用户名: 密码: 验证码:
中国西南马遗传资源特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国西南马是我国马种主要生态类型之一,经历了遗传变异和自然选择的长期进化过程,在西南地区逐渐分化形成了百色马、贵州马、文山马、乌蒙马、大理马、建昌马、腾冲马、中甸马等优良类群。受其特殊历史、自然、社会诸多条件的影响,西南马形成体形矮小、结构紧凑、抗逆性强、善走山路等特点,可以广泛用于科学研究、观光旅游、艺术表演、骑乘培训、驮负运输等,是中国乃至世界原始矮马资源的宝贵基因库。可见,中国西南马在遗传资源保护利用和现代马业发展中具有重要地位。但国内外关于西南马遗传多样性、起源进化、亲缘关系、资源分布、矮小机理等方面的研究还相对缺乏。本课题在对西南地区马进行初步调查的基础上,运用SAS、SPSS统计分析软件对西南马资源特征进行分析;通过PCR-SSCP技术、PCR产物纯化直接测序等方法,对七个类群的西南马及引入品种Shetland马共150个样品的mtDNA D-Loop区、ND3、ND4、ND4L基因和核内SHOX基因的多态性进行了检测,并进行了多态性与体尺指标相关分析,了解了西南马群体资源表型、分子特征。本文得出以下基本结论:
     (1)中国西南马在数量上已经成为我国五大类型马的第一大类群,影响其数量分布的主要因子是人均农机、人口密度、辖区比重等。非密度制约因子如年无霜期、降水量、日照时数和平均气温等自然因素均与中国西南马体高呈强相关,对不同类群马的形成可能起重要作用。
     (2)对中国西南马mtDNA D-Loop位点进行了研究,结果表明:中国西南马种内遗传多样性相对丰富,在类型间和类型内遗传分化不显著(P>0.05);中国西南马具有多个母系起源,且与蒙古国蒙古马亲缘关系较近,部分西南马起源于普氏野马或蒙古野马。
     (3)在ND4L、ND4基因上游和下游检测到多态:ND4L和ND4上游片段出现两种单倍型(定义为A和B),而且B单倍型出现频率均略高于A单倍型;ND4下游片段中,出现四种单倍型,其中一个为共享单倍型,三个为稀有单倍型。
     (4)西南马线粒体ND4基因和ND4L基因核苷酸组成的偏倚不严重,但在密码子第二和第三位点上,C的含量远远大于G含量,而且密码子的使用存在偏倚。
     (5)所研究的西南马(不包括建昌马)各类群内核苷酸多样性(Pi)较高,在0.00467至0.00737之间,其中大理马最低,乌蒙马最高。各类群间的遗传距离很小,而乌蒙马与其它西南马的遗传距离最大(0.006);类群间的核苷酸分化系数(Nst)在-0.35665至0.01694之间,乌蒙马与其它马种的核苷酸分化系数均较大,且同处云南地区的乌蒙马与大理马之间的Nst值最大,可见乌蒙马与大理马存在遗传分化。
     (6)本文对ND4下游片段的多态性与体尺性状进行了关联分析,结果表明基因型对体长影响显著(P<0.05):D基因型的体长较其余基因型大;对体高和管围的影响接近显著水平(P =0.0809和0.0753),对胸围影响不显著。
     (7)西南马种内遗传多样性低,类群间的遗传距离小,遗传相似度高。乌蒙马独立性最高(Pi=0.00737),可作为独立的管理单元;大理马核苷酸多样度最低(Pi=0.00467),分化最小(k=3.167),保持着类群特有的遗传特质,应该得到良好的保护。
     (8)本研究还首次克隆了西南马矮小性状基因SHOX的部分序列。其长度为520bp,与其他物种已知的SHOX基因序列比对,发现克隆所得的序列是马SHOX基因编码区的部分序列,包含了完整的第二外显子。
     (9)通过对马SHOX基因第二外显子序列与其它物种相应区域序列进行比较发现:不同物种间的第二外显子较保守,未出现不同片段的插入、缺失及短串联重复序列多态现象,且马的SHOX基因富含GC(7个类群马平均为67.85%)。
     (10)通过PCR-SSCP分析,检测到在SHOX基因P2位点268处有一个G→A的突变, 431处有一个T→G的突变,导致了等位基因B变为等位基因A。
     (11)不同类群马SHOX基因P2位点纯合度(Ho)、杂合度(He)、有效等位基因数(Ne)及多态信息含量(PIC)分析表明:多态信息含量(PIC)以文山马最高,为0.513,处于高度多态;以设特兰马为最低,仅为0.222。
Chinese Southwest horse distributes throughout the Southwestern region of China, and is one of the most important composition of Chinese horses owing to their large number and abundant breed types. During undergoing genetic variation and natural selection of a long-term evolutionary course, the different typed populations have been gradually differentiated, such as Baise horse, Guizhou horse, Wenshan horse, Wumeng horse, Dali horse, Jianchang horse, Tengchong horse and Zhongdian horse, and so on. Chinese Southwest horse populations are one of the original and natural pony breeds in the resource pool of China and even the world. Chinese southwest horse is valuable genetic resources of human being because of some good qualities including dwarf somatotype, compact structure, strong stress resistance and being good at walking rugged mountain road. So can be used as materials or tools of scientific research, sightseeing, artistic performance, ridding training, and transportation. In view of this, Chinese southwest horse type populations own important statuses for protective utilization of genetic resource. The profundity of research work was few about Chinese southwest horse's genetic diversity, origin evolution, genetic relationship, resources distribution, and the mechanism of dwarfishness. Based on a preliminary investigation for southwest region of China, including seven local breeds and a foreign variety, Shetland, totaled 150 samples, we detected the polymorphisms of D-Loop region, ND3, ND4, ND4L on mitochondrial DNA and SHOX on nuclear DNA by PCR-SSCP, sequencing, and other methods, and analyzed the resource characteristics of South-west horse by using SAS, SPSS statistical analysis software. And we conducted a correlation analysis between polymorphisms and body measurements, further understanding the colony resource’s phenotypic and molecular characteristics of Chinese southwest horse populations, the basic conclusions were followed:
     (1) Considering the amount of Chinese southwest horse as it stands, it has become the largest group in the five main groups in China. The main factors of influencing the abundance distribution were: agricultural machinery per capita, population density, administrative district ratio, and so on. The density-independent factors were taken into account and annual frost-free period, precipitation, sunshine hours, the average temperature have powerful effect for Chinese southwest horses and they might play a leading role in the formation of different Chinese southwest horse types.
     (2) The mtDNA D-Loop of Chinese southwest horses were detected and sequenced. The results showed that there is relatively abundant genetic diversity in Chinese southwest horse populations and the he genetic differentiation of Chinese southwest horse within the types and among the types is not significant (P>0.05). And more Chinese southwest horse came of multiple female ancestors, close genetic relationship with Mongolian horse of Mongolia, and several South-west horse populations originated from Przewalskii horse, namely Mongolian wild horse.
     (3) Polymorphisms in ND4L, upstream and downstream of ND4 gene were detected: ND4L and upstream of the ND4 fragment both exist two haplotypes (defined as A and B), and the frequency of B haplotype were slightly higher than the A haplotype; in the downstream of ND4 fragments, there are four haplotypes, and one is shared haplotype, the others are rare ones.
     (4) The bias of nucleotide composition of ND4 and ND4L genes in South-west horse is not critical, but on the sites of the second and third codons, the content of C is far greater than the content of G, and found bias exist in the usage of the codons.
     (5) Nucleotide diversity (Pi) of six groups(excluding Jianchang horse) within Chinese southwest horse alternates from 0.00467 to 0.00737, and the results showed abundant polymorphism appeared inter-groups. Genetic distance is lower among all types, and the genetic distance between Wumeng horse and the others are the greatest (0.006). The Index of Nucleotide Differentiation (Nst) among six groups varies between -0.35665 to 0.01694 and Nst of Wumeng horse and other groups are all relatively big. The Nst between Wumeng and Dali horse is the largest one, despite in the same district, therefore genetic differentiation exists between Wumeng horse and Dali horse.
     (6) The correlation analysis between the polymorphisms of ND4 downstream fragment and body size showed that the genotype had significant impact on body length (P <0.05): the effect of genotype D is the largest one among all the genotype effects; the impacts of genotype on height and cannon circumference were close to a significant level (P = 0.0809 and 0.0753), the chest circumference was not significantly affected.
     (7) Chinese southwest horse showed low genetic diversity, close genetic distance, and high genetic similarity within groups. The independence of Wu Meng horse is the highest (Pi=0.00737) one, so can be tackled as an independent management unit; nucleotide diversity of Dali horse is minimum (Pi=0.00467), and the coefficient of division is smallest (k= 3.167), maintained as a unique group of genetic specialty, so it should be well protected. (8 In the paper, we cloned a partial sequence of the SHOX gene about dwarfism trait of pony for the first time. The length of the sequence is 520bp. After aligning, showed that the sequence we acquired is partial CDS of SHOX gene, including the complete the second exon.
     (9) By aligning with other species on the homologous sequence of the second exon of SHOX gene, we discovered that the second exon is more conservative among different species, no Indels(insertion and deletion) and STRs(short tandem repeat) were found in the region, and the SHOX gene of horse is GC-rich (the average value of seven groups is 67.85%).
     (10) Detecting the variations in the SHOX gene via PCR-SSCP, we found in the P2 locus of 268 existed a G→A transition, and at 431 was a T→G transversion, resulting in the B allele into allele A.
     (11) The analysis of SHOX gene P2 locus about the gene heterozygosity(He), the gene homogeneity index(Ho), the number of effective allele(Ne), and polymorphic information content (PIC) showed that: the value of PIC of Yunnan Wenshan horse is significant than the others, and it is 0.513, in a high polymorphic degree; Sheteland horses were the lowest, only is 0.222.
引文
1中国家畜家禽品种志编委会.《中国马驴品种志》[M].上海科学技术出版社,1986
    2中国现代养马编写组.《中国现代养马》[M].新疆人民出版社,1981
    3芒来,孟青龙.马业科学[C].内蒙古农业大学印制中心.2003.3
    4姚新奎,等.马生产管理学[M].中国农业大学出版社,2008,09
    5孙玉江,蒋涛,芒来.中国驴种遗传资源保护利用研究[J].中国草食动物.2006,12
    6 Max D.T. Can You Revive an Extinct Animal? [J].The New York Times. 2006,1
    7 Stephen Jay Gould.Reflections in Natural History[M].Bully for Brontosaurus.1991:155-167
    8侯文通,王永军.中国马驴遗传资源研究[C].西北农林科技大学,2002
    9董君明.马的演化[J].生物学教学,1998,12:33
    10 Rev Upd Su.Henry Morris Science and The Bible[M].Moody Publishers edition .1986
    11 Clabby,John. The Natural History of the Horse[M]. New York.Taplinger Publishing Company,1976
    12 Alfred Sherwood Romer.Vertebrate Paleontology[M],The University of Chicago Press, 1966:265
    13 Douglas J. Futuyma Evolutionary Biology[M].Third Edition.1998: 161
    14谢成侠.《中国养马史》(修订版)[M].中国农业出版社1991
    15芒来,李金莲,石有斐.中国蒙古马与国外纯血马mtDNA D-Loop高变区序列比较.遗传,2005,27(1):91~94
    16李金莲,芒来.纯血马mtDNA D-Loop高变区序列分析(英)[J].内蒙古农业大学学报,2004,25(4):5~8
    17孟青龙,李金莲,芒来,张焱如.中国蒙古马mtDNA D-Loop高变区序列分析[J].畜牧与饲料科学,2004,5:35~37
    18李金莲,石有斐,布仁其其格,芒来.三大不同品种马mtDNA Cytb基因的PCR-RFLP分析[J].遗传,2006,28(9~10).
    19李均.西南马渊源研究[D].西北农业大学,1989
    20佘长年.西南马驴分类汇编[C].中国西南马品种资源考察团.1982,10
    21邓涛.中国矮马与普氏野马的亲缘关系[J],畜牧兽医学报,2000,31(1),28-33
    22邓涛,薛祥熙.中国真马(Equus属)化石的系统演化[J].中国科学D集.1998, Vol.28,6:505-5
    23赵永聚,闵令江.动物遗传资源保护概论[M].南京师范大学出版社,2007,9
    24 McNeely J.A. Conserving the worlds[M].Biological Diversity. Washington D.C. and Gland Switzerland.1990
    25中国生物多样性委员会《生物多样性研究的原理和方法》[M].中国科学技术出版社,1994
    26宿宾.中国八种珍稀动物的遗传多样性与保护[D].中国科学院昆明动物所,1996
    27施立明.遗传多样性及其保护[J].生命科学信息.1990,2(4):158~164
    28张恒庆.《保护生物学》[M].科学出版社.2005
    29王继文.中国主要家鹅类型分子系统进化研究[D].四川农业大学,2003
    30黄百渠,曾庆华,尹东.遗传多样性研究中的分子生物学方法[J].东北师范大学报(自然科学版),1996,(3):90~92
    31 Moritz C.,Dowling T.E.,Brown W.M. Evolution of animal mitochondrial DNA:relevance for population biology and systematics[J]. Annual Review of Ecology and Systematics,198718:269~292
    32 Wilson A.C.,Cann R.L.,Carr S.M. Mitochondrial DNA and two perspectives on evolutionary genetics[J].Biology Journal of the Linnaen Society,1985,26:375~400
    33 Birky C.W.,Fuerst P.,Maruyama T. Organelle gene diversity under migration,mutation and drift:equilibrium expectations,approach to equilibrium,effects of hetero plasmic cells and comparisonton uclear genes[J]. Genetics,1989,121:613~627
    34齐联.野马:荒原上演绎“回家”故事[J].森林与人类,2005,4:38~43
    35李洁.奥运吉祥物我选野马[J].甘肃林业,2005,3:40
    36 Chakravarti A. To a future of genetic medicine [J]. Science, 2001, 409: 822~823
    37 OBrien S J, Menotti-Raymond M and Murphy W J. The promise of comparative genomics in mammals [J]. Science, 1999, 458~463
    38 Tenaillon M, Sawkins M C and Long A D. Pattern of DNA sequence polymorphism along chromosomel of maize [J]. Proc Natl Acad Sci USA, 2001, 98: 9161~9166
    39 Orita M. Rapid and sensitive detection of pointmutation and DNA polymorphisms using the polymerase chainreaction [J].Genomics, 1989, 5: 874~879
    40 Wyman A R and white R. A highly polymorpmt locus in human DNA [J]. Proc Natl Acad. Sci, 1980, 77: 6754~6758
    41 Jeffrey A J. Hyper variable minisatellite regions in human DNA [J]. Nature, 1985, 314: 67~73
    42 Wiuter A K, Ftedholm M and Thomsen P D. Variable(dG-dT)n·(dA-dC)n Sequences in the porcine genome [J]. Genomics, 1992, 12: 281~288
    43 Williams J G K. DNA polymorphism samplified by arbitrary primer sare useful as genetic markers [J]. Nucleic Acids Research, 1990, 18(22): 6531~6535
    44 Welsh J. Fingerprinting genomes using PCR with arbitrary primers [J]. Nucleic Acids Research, 1990, 18(24): 7213~7218
    45 Zabeau M. Selective restriction fragment amplication: ageneral method for DNAfinger printing[P]. Euro-pean Pattern Application, 1993, 5: 348~358
    46 Otsen M, Bieman M D. Amplified fragment length polymorphisms used for the genetic characterization of rat inbred stains [C].Proceedings 24th International society for Animal Genetics, 1994
    47 Cheng J and Sheldon E L. PreParation and by bridization analysis of DNA/RNA from E.coli on microfabricated bioelectronic chips [J]. Natural Biotechnology, 1998, 16(6):541~546
    48 LanderE S. The new genomics, global views of biology [J]. Science, 1996, 274: 536~539
    49 Raudsepp T,et al. A 4,103 marker integrated physical and comparative map of the horse genome [J].Cytogenet Genome Res. 2008;122(1):28-36
    50舍友仁.《内蒙古自治区家畜家禽品种志》[M].内蒙古人民出社,1985
    51 The American Shetland Pony Club.The Journal of The American Shetland Pony Club.2008
    52 Jessica Wilson .one small horse with a whole lot of heart.Java Journal.2007,9
    53王铁权,等.云南(嵩明)矮马的体型及血型特征的研究初报[J].云南畜牧兽医:1995
    54解德文,罗启龙,陈官平,等.云南矮马骨骼及内脏器官初步研究[J].云南畜牧兽,1995
    55解德文,吕铎如,罗启龙,等.昭通地区矮马与普通马头骨的比较研究[J].云南畜牧兽医,1995
    56解德文,何继福.云南矮马生理生化的研究[J].云南畜牧兽医,1995
    57解德文,刘爱华,林世英.云南马关县矮马线粒体DNA的限制性片段长度多态性分析[J].云南畜牧兽医,1995
    58刘爱华,林世英,解德文.云南矮马与普通马的比较细胞遗传学观察[J].云南畜牧兽医,1995
    59王振山,岳高峰.中国矮马运铁蛋白遗传多态性的初步研究[J].黑龙江畜牧兽医,2001,10
    60贺福初.发展的进化理论[J].百科知识,1994,7:48~49
    61潘宝平.生物进化理论的新进展[J].生物学通报,2002,37(2):8~10
    62张建民.《现代遗传学》[M].化学工业出版社,2005
    63 Kimura M. The rate at molecular level [J]. Nature,1968,217:624~626
    64 Zuckerkandl E.,Pauling L. Evolution divergence and convergence in protein. In evolving genes and protein [M]. Academic Press,New York,1965,97~166
    65孟冬梅.鸭科鸟类分子钟标定研究[D].四川农业大学,2004
    66罗静,张亚平.分子钟及其存在的问题[J].人类学学报,2000,19(2):151~159
    67 Zuckerandl E.,Pauling L. Molecular disease,evolution and genetic heterogeneity. In Horizons in biochemistry(M.Kasha and B.Puiiman,eds)[M]. Academic Press,New York,1962,189~225
    68 Zuckerkandl E.,Pauling L. Evolution divergence and convergence in protein. In evolving genes and protein(V. Bryson and H. J. Voel,eds)[M]. Academic Press,New York,1965,97~166
    69 Margoliash E. Primary structure and evolution of cytochrome C [C]. Proc. Natl. Acad. Sci. USA.,1963,50:672~679
    70张昀.生物进化[M].高等教育出版社,1998
    71钟扬,熊苏华,唐先华.红树科6属cpDNA和nrDNA序列相对速率检验及分歧时间估计[J].科学通报,2000,45(1):40~44
    72 Ayala F.J.,Rzbhetsky A. Origin of the metazoan phyla:Molecular clocks confirm paloontological estimates [C]. Proc. Natl. Acad. Sci. USA.,1998,95:606~611
    73沈银柱.进化生物学[M].高等教育出版社,2002
    74 Irwin D.M.,Kocher T.D.,Wilson A.C. Evolution of cytochrome b gene of mammals[J]. J. Mol. Evol.,1991,32:128~144
    75 Bromham L. Molecular clock in reptile:life history influences rate of molecular evolution[M].2002,3:302~309
    76王亚馥,戴灼华.遗传学[M].高等教育出版社,2003
    77 Carroll, C. L., and P. J. Huntington , () Body Condition Scoring and Weight Estimation of Horses, Equine Veterinary Journal . 1988,20 (1), 41~45
    78 Myka JL,Lear TL,Houck ML,Ryder OA,Bailey E.FISH analysis comparing genome organization in the domestic horse (Equus caballus) to that of the Mongolian wild horse (E.przewalskii).Cytogenet Genome Res,2003;102(1-4):222~225
    79 Wallner B.,Brem G.,Muller M.,Achmann R. Fixed nucleotide differences on the Y chromosome indicate clear divergence between Equus przewalskii and Equus caballus[J]. Animal Genetics,2003,34(6):453~456
    80 Lindgren G.,Backstrom N.,Swinburne J.,Hellborg L.,Einarsson A.,Sandberg K.,Cothran G.,Vila C.,Binns M.,Ellegren H. Limited number of patrilines in horse domestication[J]. Nat. Genet.,2004,36(4):335~336
    81张玉静.《分子遗传学》[M].科学出版社,2000
    82王振山,李建成,郭永新.中国矮马血液遗传标记的初步研究[J].黑龙江畜牧兽医,2002,10
    83王振山.三河马6-磷酸葡萄糖脱氢酶及葡萄糖磷酸异构酶的多态性[J].黑龙江畜牧兽医,2001,2:6~9
    84王振山,历卫宏,李建成.中国纯血马血红蛋白多态性的遗传分析[J].黑龙江畜牧兽医, 2000,7:3~4
    85王振山,郭永新,李建成.三河马运铁蛋白型的研究[J].畜牧与兽医,2002,34(1):10~22
    86王振山,德江等.玉树藏马运铁蛋白的遗传多态性[J].内蒙古畜牧科学2000, 21(3):5~7
    87王振山,张玉国.微卫星DNA多态性及其在马匹品种登记中的应用.中国畜牧杂志,2001,37(4):43~44
    88 Ishida N.,Hasegawa T.,Oyunsuren T.,Mukoyama H. PCR-RFLP analysis of the cytochrome b gene in horse mitochondrial DNA [J]. Animal Genetics, 1996,27:359~363
    89 Terje Raudsepp, Avni Santani, Barbara Wallner.et al.A detailed physical map of the horse Y chromosome[J].PANS.2004
    90 Thomas Jansen,Peter Forster. Mitochodrial DNA and the origions of the domestic horse. Population Biology,2002;99 :10905-10910
    91 Tosso Leeb,Claus Vogl,Baoli Zhu ,eta al.A human﹡horse comparative map based on equine BAC end sequences[J].Genomics.2006,87:772~776
    92 Lopes M.S.,Mendonca D.,Cymbron T.,Valera M.,Costa-Ferreira J..Machado Ada C. The Lusitano horse maternal lineage based on mitochondrial D-loop sequence variation[J]. Animal Genetics,2005,36(3):196~202
    93 Ishida N.,Hasegawa T.,Takeda K.,Sakagami M.,Onishi A.,Inumaru S.,Komatsu M.,Mukoyama H. Polymorphic sequence in the D-loop region of equine mitochondrial DNA [J]. Animal Genetics,1994,25(4):215~221
    94 Marklund S,Chaudhary R,Marklund L, et al. Extensive mtDNA diversity in horses revealed by PCR-RFLP analysis.Animal Genet,1995,26(3):193~196
    95芒来,李金莲.中国蒙古马与国外纯血马mtDNA D-Loop高变区序列比较[J].遗传,2005,27(1):145-150
    96张焱如,芒来.蒙古马生长激素基因的克隆与序列分析[J].中国畜牧杂志,2006,2
    97李金莲,芒来.利用微卫星标记对蒙古马和纯血马遗传多样性的研究[J].畜牧兽医学报,2005,36:6-9
    98范彩云,芒来.六个类型马DRD4基因的克隆与序列的比较分析[J].畜牧兽医学报,2007
    99史宪伟.云南四个马品种的随机扩增多态DNA(RAPD)分析[J].牧兽医学报,1998,29(3):193~203
    100张云生,王小斌,雷初朝,等.中国5个家驴品种mtDNA Cytb基因遗传多样性与起源研究[C].第十一次畜禽遗传标记研讨会.2008,10
    101鲁长吉,谢文美,苏锐,等.中国家驴非洲起源研究遗传[C].第十一次畜禽遗传标记研讨会2008,30(3):324~328
    102葛庆兰,雷初朝,将永青,等.中国家驴mtDNA D-loop遗传多样性与起源研究[J].畜牧兽医学报,2007,38(7)
    103 Jiangxing Chen,Zhenhua Song,Liang Chi,et al.The Correlation Analysis between Cytb Polymorphism and Growth Traits in Three Chinese Donchey Breed Animal BiotechnologyBulletin.2008,10:859-865
    104 NAss, M. M. K., and S. Nass.Intramitochondrial fibers with DNA characteristics. I. Fixation and electron staining reactions[J]. Cell Biol. 1963,19:593~611
    105 NAss, S., and M. M. K. Nass. Intramitochondrial fibers with DNA characteristics. II. Enzymatic and other hydrolytic treatments[J]. Cell Biol. 1963,19:613~629
    106 George M.J.,Ryder O.A. Mitochondrial DNA evolution in the genus Equus[J]. Mol. Biol. Evol.,1986,3(6):535~546
    107 Oh M.Y.,Jung Y.H. Mitochondrial DNA polymorphism in Cheju and Tsushima native horses using SSCP analysis[J]. Genetics,2001,23:35~43
    108 Ishida N.,Hirano T.,Mukoyama H. Detection of aberrant alleles in the D-loop region of equine mitochondrial DNA by single-strand conformation polymorphism(SSCP) analysis[J]. Animal Genetics,1994b,25(4):287
    109 Mirol P.M.,Peral Garcia P.,Vega-Pla J.L.,Dulout F.N. Phylogenetic relationships of Argentinean Creole horses and other South American and Spanish breeds inferred from mitochondrial DNA sequences[J]. Animal Genetics,2002,33:356~363
    110 Ishida N.,Oyunsuren T.,Mashima S.,Mukoyama H.,Saitou N. Mitochondrial DNA sequences of various species of the genus Equus with special reference to the phylogenetic relationship between Przewalskii's wild horse and domestic horse [J]. J. Mol. Evol.,1995,41(2):180~188
    111 Kim K.I.,Yang Y.H.,Lee S.S.,Park C.,Ma R.,Bouzat J.L.,Lewin H.A. Phylogenetic relationships of Cheju horses to other horse breeds as determined by mtDNA D-loop sequence polymorphism [J]. Animal Genetics,1999,30(2):102~108
    112 Bowling A.T.,Del Valle A.,Bowling M. A pedigree-based study of mitochondrial D-loop DNA sequence variation among Arabian horses[J]. Animal Genetics,2000,31(1):1~7
    113 VilàC.,Leonard J.A.,G?therstr?m A.,Marklund S.,Sandberg K.,Lidén K.,Wayne R. K.,Ellegren H. Widespread Origins of Domestic Horse Lineages [J]. Science,2001,291:474~477
    114 Hill E.W.,Bradley D.G.,Al-Barody M.,Ertugrul O.,Splan R.K.,Zakharov I. Cunningham E.P. History and integrity of thoroughbred dam lines revealed in equine mtDNA variation[J]. Animal Genetics,2002,33(4):287~294
    115 Lindsay E.H.,Opdyke N.D.,Johnson N.M. Pliocene dispersal of the horse Equus andlate Cenozoic mammalian dispersal events[J]. Nature,1980,287,135~138
    116 Jung Y.H.,Han S.H.,Shin T.,Oh M.Y. Genetic characterization of horse bone excavated from the Kwakji archaeological site,Jeju,Korea[J]. Mol. Cells,2002,14(2):224~230
    117 Jaco Weinstock, Eske Willerslev, Andrei Sher,et al.Evolution, Systematics, and Phylogeography of Pleistocene Horses in the New World:A Molecular Perspective PLoS BIOLOGY。2005,8:3(8)
    118赵春江,韩国才,秦应和,吴常信.应用核基因和线粒体基因多态性联合分析法鉴定马和驴及其杂种后代[C].中国马业论文集,中国农业科学技术出版社,2005,1:133~139
    119 Wang W.,Liu A.H.,Lin S.Y.,Lan H.,Su B.,Xie D.W.,Shi L.M. Multiple genotypes of mitochondrial DNA with a horse population from a small region in Yunnan province of China[J]. Biochemical Genetics,1994,32:371~378
    120 Feng Xu.Anette Gullberg,The complete mitochondrial DNA(mtDNA)of the donkey and mtDNA comparisons among four closely related mammalian species-pairs.Molecular Evolution (USA),1996.43:438~446
    121王镜岩,朱圣庚,徐长法.生物化学[M],高等教育出版社.2004
    122 Brown, G G, Desrosiers, L J. Rat mitochondrial DNA polymorphism: sequence analysis of a hypervariable site for insertions/deletions. Nucl Acids Res,1983 11,6699﹡6708.
    123雷初朝.中国四个畜种mtDNA遗传多样性研究.西北农林科技大学博士学位论文,2000
    124陈瑜,侯万儒.四川黑熊NADH脱氢酶亚基4基因的序列分析.第三军医大学学报,2007,29(4):318~320
    125张志和.华南虎保护遗传学研究.浙江大学,博士论文.2006
    126张文平.华南虎、东北虎、孟加拉虎的D-loop, NDS, 16S rRNA、CytB序列及其在系统进化研究中的应用.四川大学,硕士论文.2005
    127李建华.六个家鹅品种ND4基因序列进化与群体遗传结构分析.四川农业大学硕士学位论文,2004
    128刘自民,韦毅.白头叶猴线粒体ND4基因和D-环区的序列及其分类地位初探.广西科学,1997,4(1):64~71
    129王静波,胡长龙.线粒体DNA(mtDNA)多态性在动物保护生物学中的应用.生物多样性.2001,9(2):181~187
    130 Moritz C. Defining Evolutionarily Significant Units for conservation. Trends Ernl Evol, 1994,9:373~375
    131 Houlden B. A., Costello B. H., Sharkey D. Phylogeographic differentiationin themitochondrial control region in the koala,Phascolarctos cinereus. Molecular Ecology,8:999~1011.
    132 Barratt E.M., Gurnell J. Genetic structure of red squirrel (Sciurus vulgaris) in the U.K.Molecular Ecology,8(12): 555~563
    133刘海.梅花鹿的种群遗传结构及分子标记在海关进出口动物产品鉴定中的应用研究.南京师范大学,硕士论文.2003
    134崔雨新,王小明.在线粒体DNA细胞色素b因素序列水平上对鬣羚系统发育的研究〔J〕.兽类学报,2001,21 (4):251~257
    135王静.羚牛分子系统地理学初探.西北大学硕士论文.2001
    136 Kark S., Alkon P.U.Conservation priorities for chukar partridge in Tsrael based on genetic diversity across an ecological gradient.Conservation Biology, 13(3):542~552
    137 ffardi, O.; Maraschio, P.; Lo Curto, F.; Muller, U.; Giarola, A.; Perotti, L. :The role of Yp in sex determination: new evidence from X/Y translocations. Am. J. Med. Genet. 12: 175-184, 1982.
    138 Boettcher, P. J., A. E. Freeman, S. D. Johnston, R. K. Smith, D. C. Beitz, and B. T. McDaniel. 1996. Relationships between polymorphism for mitochondrial deoxyribonucleic acid and yield traits of Holstein cows. J. Dairy Sci. 1990,79:647~654.
    139 Ogata, T.; Goodfellow, P.; Petit, C.; Aya, M.; Matsuo, N. : Short stature in a girl with a terminal Xp deletion distal to DXYS15: localisation of a growth gene(s) in the pseudoautosomal region. J. Med. Genet. 29: 455-459, 1992.
    140 Ogata, T.; Petit, C.; Rappold, G.; Matsuo, N.; Matsumoto, T.; Goodfellow, P. : Chromosomal localisation of a pseudoautosomal growth gene(s). J. Med. Genet. 29: 624-628, 1992.
    141 Ellison, J. W.; Wardak, Z.; Webster, M.; Chiong, W. : PHOG, a candidate gene for involvement in the short stature of Turner syndrome. (Abstract) Am. J. Hum. Genet. 59 (suppl.): A32, 1996.
    142 Rao, E.; Weiss, B.; Fukami, M.; Mertz, A.; Meder, J.; Ogata, T.; Heinrich, U.; Garcia-Heras, J.; Schiebel, K.; Rappold,A. :FISH-deletion mapping defines a 270-kb short stature critical interval in the pseudoautosomal region PAR1 on human sex chromosomes. Hum. Genet. 100: 236-239, 1997.
    143 Chan J M, Stampfer M J, Giovanucci E, et al. Plasma insulin-like growth factor-I and prostate cancer risk: a prospective study[J]. Science, 1998, 279: 563-566.
    144 Clement-JonesM,Schiller S,Rao E,et al.The short stature homeobox gene SHOX is involved in skeletal abnormalities in Turner syndrome[J].HumMol Genet,2000,9(5):695-702.
    145 Rao, E.; Blaschke, R. J.; Marchini, A.; Niesler, B.; Burnett, M.; Rappold, G. A. : The Leri-Weill and Turner syndrome homeobox gene SHOX encodes a cell-type specific transcriptional activator. Hum. Molec. Genet. 10: 3083-3091, 2001.
    146 Blaschke RJ,Topfer C,Marchini A,et a1.Transcriptional and translational regulation of the Leri-Weill and Turner syndrome homeobox gene SHOX[J].J Biol Chem,2003,278(48):47820-47826.
    147 Morizio E, Stuppia L, Gatta V, et al. Deletion of the SHOX gene in patients with short stature of unknown cause.Am J Med Genet,2003,119A(3):293-296.
    148 Rappold GA, Fukami M, Niesler B,et al. Deletions of the homeobox gene SHOX (short stature homeobox) are an important cause of growth failure in children with short stature.J Clin Endocrinol Metab,2002,87(3):1402-1406.
    149 Munns CF, Glass IA, Flanagan S, et al. Familial growth and skeletal features associated with SHOX haploinsufficiency. J Pediatr Endocrinol Metab, 2003, 16(7):987-96
    150 Fukami M, Nishi Y, Hasegawa Y, et al. 5tatural growth in 31 Japanese patients with SHOX haploinsufficiency: support for a disadvantageous effect of gonadal estrogens.Endocr J,2004,51(2):197-200.
    151刘建文,动物生长轴的激素调控,畜牧兽医学报,2006,2:12-13
    152刘德武,猪神经内分泌生长轴各因子及相关基因的研究进展,农业生物技术学报2004 01期;
    153 C.Barry Cox and Peter D.Mpre.Biogeography:an ecological and evolutionary approach[M].Black Publishiing Ltd.2005
    154孙儒泳,等.基础生态学[M].高等教育出版社.2005,3
    155 Cox CB.The biogeolographic regions reconsidered[J].J Biogeogr 2001;28:511-23
    156 Kavar T.,Habe F.,Brem G.,Dovc P. Mitochondrial D-loop sequence variation among the 16 maternal lines of the Lipizzan horse breed[J]. Animal Genetics,1999,30(6):423~430
    157 Marklund S.,Chaudhary R.,Marklund L.,Sandberg K.,Andersson L. Extensive mtDNA diversity in horses revealed by PCR-SSCP analysis[J]. Animal Genetics,1995,26(3):193~196
    158 Kumar S.,Tamure K.,Ingrid B.,Jakobsen I.B.,Nei M. MEGA2:Molecular EvolutionaryGenetics Analysis Software[M]. Arizona State University,Tempe,Arizona,USA,2001
    159刘峰,鲁双庆.鳜鱼基因组DNA的提取及PCR-SSCP条件的探讨.长沙大学学报,2007,21(2):23~35
    160姜运良,李宁.影响PCR-SSCP的因素分析[J].农业生物技术学报,2000,8(3):245~247
    161 Bouin M S, Yowell C A, Courtney C H et al.Substitution bias, rapid saturation, and the use of mtDNA for nematode systematic [J].molecular Biology and Evolution,1998,15:1719~1727

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700