci, 2000,20(21): 8111.
    [227] Sillito, A. M. GABA mediated inhibitory processes in the function of the geniculo-striate system [J]. Prog Brain Res, 1992, 90: 349-384.
    [228] Sillito, A. M, Cudeiro, J., and Murphy, P. C. Orientation sensitive elements in the corticofugal influence on centre-surround interactions in the dorsal lateral geniculate nucleus [J]. Exp Brain Res, 1993, 93(1): 6.
    [229] Sillito, A. M., Jones, H. E., Gerstein, G. L., and West, D. C. Feature-linked synchronization of thalamic relay cell firing induced by feedback from the visual cortex [J]. Nature, 1994, 369(6480): 479.
    [230] Simoncelli, E. P., and Olshausen, B. A. Natural image statistics and neural representation [J]. Annu Rev Neurosci, 2001, 24: 1193-1216.
    [231] Sincich, L. C., Park, K. F., Wohlgemuth, M. J., and Horton, J. C. Bypassing V1: a direct geniculate input to area MT [J]. Nat Neurosci, 2004, 7(10): 1123-1128.
    [232] Sirovich, L., and Everson, R. Management And Analysis Of Large Scientific Datasets [J]. International Journal Of Supercomputer Applications And High Performance Computing, 1992, 6(1): 50-68.
    [233] Sirovich, L., Everson, R., Kaplan, E., Knight, B. W., Obrien, E., and Orbach, D. Modeling the functional organization of the visual cortex [J]. Physica D, 1996, 96(1-4): 355-366.
    [234] Sirovich, L., and Uglesich, R. The organization of orientation and spatial frequency in primary visual cortex [J]. Proc Natl Acad Sci U S A, 2004, 101(48): 16941-16946.
    [235] Somers, D. C., Todorov, E. V., Siapas, A. G., Toth, L. J., Kim, D. S., and Sur, M. A local circuit approach to understanding integration of long-range inputs in primary visual cortex [J]. Cereb Cortex, 1998, 8(3): 204.
    [236] Soodak, R. E., Shapley, R. M., and Kaplan, E. Linear mechanism of orientation tuning in the retina and lateral geniculate nucleus of the cat [J]. J Neurophysiol, 1987, 58(2): 267.
    [237] Sornborger, A., Sailstad, C., Kaplan, E., and Sirovich, L. Spatiotemporal analysis of optical imaging data [J]. Neuroimage, 2003, 18(3): 610-621.
    [238] Spear, P. D., Miller, S., and Ohman, L. Effects of lateral suprasylvian visual cortex lesions on visual localization, discrimination, and attention in cats [J]. Behav Brain Res, 1983, 10(2-3): 339.
    [239] Sprague, J. M., Berlucchi, G., and Antonini, A. Immediate postoperative retention of visual discriminations following selective cortical lesions in the cat [J]. Behav Brain Res, 1985, 17(2): 145.
    [240] Sprague, J. M., Levy, J., DiBerardino, A., and Berlucchi, G. Visual cortical areas mediating form discrimination in the cat [J]. J Comp Neurol, 1977, 172(3): 441.
    [241] Suh, M., Bahar, S., Mehta, A. D., and Schwartz, T. H. Temporal dependence in uncoupling of blood volume and oxygenation during interictal epileptiform events in rat neocortex [J]. J Neurosci, 2005,25(1): 68-77.
    [242] Symonds, L. L., and Rosenquist, A. C. Corticocortical connections among visual areas in the cat [J]. J Comp Neurol, 1984a, 229(1): 1-38.
    [243] Symonds, L. L., and Rosenquist, A. C. Laminar origins of visual corticocortical connections in the cat [J]. J Comp Neurol, 1984b, 229(1): 39-47.
    [244] Tardif, E., Bergeron, A., Lepore, F., and Guillemot, J. P. Spatial and temporal frequency tuning and contrast sensitivity of single neurons in area 21a of the cat [J]. Brain Res, 1996, 716(1-2): 219-223.
    [245] Tasaki, I., Watanabe, A., Sandlin, R., and Carnay, L. Changes in fluorescence, turbidity, and birefringence associated with nerve excitation [J]. Proc Natl Acad Sci U S A, 1968, 61(3): 883-888.
    [246] Toga, A. W., Cannestra, A. F., and Black, K. L. The Temporal Spatial Evolution Of Optical Signals In Human Cortex [J]. Cereb Cortex, 1995, 5(6): 561-565.
    [247] Tong, L., Kalil, R. E., and Spear, P. D. Thalamic Projections To Visual Areas Of The Middle Suprasylvian Sulcus In The Cat [J]. J Comp Neurol, 1982, 212(2): 103-117.
    [248] Ts'o, D. Y., Frostig, R. D., Lieke, E. E., and Grinvald, A. Functional organization of primate visual cortex revealed by high resolution optical imaging [J]. Science, 1990,249(4967): 417.
    [249] Tsumoto, T, Creutzfeldt, O. D., and Legendy, C. R. Functional organization of the corticofugal system from visual cortex to lateral geniculate nucleus in the cat (with an appendix on geniculo-cortical mono-synaptic connections) [J]. Exp Brain Res, 1978, 32(3): 345-364.
    [250] Tusa, R. J., and Palmer, L. A. Retinotopic organization of areas 20 and 21 in the cat [J]. J Comp Neurol, 1980, 193(1): 147-164.
    [251] Tusa, R. J., Palmer, L. A., and Rosenquist, A. C. The retinotopic organization of area 17 (striate cortex) in the cat [J]. J Comp Neurol, 1978, 177(2): 213-235.
    [252] Tusa, R. J., Rosenquist, A. C, and Palmer, L. A. Retinotopic organization of areas 18 and 19 in the cat [J]. J Comp Neurol, 1979, 185(4): 657-678.
    [253] Ungerleider, L. G., and Mishkin, M. Two cortical visual systems. [M]. Cambridge: MIT Press, 1982, (Issue): Pages.
    [254] Updyke, B. V. Topographic Organization Of Projections From Cortical Areas 17, 18, And 19 Onto Thalamus, Pretectum And Superior Colliculus In Cat [J]. J Comp Neurol, 1977, 173(1): 81-121.
    [255] Updyke, B. V. Projections From Visual Areas Of The Middle Suprasylvian Sulcus Onto The Lateral Posterior Complex And Adjacent Thalamic Nuclei In Cat [J]. J Comp Neurol, 1981, 201(4): 477-506.
    [256] Vajda, I., Lankheet, M. J., Borghuis, B. G, and van de Grind, W. A. Dynamics of directional selectivity in area 18 and PMLS of the cat [J]. Cereb Cortex, 2004, 14(7): 759.
    [257] Van Essen, D. C., Anderson, C. H., and Felleman, D. J. Information processing in the primate visual system: an integrated systems perspective [J]. Science, 1992,255(5043): 419.
    [258] Van Essen, D. C, Felleman, D. J., DeYoe, E. A., Olavarria, J., and Knierim, J. Modular and hierarchical organization of extrastriate visual cortex in the macaque monkey [J]. Cold Spring Harb Symp Quant Biol, 1990, 55: 679.
    [259] vanderSchaaf, A., and vanHateren, J. H. Modelling the power spectra of natural images: Statistics and information [J]. Vision Res, 1996, 36(17): 2759-2770.
    [260] Vanduffel, W., Payne, B. R., Lomber, S. G., and Orban, G. A. Functional impact of cerebral connections [J]. Proc Natl Acad Sci U S A, 1997, 94(14): 7617.
    [261] Vanzetta, I., and Grinvald, A. Increased cortical oxidative metabolism due to sensory stimulation: implications for functional brain imaging [J]. Science, 1999, 286(5444): 1555.
    [262] Vanzetta, I., and Grinvald, A. Evidence and lack of evidence for the initial dip in the anesthetized rat: implications for human functional brain imaging [J]. Neuroimage, 2001, 13(6 Pt 1): 959.
    [263] Vanzetta, I., Hildesheim, R., and Grinvald, A. Compartment-resolved imaging of activity-dependent dynamics of cortical blood volume and oximetry [J]. J Neurosci, 2005, 25(9): 2233-2244.
    [264] Vidyasagar, T. R. A neuronal model of attentional spotlight: parietal guiding the temporal [J]. Brain Res Brain Res Rev, 1999, 30(1): 66.
    [265] Vidyasagar, T. R., Kulikowski, J. J., Lipnicki, D. M., and Dreher, B. Convergence of parvocellular and magnocellular information channels in the primary visual cortex of the macaque [J]. Eur J Neurosci, 2002, 16(5): 945.
    [266] Vidyasagar, T. R., Pei, X., and Volgushev, M. Multiple mechanisms underlying the orientation selectivity of visual cortical neurones [J]. Trends Neurosci, 1996, 19(7): 272.
    [267] Vidyasagar, T. R., and Urbas, J. V. Orientation sensitivity of cat LGN neurones with and without inputs from visual cortical areas 17 and 18 [J]. Exp Brain Res, 1982,46(2): 157.
    [268] Volgushev, M., Vidyasagar, T. R., Chistiakova, M., Yousef, T., and Eysel, U. T. Membrane properties and spike generation in rat visual cortical cells during reversible cooling [J]. J Physiol, 2000, 522 Pt 1:59.
    [269] von Grunau, M. W., Zumbroich, T. J., and Poulin, C. Visual receptive field properties in the posterior suprasylvian cortex of the cat: a comparison between the areas PMLS and PLLS [J]. Vision Res, 1987, 27(3): 343.
    [270] Wang, C., Dreher, B., Assaad, N., Ptito, M., and Burke, W. Excitatory convergence of Y and non-Y channels onto single neurons in the anterior ectosylvian visual area of the cat [J]. Eur J Neurosci, 1998, 10(9): 2945.
    [271] Wang, C., Dreher, B., Huxlin, K. R., and Burke, W. Excitatory convergence of Y and non-Y information channels on single neurons in the PMLS area, a motion area of the cat visual cortex [J]. Eur J Neurosci, 1997, 9(5): 921.
    [272] Wang, C., Waleszczyk, W. J., Burke, W., and Dreher, B. Modulatory influence of feedback projections from area 21a on neuronal activities in striate cortex of the cat [J]. Cereb Cortex, 2000, 10(12): 1217.
    [273] Wang, G., Tanaka, K., and Tanifuji, M. Optical imaging of functional organization in the monkey inferotemporal cortex [J]. Science, 1996, 272(5268): 1665-1668.
    [274] Wang, Y., Wang, L., Li, B., Wang, L. H., and Diao, Y. C. How is direction selectivity organized in the extrastriate visual area PMLS of the cat? [J]. Neuroreport, 1995, 6(15): 1969.
    [275] Weber, A. J., Kalil, R. E., and Behan, M. Synaptic connections between corticogeniculate axons and interneurons in the dorsal lateral geniculate nucleus of the cat [J]. J Comp Neurol, 1989,289(1): 156-164.
    [276] Weliky, M., Bosking, W. H., and Fitzpatrick, D. A systematic map of direction preference in primary visual cortex [J]. Nature, 1996, 379(6567): 725.
    [277] Wimborne, B. M., and Henry, G. H. Response characteristics of the cells of cortical area 21a of the cat with special reference to orientation specificity [J]. J Physiol, 1992,449: 457-478.
    [278] Witte, O. W., Buchkremer-Ratzmann, I., Schiene, K., Neumann-Haefelin, T., Hagemann, G, Kraemer, M., Zilles, K., and Freund, H. J. Lesion-induced network plasticity in remote brain areas [J]. Trends Neurosci, 1997, 20(8): 348-349.
    [279] Worgotter, F., and Eysel, U. T. Quantitative determination of orientational and directional components in the response of visual cortical cells to moving stimuli [J]. Biol Cybern, 1987, 57(6): 349.
    [280] Worgotter, F., and Eysel, U. T. Axial responses in visual cortical cells: spatio-temporal mechanisms quantified by Fourier components of cortical tuning curves [J]. Exp Brain Res, 1991, 83(3): 656.
    [281] Worgotter, F., Muche, T., and Eysel, U. T. Correlations between directional and orientational tuning of cells in cat striate cortex [J]. Exp Brain Res, 1991, 83(3): 665.
    [282] Xiao, Y., Zych, A., and Felleman, D. J. Segregation and convergence of functionally defined V2 thin stripe and interstripe compartment projections to area V4 of macaques [J]. Cereb Cortex, 1999, 9(8): 792-804.
    [283] Xing, D., Ringach, D. L., Shapley, R., and Hawken, M. J. Correlation of local and global orientation and spatial frequency tuning in macaque V1 [J]. J Physiol, 2004, 557(Pt 3): 923-933.
    [284] Xing, D., Shapley, R. M., Hawken, M. J., and Ringach, D. L. The effect of stimulus size on the dynamics of orientation selectivity in Macaque V1 [J]. J Neurophysiol, 2005.
    [285] Xu, X., Ichida, J., Shostak, Y., Bonds, A. B., and Casagrande, V. A. Are primate lateral geniculate nucleus (LGN) cells really sensitive to orientation or direction? [J]. Vis Neurosci, 2002, 19(1): 97-108.
    [286] Young, M. P. Objective analysis of the topological organization of the primate cortical visual system [J]. Nature, 1992, 358(6382): 152.
    
    [287] Zeki, S., and Shipp, S. The functional logic of cortical connections [J]. Nature, 1988, 335(6188): 311.
    [288] Zeki, S. M. Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey [J]. J Physiol, 1974, 236(3): 549.
    [289]Zepeda,A.,Arias,C.,and Sengpiel,F.Optical imaging of intrinsic signals:recent developments in the methodology and its applications[J].J Neurosci Methods,2004,136(1):1-21.
    [290]Zhan,X.,and Shou,T.Anatomical evidence of subcortical contributions to the orientation selectivity and columns of the cat's primary visual cortex[J].Neurosci Lett,2002,324(3):247.
    [291]Zhou,Y.,Leventhal,A.G.,and Thompson,K.G.Visual deprivation does not affect the orientation and direction sensitivity of relay cells in the lateral geniculate nucleus of the cat [J].J Neurosci,1995,15(1 Pt 2):689.
    [292]Zumbroich,T.J.,and Blakemore,C.Spatial and temporal selectivity in the suprasylvian visual cortex of the cat[J].J Neurosci,1987,7(2):482.
    [293]Zumbroich,T.J.,von Grunau,M.,Poulin,C.,and Blakemore,C.Differences of visual field representation in the medial and lateral banks of the suprasylvian cortex(PMLS/PLLS) of the cat[J].Exp Brain Res,1986,64(1):77.
    [294]寿天德.视觉信息处理的脑机制[M].上海:上海科技教育出版社,1997

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700