用户名: 密码: 验证码:
机电集成超环面传动的动态分析与控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机电集成超环面传动是一种集超环面行星蜗杆传动和永磁同步电机于一体的复合空间传动。该传动实现了机、电和控制的有机集成,可以使机电系统的结构组成大为简化,在航空和航天等前沿技术领域具有潜在的应用前景。本文从传动输出特性、控制理论和控制实验等方面对机电集成超环面传动进行了深入系统的研究。
     采用转化机构法,推导了机电集成超环面传动中行星轮转角与行星架转角的函数关系,根据不同蜗杆极对数对应的环面定子永磁齿数,提出了六种常见的行星轮安装方式。给出了在不同的安装方式下,同时参与啮合齿数和啮合区与蜗杆包角的关系式。推导了电磁啮合输出力矩,讨论了其随系统参数的变化规律。得到了六种安装方式下该传动力矩和角速度的输出特性。
     建立了机电集成超环面传动系统的机电耦合动力学模型,推导了该传动输出角速度与输入电压间的传递函数,分析了传动参数对速度响应的影响规律。考虑该传动啮合齿对数变化引起的的波动,得到了系统的实际速度响应。设计了比例积分控制器,研究了控制系统对参数变化的鲁棒性。求得了速度扰动引起的响应,得到了补偿电压和理想的速度响应。
     推导了机电集成超环面传动的力矩传递函数,得到了考虑力矩波动的实际力矩响应规律。运用二自由度控制方法,设计了二自由度力矩控制系统,分析了参数变化对控制系统力矩响应的影响规律,提出了周期性力矩扰动的校正方案。根据期望的动态性能,设计了二自由度速度控制系统独立的控制器,给出了补偿电压,验证了对速度扰动校正的有效性。
     建立了机电集成超环面传动的状态空间模型,完成了最优调节器的设计,给出了状态变量的线性反馈控制规律,分析了权重系数选取对输出性能的影响规律。考虑该传动固有的波动规律,设计了最优伺服系统,分析了参数变化对伺服性能的影响规律。结合古典控制与现代控制原理,完成了带校正三阶系统最优控制器的设计,得到了平稳的最优控制律以及良好的跟踪响应特性,明显改善了系统的动态性能。
     运用电机学理论,分析了机电集成超环面传动空间螺旋的蜗杆绕组电流,建立了绕组电流与行星轮永磁齿的磁动势模型,给出了该传动电感的解析表达式,分析了电感随传动参数的变化规律。建立了磁链方程,得到了转速为常值时电压方程的电磁瞬态解。结合转矩方程得到了传动系统的运动方程和状态方程,利用数值方法求解了该传动系统的状态方程,对系统的启动过程进行了仿真计算,讨论了状态变量的响应随参数的变化规律。
     采用陀螺仪作为角速度传感器,设计并制作了偏置环节和运算放大电路,完成了机电集成超环面传动系统开环控制和闭环控制实验,通过与理论计算以及Simulink仿真结果对比,验证了理论分析的正确性,并为该传动系统控制理论的进一步研究和实验奠定了基础。
Electromechanical integrated toroidal drive is a kind of composite spacial drive with integration of toroidal drive and magnetic synchronous motor. In the drive, the mechanism, electricity and control are integrated, it makes the structure of the electromechanical systems simplified, it has potential application prospect at advancing edge of technical fields such as aviation and space flight. In this paper, systemic research has done at output characteristic, control theory and experiment for the drive.
     With the law of mechanism conversion, the relation between rotational angles of the planet and the rotor is derived, according to the magnetic teeth number of stator with different worm pole-pairs, six kinds of mounting modes are proposed. For different modes, the expression of the mesh tooth pair number at the same time and mesh zone with worm facewidth angle is given. The output torque of electromagnetic mesh is derived, and its changes along with system parameters are discussed. The torque and speed output characteristic of six mounting modes are obtained.
     The electromechanical coupled dynamic model of electromechanical integrated toroidal drive is established, speed transfer function is derived, and the influence of system parameters on speed response is analyzed. Taking changes of mesh tooth pair number into account, the practical speed responses are gained. The PI regulator is designed, the robust of control system for parameters is investigated. The response induced by disturb is solved, then, the compensating voltage and ideal output response are presented.
     The torque transfer function of electromechanical integrated toroidal drive is developed, and the practical torque responses with fluctuation are obtained. Using two-degree-of-freedom control method, the two-degree-of-freedom torque control system is designed for the drive, and the effects of parameters on torque response for control system are explored, then, the amendment scheme for periodic torque fluctuation is put forward. According to expected dynamic property, the independent controllers for two-degree-of-freedom speed control system are designed, compensating voltage is given, and validity of speed disturb amendment is proved.
     The state-space model of electromechanical integrated toroidal drive is built. Design of optimal regulator is completed, linear feedback control law for state variables are represented, and the influence of weight coefficients selection on output performance is discussed. Considering inherent fluctuation of the drive, servo system is designed, and influence with respect to system parameter changes on servo performance is explored. Combine classic and modern control principle, the design of three-order optimal controller with regulator is achieved, smooth optimal control and better tracing response are gained, so greatly improve the dynamic performance.
     Spiral space current of electromechanical integrated toroidal drive in worm windings is analyzed based on electromechanics, magnetomotive model of winding current and planet magnetic teeth is built, analytic expression of inductance for the drive is given, and the changes of inductance along with parameters is discussed. Flux linkage equation is constituted, the electromagnetic transient of voltage equation with constant speed is gained. Motion equations and state equation are developed combining torque equation, and the state equation of the system is solved with numeric method, the start process is simulated, following, the influence of system parameters on state variables response is presented.
     Employing gyroscope as sensor apparatus, the offset segment and operational amplifier are designed and fabricated, the open and closed control experiment for electromechanical integrated toroidal drive are carried out, the correctness of theoretical analyse is confirmed by comparison with theoretical results and simulink emulation, the investigation supplies foundation for further control theory research and experiment of the drive system.
引文
1秦大同.机械传动科学技术的发展历史与研究进展[J].机械工程学报, 2003, 39(12): 37-42
    2温诗铸,黎明.机械学发展战略研究[M].北京:清华大学出版社, 2003: 137-147
    3 Karvelis A. Proceedings of the 7th international power transmission and gearing conference[C]. New York:The Ameriean Soeiety of Mechanical Engineers, 1996: 1-10
    4 Qin Datong. Proeeedings of the international conference on mechanical transrnlssions[C]. Beijing: China Machine Press, 2001: 1-50
    5 Lungwen Tsai. Proceedings of the 8th international power transmission and gearing conference[C]. New York: The Ameriean Soeiety of Mechanical Engineers, 2000: 1-20
    6 Kubo A. Proeeedings of the JSME international conference on motion and power transmissions[C]. Tokyo: The Japan Society of Mechanical Engineers, 2001: 1-15
    7李毅华,栾振辉.国内外传动机械学的现状及发展趋势[J] .煤矿机械. 2005, (12): 8-10
    8高雪强.非圆齿轮传动技术概述[J].机械传动, 2003, (3): 5-8
    9陈泳,冯培恩,何斌,等.机械传动系统概念设计自动化的策略研究[J].自然科学通报, 2002, (11): 1227-1230
    10 Hyunsoo Kin, et al. Power flow analysis of hydromechanical transmission[J]. Power Transmission and Gearing Conference. ASME, 1996, 118(2): 328-341
    11 Timothy L, Krantz. A method to analyze and optimize the load sharing split-path transmission[C]. Power Transmission and Gearing Conference. ASME, 1996,118(3):335-362
    12 Kouichi, Masuzawa, Ken Ichiryu. Basic study on input split type hydromechanical transmission[J]. ICFP, 2001(3): 42-45
    13朱才朝,林腾蛟.多介质多流复合传动现状与发展趋势[J].农业机械学报, 2000, 33(4): 129~133
    14时培成,龚建成.车辆液压-机械复合传动系统分析与应用[J].液压与气动, 2007, (4): 54-56
    15苏东宁,钟康民,王维.三种正交增力液压夹具的技术性能比较[J].机床与液压, 2003, (4): 301-302
    16柏青,钟康民.基于双面斜楔机构增力增压的气液复合传动装置[J].液压与气动, 2006, (10): 43-44
    17许宏,赵克定,吴盛林.对称式气液联控伺服系统动力机构特性分析[J].中国机械工程,2001, 12(10): 1125-1128
    18唐中一,宁先雄,朱才朝.复合传动的最新发展[J].机床与液压[J], 1994, (1): 12-20
    19梁锡昌.机械工程新理论体系的探讨[J].中国机械工程, 1995, 6(5): 1-2
    20孙跃,詹捷,梁锡昌.机电集成设备电气系统三级模块化体系[J].重庆大学学报, 1996, 19(2): 17-22
    21施进发,梁锡昌.机械模块学理论[J].中国机械工程, 1997, 8(6): 53-55
    22张晓云,葛世荣,张德坤.矿山机械机电一体化技术的发展趋势[J].矿山机械, 1999, (2): 43-44
    23 D. F. Herdeg, et al. Electromagnetic harmonic drive low inertia servo actuator. AD 442879. Dec, 1963
    24 D. L. Zheng, H. M. Li. Side surface harmonic stepper motor[J]. Chinese Journal of Mechanical Engineering, 1993, 29(5): 96-98
    25 Da Lio. M., Nista.A., Viola.F. Electromagnetic harmonic motor with continuous control of position and torque[C]. Proceedings of the 27th applications in the transportation industries. Aachen, 1994, (11): 487-491
    26 Oliver Barth, Harmonic piezodrive-miniaturized servo motor[J]. Mechatronics, 2000, (10): 545–554
    27 H. Tian, K. Nagaya, S. Ikai. Vibration control of a magnetic gear system by using sliding mode control[J]. Journal of Sound and Vibration, 1994, 77(1): 57-70
    28 D. M. Tsamakis, M. G.. Ioannides, G.. K. Nicolaides. Torque transfer through plastic bonded Nd2Fe14B magnetic gear system[J]. Journal of Alloys and Compounds, 1996, 241(1): 175-179
    29 Zhao Han, Calculation of the driving torque for permanent magnet gearing[J]. Chinese Journal of Mechanical Engineering, 2001, 37(11): 66–70
    30 Lizhong Xu, Yi Cai. Basic principle for electromechanical integrated toroidal drive[C]. IEEE International Conference on Robotics and Biomimetics, 2006: 17-20
    31 Lizhong Xu. Electromechanical integrated toroidal drive[C]. MESA06—The 2nd IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications, 2006: 43-47
    32 Lizhong Xu, Zhen Huang, Yulin Yang. Mesh theory for Toroidal drive. Journal of Mechanical Design[J]. Transactions of the ASME, 2004, 126(3): 551-557
    33许立忠,杨育林,黄真.超环面行星蜗杆传动研究综述[J].中国工程科学, 2000, 2(6): 84-88
    34 M. R. Kuehnle. Toroidgetriebe[P]. Urkunde uber die Erteilung des deutschen. Patents. 1966, 1301682
    35 H. Peeken. Die tribologisch richtige konstruktion[J]. VDI-Z, 1976, 118(5): 201-206
    36 H. Peeken, Chr Troeder, S Cierniak, et al. Entwicklung und Konstruktion des Toroidgetriebes[J]. Konstruktion, 1979, 31(11): 421-428
    37 H. Peeken, S. Cierniak, Chr. Troeder. Walzfestigkeiten moderner Werkstoffe der Walzpaarung Kugel-Kugellaufrinne[J]. Konstruktion, 1980, 32(3): 89-95
    38 H. Peeken, S. Cierniak. Fertigungsmoglichkeiten fur einen Toroidgetriebe-Stator[J]. Werkstatt und Betrieb, 1981,.114(2): 99-102
    39 M. R. Kuehnle, H. Peeken, C. Troeder, et al. The toroidal drive[J]. Mechanical Engineerring, 1981, 32(2): 32-39
    40 S. Cierniak. Rollverhalten von Kugeln zwischen geschrankten Rinnen[J]. Konstruktion, 1981, 33(4): 155-158
    41 S. Cienriak. W. Clahsen. A. Laschet. Schlagzahnfrasen von Toroidgetriebe-Statoren[J]. Wt-z. Ind. Fertig, 1983, 73(2): 63-66
    42 S. Cierniak. M. Quint. Qualitatskontrolle der Zahnflanken des Toroidgetriebe-Stators[J]. VDI-Z, 1983, 125(7): 233-236
    43 K. H. Tooten. Konstruktive Optimierungen an einem Umlaufradergetriebe[D]. Diss RWTH Aachen, 1983: 1-15
    44 S. Cieniak. Entwicklung von Methoden zur Berechnung von Wirkungsgrad und Leistungsgrenze fur das Toroidgetriebe[D]. Diss RWTH Aachen, 1983: 1-17
    45 H. Peeken. Chr. Troeder. K.H.Tooten. Berechnung und Messung der Lastverteilung im Toroidgetriebe[J]. Konstruktion, 1984, 36(3): 81-86
    46 K.H.Tooten. Optimierung des Kraftubertragung-sverhaltens in Getrieben mitWalzkon-takten[J]. Antriebstechnik, 1985, 24(7): 49-55
    47 M. R. Kuehnle. Toroidal drive system and method of assembling same[P]. United States Patent, 1998, 5784923
    48 M. R. Kuehnle. Toroidal transmission and method an apparatus for making and assembling same[P]. United States Patent, 1999, 5863273
    49许礼培.螺环传动机构及定子螺环面[J].机械, 1985, (2): 22-24
    50杨传民.螺环传动的啮合理论[D]. [天津大学工学硕士学位论文]. 1986: 3-6
    51王景连.圆环形传动及其啮合原理[J].大连工学院学报, 1986, 25(4): 57-62
    52杨传民,祝毓虎.螺环传动啮合原理(一)[J].机械设计, 1988, (5): 44-48
    53刘思贤.螺环传动机构的几何计算[J].武汉水运工程学院学报, 1988, 12(1): 109-114
    54聂行健,陈定方.螺环减速器的试制[J].武汉水运工程学院学报, 1984, 8(1): 13-17
    55聂行健,陈定方.螺环行星减速器的分析和试制[J].机械设计, 1988, (3): 66-71
    56 Yao Ligang, Xu Xiaojun, Li Huamin. Research on NC manufacturing the stator of toroidal drive system[J]. Proc Of ICIM95, China, 1995: 881-884
    57 Yao Ligang, Xu Xiaojun, Li Huamin. The intelligent CAD system for toroidal drive[J]. Proc. of 18th int. conference on computer in engineering, China, 1995: 744-746
    58姚立纲.超环面行星蜗杆传动啮合分析及加工方法研究[D]. [哈尔滨工业大学博士学位论文]. 1996: 1-56
    59 Yao Ligang, Xu Xiaojun, Li Huamin, et al.. The research on toroidal drive[J]. J.of Harbin Institute of Technology, 1998, 5(3): 75-77
    60杨传民.螺环传动装置的效率[J].机械设计, 1997, (2): 35-38
    61徐晓俊,张春丽,唐德威.超环面传动的新型结构及其齿形计算[J].哈尔滨工业大学学报, 1998, 30(4): 102-106
    62张春丽.新型行星蜗杆传动的啮合理论与实验研究[D]. [哈尔滨工业大学博士学位论文]. 1999: 1-38
    63张春丽,王锋,徐晓俊.超环面传动工艺改进方案的实验研究[J].机械设计与研究, 2001, 17(1): 50-52
    64张春丽,徐晓俊,唐爱红.新型超环面传动定子的铣削加工[J].机械, 2002, (1): 56-58
    65姚立纲,魏国武,蔡英杰,等.超环面行星蜗杆传动的多目标优化设计研究[J].福州大学学报, 2004, 32(5): 583-587
    66魏国武,姚立纲,朱晓林,等.超环面行星蜗杆传动的运动学和动力学仿真[J].机械设计与研究, 2005 21(5): 52-55
    67 Yao Ligang Dai Jian, Wei Guowu, et al. Error analysis and compensation for meshing contact of toroidal drives[J]. Journal of Mechanical Design, Transactions of the ASME, 2006, 128(3): 610-617
    68蔡英杰,杨蓉,姚立纲,等.超环面行星蜗杆传动系统的动力学建模[J].福州大学学报, 2007,35(3): 444-448
    69蔡英杰,姚立纲,魏国武.超环面行星蜗杆传动中超环面蜗杆的数控加工[J].现代制造工程, 2007(10): 12-14
    70杨蓉,姚立纲,魏国武,等.超环面行星蜗杆传动系统自由振动特性分析[J].厦门理工学院学报, 2009, 17(1): 42-46
    71许立忠,王灵忠,赵永生.超环面行星蜗杆传动啮合特性研究[J].农业机械学报, 1997, 28(4): 139-143
    72 Lizhong Xu. Zhen Huang. Mesh theory for toroidal drive[J]. Journal of Mechanical Design .Transactions of the ASME, 2004, 126(3): 551-557
    73许立忠.超环面行星蜗杆传动综合设计理论与制造技术研究[D]. [燕山大学工学博士学位论文]. 1999: 55-89
    74杨育林,许立忠,赵永生.滚柱式超环面行星蜗杆传动接触疲劳强度研究[J].中国机械工程, 1998, 9(6): 19-24
    75许立忠,黄真.超环面行星蜗杆传动摩擦理论研究[J].中国工程科学, 2002, 4(3): 62-67
    76许立忠,杨育林,黄真.超环面行星蜗杆传动弹流润滑状态研究[J].机械工程学报, 2002, 38(9): 114-117
    77 Xu Lizhong. Load distribution for toroidal drive [C]. The Eleventh World Congress in Mechanism and Machine Science, 2004: 835-837
    78 Xu Lizhong. Study on loads and contact stresses for toroidal drive[J]. Chinese journal of mechanical engineering, 1997, 10(4): 275-278
    79 Lizhong Xu. Zhen Huang. Contact Stresses for toroidal drive[J]. Journal of Mechanical Design, Transactions of the ASME, 2003, 125(1): 165-168
    80 Lizhong Xu, Zhen Huang. Wear calculation for toroidal drive[J]. Journal of Mechanical Design, Transactions of the ASME, 2006, 128(4): 820-823
    81许立忠,曲继方,赵永生.超环面行星蜗杆传动效率研究[J].机械工程学报, 1998, 34(5): 20-24
    82 Lizhong Xu. Efficiency for toroidal drive[C]. Eleventh world congress in mechanism and machine science, 2004: 737-740
    83 Lizhong Xu, Zhen Huang. Modelling and simulation of friction for toroidal drive[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2007, (221):75-84.
    84 Lizhong Xu. Lei Zhang.Numerical simulation of stress distribution for Toroidal drive[J]. CSME Transactions, 2006, 30(2): 209-221
    85刘峰.机电集成超环面超环面传动驱动机理及原理模型试验[D]. [燕山大学工学硕士学位论文]. 2003: 7-51
    86黄金.机电集成超环面超环面传动原理和承载能力研究[D]. [燕山大学工学硕士学位论文]. 2005: 1-79
    87 Lizhong Xu, Jin Huang. Torques for electromechanical integrated toroidal drive[J]. Proceedings of the I MECH E Part C Journal of Mechanical Engineering Science, 2005, 219(8), 801-811
    88 Lizhong Xu. Jin Huang. Kinematics for electromechanical integrated toroidal drive[C]. Proceedings of the International Conference on Mechanical Engineering and Mechanics, 2005: 26-28
    89蔡毅.机电集成超环面超环面传动磁场研究[D]. [燕山大学工学博士学位论文]. 2007: 32-102
    90郝秀红.机电集成超环面超环面传动机电耦合动力学研究[D]. [燕山大学工学博士学位论文]. 2008: 1-12
    91许立忠.蔡毅.机电集成超环面传动基集成原理和磁力分析[J].机械设计与研究, 2006, 22(1): 60-61
    92 R. E. Doherty, C. A. Nickle. Synchronous machine torque-angle characteristic under transient condition[J]. AIEE Tran, 1927, (46): 25-50
    93 R. E. Doherty, C. A. Nickle. Synchronous machine an extension of Blondel’s two-reaction theory[J]. AIEE Tran., 1926, (45): 7-13
    94 R. H. Park. Definition of an ideal synchronous machine and formula for armature flux linkages[J]. G. E. Review, 1928, (31): 1-7
    95 R. H. Park. Two-reaction theory of synchronous machines-generalized method of analysis[J]. AIEE Tran., 1929, (48): 62-67
    96 M. L. Waring, S B.Crary. Operational impedances of a synchronous machine[J]. G. E. Review, 1932, (45): 12-18
    97 H. C. Stanley. An analysis of induction motor[J]. AIEE Tran., 1938, (57): 18-22
    98 G.. Kron. Generalize theory of electrical machinery[J]. AIEE Tran., 1930, (49): 32-36
    99 Gear. Automatic integration of stiff ordinary differential equations[J]. Information processing,1968, (1): 185-190
    100冯康.数值计算方法[M].北京:国防工业出版社, 1978: 465-487
    101张培强. MATLAB语言—演算纸式的科学工程计算语言[M].合肥:中国科学技术大学出版社, 1995: 153-167
    102陈珩.同步电机运行基本理论与计算机算法[M].北京:水利电力出版社, 1992: 110-140 162-168
    103谢元运.用瞬时值对称分量法建立具有不对称绕组连接的异步电机暂态分析的动态模型[J].沈阳建筑大学学报, 1983, (2): 26-28
    104励鹤鸣,莫会成.带中环感应电机的动态模型和性能分析[J].电工技术学报, 1989, (3):21-25
    105 A. Keyhani, H. Tsai. Simulation of induction machines with saturable inductances[J]. IEEE Trans. on EC, 1989, 4(1): 203-210
    106孔昭来,李金伴,韩思音.装箱机械手步进电机的动态特性分析及驱动电路设计[J].江苏大学学报, 1992, (2): 16-19
    107 C. C. Lee, T. T. Owen. A weight-least-squares parameters estimator for synchronoud machine[J]. IEEE Tran., 1977, (1): 97-101
    108 K. E. Bollinger, H. S. Khalil. A method for on-line identification of power system model parameter in the presence of noise[J]. IEEE Trans., 1982, (9): 124-128
    109 E. M. Sebastiao. Modling of synchronous machines for dynamic studies with different mutual coupling between direct axis windings[J]. IEEE Trans. EC, 1987, (4): 591-599
    110 D. C. Macdonald. Turbine generator steady-state reactances[C]. Proceeding of int’l symposium on power system stability AMES, 1985: 327-332
    111李肖伟,熊光煌,刘星达.动铁型直线振动电机的动态分析[J].电子技术学报, 1996, 11(2): 42-46
    112 V. B. Honsinger. Permanent magnet machines: asynchronous operation[J]. IEEE Trans. on PAS-99, 1980, (4): 1503-1509
    113 M. A. Rahman, T. A. Little. Dynamic performance analysis of permanent magnet synchronous motors[J]. IEEE Trans. on PAS-103, 1984, (6): 1277-1282
    114 A. Ishizaki, Y. Yamamoto. Asynchronous performance prediction of AC permanet magnet motor[J]. IEEE Trans. on EC-1, 1986, (3): 101-108
    115 Wang Shuhong, Xiong Guangyu, Wang Ailong. Calculation of staticand dynamic performances ofa linear oscillatory actuator[C]. Proceeding of the international conference on electrical machines and applications, 1996: 408-411
    116王淑红,王旭平,熊光煜.动圈式永磁直线振动电机的静动态分析[J].微特电机, 2006, (1): 11-13
    117李岩,苏学军,钱罗珍. Matlab在同步电机动态分析中的应用[J].青岛大学学报, 2001, 16(4): 109-110
    118谢卫,黄家圣.六相双Y移30°绕组永磁同步电机动态性能分析[J].中国航海, 2003, 57(4): 82-85.
    119周莉,鲍鸿.用辩证唯物论认识论观点看模糊控制的发展[J].科学技术与辩证法, 2000, 17(4): 13-16
    120维纳.控制论[M].郝季仁.译.北京:北京大学出版社, 2007: 1-30
    121董景新,赵长德,熊沈蜀,等.控制工程基础[M].北京:清华大学出版社, 2003: 1-64
    122 K. J. Astrom, C. C Hang. P. Persson. Towards intelligent PID control[J]. Automatica, 1992, 8(l): l-9
    123韩京清.非线性PID控制器[J].自动化学报, 1994, 20(4): 487-490
    124韩京清.利用非线性特性改进PID控制律[J].信息与控制, 1995, 24(6): 356-364
    125单金玲,马彩文,李文刚.基于BP神经网络的PID控制器[J].光子学报, 2005. 34(5): 754-757
    126 M. Ouyang, C. M. Liaw, C. T. Pan. Model reduction by power decomposition and frequency response matching[J]. IEEE Trans. on automatic control, 1987, 32(1): 59-62
    127 C. M. Liaw, F. J. Lin, Y. S. Kung. Design and implementation of a high performance induction motor servo drive[J]. IEE Proc. B, 1993, 140(4): 241-248
    128 F. J. Lin, C. M. Liaw, Y. S. Kung. Robust two-degree-of-freedom control for induction motor servo drive[J]. IEE Proc. Electr. power appl., 1995, 142(2): 79-86
    129 Takaji Umeno. Yoichi Hori. Robust Speed Control of DC Servomotors Using Modern Two Degrees-of-Freedom Controller Design[J], IEEE Trans. Ind. Electron, 1991,.38(5): 363-368
    130曲延滨,郑载满,游标儒.二自由度控制的低敏感度伺服系统[J].电气传动, 1995, (4): 23-26
    131王勋先,韩曾晋.基于反馈线性化的感应电机2-自由度控制系统[J].清华大学学报, 1999, 39(9): 29-33
    132 Katsuhiko Ogata.现代控制工程[M].卢伯英,于海勋.译.北京:电子工业出版社, 2000:625-640
    133张志锋,赵希梅,郭庆鼎.基于H∞/μ方法的永磁直线同步电机鲁棒二自由度控制[J].中国电机工程学报, 2007, 27(21): 53-58
    134 J. Zaborszky. An information theory viewpoint for the General identification problem[J]. IEEE transom AC, 1966, 11(1): 130-131
    135 G. N.Saridis. Intelligent robotic control[J]. IEEE trans. on auto. contr., 1983, 28(5): 547-557
    136 G. N. Saridis. Entropy formulation of optimal and adaptive control[J]. IEEE trans. on auto. contr., 1988, 33(8): 713-721
    137 Zhou Q. J, Bai J. K.. An intelligent controller of novel design[C]. Proc. Of A Multinational Instrumentation Conference, Part l, 1983: 137-149
    138周其鉴,李祖枢,陈民铀.智能控制及其展望[J].信息与控制, 1987, (2): 39-45
    139李祖枢,徐鸣,周其鉴.一种新型的仿人智能控制器[J].自动化学报, 1990, (6): 503-509
    140张明廉,郝健康,何卫东.拟人智能控制与三级倒立摆[J].航空学报, 1995, 16(6): 654-661
    141金晓明,荣冈,王骥程.模糊控制理论及其应用评述[J].化工自动化及仪表, 1995, 22(2): 3-6
    142周景振,韩曾晋.日本模糊控制理论与应用研究的进展[J].控制理论与应用, 1997, 14(4): 453-458
    143李永正.专家控制技术与智能控制理论的发展[J].自动化仪表, 1997, 18(7): 1-7
    144王照林.现代控制理论基础[M].北京:国防工业出版社, 1981: 255-341
    145 Maamar Bettayeb, A.Q. Randhawa. Time-weighted optimal state and output feedback control of power systems[J]. Electric Power Systems Research, 1999, 52(1): 77-86
    146 I. Robandia, K. Nishimorib, et al. Optimal feedback control design using genetic algorithm in multimachine power system. Electrical power and energy systems, 2001, (23): 263-271
    147符曦.系统最优化及控制[M].北京:机械工业出版社, 2001: 240-278
    148王朝珠,秦化淑.最优控制理论[M].北京:科学出版社, 2003:153-220
    149王金城.现代控制理论[M].北京:化学工业出版社, 2007: 161-183
    150吴受章.最优控制理论与应用[M].北京:机械工业出版社, 2008:57-97
    151马纪明,付永领,王岩.最优控制理论在液压喷漆机器人伺服系统中的应用研究[J].液压与气动, 2003, (6): 4-6
    152 Gao Wenzhi, Liu Jianguo. Active control simulation of torsional vibration for turbine-generator shaft system based on globally optimal control algorithms of quadratic regulator[J]. Chinesejournal of mechanical engineering, 2006, 42(6): 97-100
    153 He Ren, Li Qiang. Study on Optimal Control for Electric Power Steering System Based on LQG Theory[J]. Agriculture Mechanical transaction, 2007, 38(2): 17-21
    154 C.M. Liaw, Y. S Kung, C. M. Wu. Design and Implementation of a High-Performance Field-Oriented Induction Motor Drive[J]. IEEE Trans Ind Electron, 1991, 38(4): 275-282
    155曹立华,李洪文.基于状态空间平均法的伺服控制系设计与仿真[J].仪器仪表学报, 2006, 27(6): 1957-1960
    156 L Xu. Sh Fan. Design and torque control for electromechanical integrating toroidal drive[J]. Mechanism and machine theory, 2006, 41(2): 230-245
    157王卫宏,张井岗.二自由度控制方法研究综述.电气自动化,2001(6):4-6
    158 Takaji Umeno. Yoichi Hori, Robust Speed Control of DC Servomotors Using Modern Two Degrees-of-Freedom Controller Design. IEEE Trans Ind Electron, 1991,vol.38,No.5:363-368
    159塞奇怀特.汪寿基,译.最优系统控制[M].北京:水利电力出版社, 1985: 103-140
    160王子才,赵长安.应用最优控制[M].哈尔滨:哈尔滨工业大学出版社, 1989: 153-212
    161王贞荣.最优控制[M].北京:冶金工业出版社, 1989: 204-259
    162 Jie Yu, Ali Jadbabaie, James Primbs. Comparison of nonlinear control design techniques on a model of the caltech ducted fan[J]. Automatica, 2001, 37(12): 1971-1978
    163 Wah Soon Lee, et al. Modeling and design of tape transport mechanism[J]. Mathematics and Computers in Simulation, 2006, (72): 26-37
    164唐功友,高德欣.带有持续扰动的线性系统的前馈-反馈最优控制[J].系统仿真学报, 2005, 17(6): 1519-1521
    165 H. W. Herbert, R. M. James. Electromechanical Dynamics, PartⅠDiscrete Systems[M]. John. Wily, Sons Inc, New York Lon Don Sydney, 1968: 56-87
    166周波,相蓉,王川云,等.电磁式双凸极电机电磁特性的理论分析[J].航空学报, 2003, 22(4):355-359
    167哈尔滨工业大学.步进电机[M].北京:科学出版社, 1979: 40-82
    168牛华,王建峰,熊光煜.基于Simulink 4的两相混和式直线步进电机动态仿真分析[J].太原理工大学学报, 2003, 34(1): 23-26
    169汤蕴璆,张奕黄,范瑜.交流电机动态分析[M].北京:机械工业出版社, 2005: 1-104
    170吴新振,王祥珩.基于气隙基波磁场交流电机电感参数的统一计算公式[J].电工技术学报,2004, 19(1): 65-69
    171 M.Aydin, S.Huang, T.A.Lipo. A new axial flux surface Mounted permanent magnet machine capable of field control [J]. IEEE. IAS Anaual meating, Pittsburgh,USA,2002,10:14-18
    172王群京,倪有源.汽车用爪极发电机负载磁场和电感的分析与计算[J].中国电机工程学报, 2004, 24(3): 91-95
    173莫会成.永磁交流伺服电动机的参数分析[J].微电机, 2005, 38(3): 3-6
    174陈晓鹏,李成荣.基于动力学模型的轮式移动机器人电机控制[J].机器人, 2008, 30(4): 326-332

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700