用户名: 密码: 验证码:
三级重接式电磁发射系统的仿真与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在发射武器领域里,利用化学能的传统发射技术在速度和成本方面存在一些无法逾越的极限,而将电磁能用于发射成为发射技术的一个飞跃。在电磁发射的几种形式中,重接式电磁发射是研究和发展较晚的一种,但是由于它从原理上不仅能克服导轨式电磁发射大电流对导轨的烧蚀严重、同轴线圈式电磁发射同步技术复杂的缺点,而且潜在地综合了导轨式能获得超高速、同轴线圈式能发射大质量的优点,因此重接式电磁发射被认为是一种具有良好发展前景和广泛用途的电磁发射方式。
     本文以使用板状发射体和箱形驱动线圈的多级重接式电磁发射技术为研究对象,分析推导了多级驱动线圈电磁场和发射体涡流场的综合作用方程。利用ANSOFT电磁场有限元分析软件建立了多级重接式电磁发射系统新的三维有限元仿真模型,并对多级重接式电磁发射的各驱动线圈电磁场分布和发射体涡流分布进行了仿真计算。本文利用虚功法推导了发射体高速运动情况下多级重接式电磁发射的运动方程,并提出了前级驱动线圈的加权系数,以反映不同驱动线圈电流频率或相位差别的影响。多级重接式电磁发射的运动方程表明,发射体在某一级驱动线圈内的受力,是考虑了电流频率和相位差别影响的该级驱动线圈和前级各驱动线圈综合作用的结果。
     上述运动过程的数值积分仿真采用四阶Runge-Kutta法,并结合实际电磁发射实验系统的具体参数,对多级重接式电磁发射过程进行仿真,研究发射体初始位置、放电回路电阻、电源输入能量和发射级数等因素对发射效果的影响。本文提出将真空触发开关(TVS)应用于重接式电磁发射,并分析论证了利用TVS的熄弧特性所引起的电容器组残留能量,从而提高发射效率的可行性。针对多级发射中由于发射体速度过快而造成的加速不充分和发射效率下降,本文提出了按照发射体速度确定放电电流振荡周期,继而确定电容器组电容值的优化设计原则,配合使用TVS作主控开关,可以显著提高发射效率。
     多级重接式电磁发射的技术关键是级间的协调,核心硬件是点火单元。在多级重接式电磁发射过程中,存在多次放电以及随之而来的强电磁干扰,因而要求点火单元的动作不仅迅速而且能不受级间互扰。本文设计了新型的手动方式与自动方式相结合的多级点火自动控制系统。TVS的触发电路采用三电极间隙产生陡化的高压触发脉冲来提高TVS的触发精度(触发精度在1μs之内),并采用光电隔离技术实现高低压的安全隔离,提高了触发电路的抗干扰能力,实现了多级重接式电磁发射准确可靠的点火功能。
     本文设计和建立了一套三级重接式电磁发射实验系统,用脉冲电容器组作储能元件,用箱形驱动线圈来发射矩形平板状的发射体,分别用Rogowski线圈和电容分压器
In the field of launch weapons, there are some unsurmountable limits in velocity and cost for the traditional launch technologies using chemical energy. Thus, it's a great improvement to apply electromagnetic energy in the launch technology. Among several forms of electromagnetic launch, reconnection electromagnetic launch is a newly developed one. It can not only overcome the disadvantages of severe erosion in rail electromagnetic launch and complex synchronization in coaxial coil electromagnetic launch, but also potentially combine the advantages of achieving hypervelocity in rail electromagnetic launch and launching large mass in coaxial coil electromagnetic launch. Therefore reconnection electromagnetic launch is regarded as a form of electromagnetic launch with good perspective and wide use.
    This dissertation takes the multi-stage reconnection electromagnetic launch with flat plate projectile and box-shaped drive coil as the studying object. The synthesized equations on the drive coil electromagnetic field and the projectile eddy current are analyzed and deduced. By means of the ANSOFT software for electromagnetic field finite element analysis, a new three-dimensional finite element simulation model of multi-stage reconnection electromagnetic launch is established. The multi-stage drive coil electromagnetic field distribution and the projectile eddy current distribution are simulated and computed. With the Virtual Work method, motion equations on multi-stage reconnection electromagnetic launch under hypervelocity circumstance are deduced, and the weighted coefficients of fore-stage drive coils are put forward to reflect the influence of the current frequency or phase difference of various coils. The motion equations show that the force on the projectile within a certain drive coil is a synthesized result of the certain drive coil and the fore-stage drive coils considering the influence of the current frequency and phase differences.
    A numeric integral simulation model of the motion course of reconnection electromagnetic launch is established with four-order Runge-Kutta method. Combined with parameters of the actual electromagnetic launch experimental system, numeric simulation of multi-stage reconnection electromagnetic launch course is carried out. The influences of initial projectile position, resistance of the discharge circuit, input power energy, and stages of launch are also discussed. This work applies triggered vacuum switch (TVS) for the circuit making in reconnection electromagnetic launch, and analyzes the feasibility to improve the launch efficiency for the remained energy in capacitor banks caused by the arc extinguishing
引文
[1] 金志明.高速推进内弹道学.北京:国防工业出版社,2001.
    [2] 周彦煌,陆欣,刘东尧.几种超高速射弹发射技术可行性的探索研究.弹道学报,1996,8(4):8-12.
    [3] 才满瑞,王向阳,刘兴武等.国外航天运载器的发展状况、发展趋势及采用的关键技术.导弹与航天运载技术,1998,16(3):1-10.
    [4] 王莹,肖峰.电炮原理.北京:国防工业出版社,1992.
    [5] Mcnab I R. Early electric gun research. IEEE Transactions on Magnetics, 1999, 35 (1): 250-261.
    [6] 庄国臣.电磁发射及其应用.电工技术杂志,1997,25(6):19-22.
    [7] 刘廷贤.发展中的电磁炮.大学物理,1998,17(4):44-46.
    [8] 章雅平.1993美国定向能武器技术进展综述.中国航天,1994,12(4):36-39.
    [9] Weldon W F. A taxonomy of electromagnetic launchers. IEEE Transactions on Magnetics, 1989, 25 (1): 591-592.
    [10] Fair H D. The science and technology of electric Launch. IEEE Transactions on Magnetics, 2001, 37(1): 25-32.
    [11] Luke I T, Michael J R, Stumborg F. The operational value of longland attack EM gun to future naval forces. IEEE Transactions on Magnetics, 2001, 37(1): 58-61.
    [12] Awalls W, Weldon W F, Pratap S B. Application of electromagnetic guns to future naval platforms. IEEE Transactions on Magnetic, 1999, 35 (1): 262-267.
    [13] 刘文口十,齐文军.新概念武器.飞航导弹,2002,(10):16-22.
    [14] Egeland A. Birkeland's electromagnetic gun: a historical review. IEEE Transactions on Plasma Science, 1989, 17(2): 73-82.
    [15] 李小鹏.重接式电磁发射技术的基础研究:(博士学位论文).哈尔滨:哈尔滨工业大学,2004.
    [16] Haugh D. An update on the UK electric gun research programme. IEEE Transactions on Magnetics, 1997, 33 (1): 17-20.
    [17] Shvetsov G A. Overview of some recent EML efforts within Russia. IEEE Transactions on Magnetics, 1997, 33 (1): 26-30.
    [18] Fair H D. Electric launch science and technology in the United States. IEEE Transactions on Magnetics, 2003, 39(1): 11-17.
    [19] Haugh D C, Gilbert S. U. K. electric gun national overview. IEEE Transactions on Magnetics, 2003, 39(1): 18-21.
    [20] Jung J W, Kim S H, Yang K S. Overview of ETC research in Korea. IEEE Transactions on Magnetics, 2003, 39(1): 22-23.
    [21] Lehmann P. Overview of the electric launch activities at the French-German Research Institute of Saint-Louis (ISL). IEEE Transactions on Magnetics, 2003, 39 (1): 24-28.
    [22] Rutberg P G, Shvetsov G A, Sawateev A F. Results of recent research on electromagnetic launch technology in Russia. IEEE Transactions on Magnetics, 2003, 39 (1): 29-34.
    [23] Weise T H G G, Maag J, Zimmermarm G et al. National overview of the German ETC program. IEEE Transactions on Magnetics, 2003, 39 (1): 35-38.
    [24] Wang Y, Cheng S, Zheng P. Widely developing electric launch technology in China. IEEE Transactions on Magnetics, 2003, 39 (1): 39-41.
    [25] 李立毅,李小鹏.电磁发射的历史及发展趋势.微电机,2004,37(1):41-44.
    [26] Fair H D. The new era of electromagnetic launch technology in the United States. Invited report in the 2nd Chinese Electromagnetic Launch Technology Symposium, Dalian, 2004.
    [27] 李军,王莹,王赞基.电炮用磁通压缩脉冲直线发电机的数学模型.中国电机工程学报,2001,21(5):43-46.
    [28] 中国科学院等离子体物理研究所.历年获奖项目.http://202.127.204.25/asipp/bsjj/L6/lw1.htm.
    [29] Wang Y, Marshall R A, Cheng S K. Physics of electric launch. Beijing: Science Press, 2004.
    [30] Marshall R A, Wang Y. Railguns: their science and technology. Beijing: China Machine Press, 2004.
    [31] TOM网.上海磁悬浮列车今日试运行,中德总理将成首批乘客.TOM网新闻,2002,http://news.tom.corn/Archive/1002/2002/12/31-24169.html.
    [32] 中华网.中国决定自建磁悬浮列车,德国日本都深感震惊.中华网新闻,2006,http://news.china.com/zh_cn/domestic/945/20060328/13200066.html.
    [33] Bushway R R. Electromagnetic aircraft launch system development considerations. IEEE Transactions on Magnetics, 2001, 37 (1): 52-54.
    [34] Doyle M R, Samuel D J, Conway T et al. Electromagnetic aircraft launch system-EMALS. IEEE Transactions on Magnetics, 1995, 31 (1): 528-533.
    [35] Brown J L, Jamison K A, Johnson N E et al. Earth-to-orbit railgun launcher. IEEE Transactions on Magnetics, 1993, 29(1): 373-378.
    [36] Powell J R, Maise G, Paniagua J et al. Star tram: a new approach for low-cost earth-to-orbit transport. IEEE Proceedings of Aerospace Conference, US: Big Sky, 2001:2569-2590.
    [37] Hull J R, Carney L M. Application of superconducting technology to earth-to-orbit electromagnetic launch systems. IEEE Transactions on Magnetics, 1989, 25 (1): 243-248.
    [38] Marshall R. A reusable inverse railgun magnetic flux compression generator to suit the earth-to-space-rail-launcher. IEEE Transactions on Magnetics, 1984, 20 (2): 223-226.
    [39] Fair H D, Coose P, Meinel C P et al. Electromagnetic earth-to-orbit launch. IEEE Transactions on Magnetics, 1989, 25 (1): 9-16.
    [40] Jacobs W A. Magnetic launch assist—NASA's vision for the future. IEEE Transactions on Magnetics, 2001, 37 (1): 55-57.
    [41] Lipinski R J, Beard S, Boyes J et al. Space applications for contactless coilguns. IEEE Transactions on Magnetics, 1993, 29 (1): 691-695.
    [42] Palmer M R. Midterm to far term applications of electromagnetic guns and associated power technology. IEEE Transactions on Magnetics, 1993, 29 (1): 345-350.
    [43] Palmer M R. Motivation for a near term gun launch to space demonstration and a variable inductance power supply concept to minimize initial demonstration costs. IEEE Transactions on Magnetics, 1993, 29(1): 478-483.
    [44] Palmer M R, Lenard R X. A Revolution in access to space through spinoffs of SDI technology. IEEE Transactions on Magnetics, 1991, 27(1): 11-20.
    [45] Schroeder J M, Gully J H, Driga M D. Electromagnetic launchers for space applications. IEEE Transactions on Magnetics, 1989, 25 (1): 504-507.
    [46] Palmer M R, Dabiri A E. Electromagnetic space launch: a re-evaluation in light of current technology and launch needs and feasibility of a near term demonstration. IEEE Transactions on Magnetics, 1989, 25 (1): 393-399.
    [47] Kaye R J, Turman B N, Shope S L. Applications of coilgun electromagnetic propulsion technology. 25th International Power Modulator Symposium, US: Albuquerque, 2002: 703-707.
    [48] Allred D A, Beatty C W, Gullickson R L et al. Space power experiments aboard rockets. 8th IEEE International Pulsed Power Conference, 1991: 249-254.
    [49] Levinson S, Erengil M, McMullen K. Preliminary investigation of microwave telemetry on an EML projectile. IEEE Transactions on Magnetics, 2003, 39 (1): 173-177.
    [50] 于杰.电磁技术的军事应用前景.现代物理知识,2000,(增刊):79-80.
    [51] 高顺受,孙承纬,陈英石等.60mm口径电磁感应线圈炮的实验研究.高压物理学报,1996,10(3):190-198.
    [52] Balikci A, Zabar Z, Czarkowski D et al. Reduction in fluctuation of the accelerating force in linear induction launchers. IEEE Transactions on Magnetics, 2003, 39 (1): 97-103.
    [53] Zheng P, Liu Y, Cheng S et al. Research on the passive electromagnetic armor. IEEE Transactions on Magnetics, 2005, 41 (1): 456-459.
    [54] Li Z, Cheng S, Zheng P et al. Finite-element analysis for the active electromagnetic armor projectile interceptor. IEEE Transactions on Magnetics, 2005, 41(1): 453-455.
    [55] Sterzelmeier K, Buderer G, Ganthier-Blum C et al. Electromagnetic armor test facility with modular pulsed power conceptual design. 12th IEEE International Pulsed Power Conference, US: Monterey, 1999: 1361-1364.
    [56] Li X, Li L, Zhao C et al. Multi-projectile active electromagnetic armor. IEEE Transactions on Magnetics, 2007, 43(1)(已录用).
    [57] Azanov I B, Alexandrov V A, Obydennikov S S et al. Macroparticle launch velocity control in rail accelerators. IEEE Transactions on Magnetics, 1997, 33 (1): 213-218.
    [58] Yamori A, Yanagisawa M, Sato K et al. Rail gun experiment (HYPAC) at ISAS [meteorite impact simulation]. IEEE Transactions on Magnetics, 1991, 27 (1): 126-129.
    [59] Rott M. The LRT/TUM small caliber electrothermal accelerator. IEEE Transactions on Magnetics, 1993, 29(1): 597-602.
    [60] Sporer E I J, Rott M. On the application of plasma pulses generated by electromagnetic and electrothermal launchers for surface treatment. IEEE Transactions on Magnetics, 1995, 31 (1): 735-739.
    [61] Tian Y, Mai M, Wang Y. Use of a fast shock tube as an injector for electromagnetic railgun. IEEE Transactions on Magnetics, 2005, 41 (1): 365-368.
    [62] Esposito N, Raugi M, Tellini A. MHD generators as pulse power sources for arc-driven railguns. IEEE Transactions on Magnetics, 1995, 31 (1): 47-51.
    [63] Spann M L, Pratap S B, Werst M D et al. Compulsator research at the university of Texas at Austin-an overview. IEEE Transactions on Magnetics, 1989, 25 (1): 529-531.
    [64] 李立毅,程树康,刘宝廷.直线电磁发射技术的发展现状及前景.微电机,1999,32(2):26-30.
    [65] 李勇,李立毅,程树康等.电磁弹射技术的原理与现状.微特电机,2001,(5):3-4.
    [66] Kolm H, Mongeau P. Basic principles of coaxial launch technology. IEEE Transactions on Magnetics, 1984, 20 (2): 227-230.
    [67] McKinney K, Mongeau P. Multiple stage pulsed induction acceleration. IEEE Transactions on Magnetics, 1984, 20 (2): 239-242.
    [68] Cowan M, Cnare E C, Duggin B W et al. The reconnection gun. IEEE Transactions on Magnetics, 1986, 22(6): 1429-1434.
    [69] Cowan M, Widner M M, Cnare E C et al. Exploratory development of the reconnection launcher 1986-1990. IEEE Transactions on Magnetics, 1991, 27 (1): 563-567.
    [70] Burgess T J, Cnare E C, Oberkampf W L et al. The electromagnetic θ gun and tubular projectiles. IEEE Transactions on Magnetics, 1982, 18 (1): 46-58.
    [71] Duggin B W. Diagnostics and firing control for the cylindrical reconnection launcher. Sandia National Laboratories Report, 1989.
    [72] Freeman J R. A 2-D reconnection gun code. Sandia Nationa Laboratories Report, 1988.
    [73] Kaye R J, Brawley E L, Duggin B W et al. Design and performance of a multi-stage cylindrical reconnection launcher. IEEE Transactions on Magnetics, 1991, 27 (1): 596-600.
    [74] Cnare E C, Widner M M, Duggin B W. A 10-stage reeonnection demonstration launcher. IEEE Transactions on Magnetics, 1991, 27 (1): 644-646.
    [75] Widner M M. WARP-10: a numerical simulation model for the cylindrical recormection launcher. IEEE Transactions on Magnetics, 1991, 27 (1): 634-638.
    [76] Hummer C R, Hollandsworth C E. A single-stage reconnection gun. Army Research Laboratory Report, 1995.
    [77] Beming P R, Hummer C R, Hollandsworth C E. A coilgun-based plate launch system. IEEE Transactions on Magnetics, 1999, 35 (1): 136-141.
    [78] Abdelsalam M K, Eyssa Y M. Pulsed magnetic energy for space applications. IEEE Transactions on Magnetics, 1987, 23 (2): 533-536.
    [79] Berning P R, Hummer C R, Le C D et al. A theoretical and experimental study of the electro-magnetic environment surrounding a magnetic induction launcher. IEEE Transactions on Magnetics, 1997, 33 (1): 368-372.
    [80] Coburn W O, Le C D. Electromagnetic field measurements near a single-stage reconnection gun. Army Research Laboratory Report, 1995.
    [81] Sargeant W J, Marinos C, Zielinski A. An examination of the nature effects and control of electromagnetic fields. Army Research Laboratory Report, 2000.
    [82] Singh H, Carter J L, Creedon J. Comparison of switching technologies for a tactical EML application. IEEE Transactions on Magnetics, 1997, 33 (1): 513-518.
    [83] Singh H, Hummer C R. Advanced semiconductor switches for EM launchers. IEEE Transactions on Magnetics, 2001, 37(1): 394-397.
    [84] Beming P R, Hummer C R. Magnetic induction launcher models. Army Research Laboratory Report, 1997.
    [85] Gao S S, Sun C W, Zhu Y M et al. The test and analysis of a 3-stage reconnection coitgun. IEEE Transactions on Magnetics, 1999, 35 (1): 142-147.
    [86] Cheng S, Li X, Li L et al. Reconnection electromagnetic launcher (RCEML) and its application.2003 IEEE IAS Conference and Annual Meeting, US: Salt Lake City, 2003: 1672-1676.
    [87] Cheng S, Li X, Li L et al. Reconnection electromagnetic launcher for space application. 2003 IEEE Aerospace Conference, US : New York, 2003:2709-2715.
    [88] Li L, Li X, Luo G. Fundamental study on reconnection electromagnetic launch assist technology. 2003 IEEE Aerospace Conference, US : New York, 2003:2717-2723.
    [89] Li L, Li X, Hu Y. New application of reconnection electromagnetic launch (RCEML) with plate projectile: space application. RAST2003, Turkey: Istanbul, 2003:404-408.
    [90] Li L, Li X, Kou B et al. Fundamental study of electromagnetic launch assist with magnetic line reconnection technology. 4th Asian-Pacific Conference on Aerospace Techology and Science, China: Chongqing, 2002 : 7.
    [91] 李小鹏,李立毅,程树康等.重接式电磁发射技术的现状及应用前景.微电机,2002,35(4):39-41.
    [92] 王静端.电磁发射技术的发展及其军事应用.火力与指挥控制,2001,26(1):5-7.
    [93] 冯慈璋.电磁场.北京:高等教育出版社,1983.
    [94] R. L. 斯托尔.涡流分析.哈尔滨:黑龙江科学技术出版社,1983.
    [95] 刘国强,赵凌志,蒋继娅.Ansoft工程电磁场有限元分析.北京:电子工业出版社,2005.
    [96] He J L, Zabar Z, Levi E et al. Transient analysis of multisection induction-type coil-launchers. 7th IEEE International Pulsed Power Conference, US: Monterey, 1989:140-143.
    [97] 施吉林,刘淑珍,陈桂芝.计算机数值方法.北京:高等教育出版社,1999.
    [98] Zhao C, Zou J, Li X et al. Study of a three-stage recormection electromagnetic launcher using triggered vacuum switches. IEEE Transactions on Magnetics, 2007, 43 (1) (已录用).
    [99] Zou J, Cong J. Theoretical analyses of arcs in triggered vacuum switches. 19th IEEE International Symposium on Discharges and Electrical Insulation, China: Xi'an, 2000: 192-194.
    [100] 秦实宏,何俊佳,程礼椿等.一种光隔高压触发电路的研究.高电压技术,2000,26(5):7-8.
    [101] Thurmond L, Howard T, Pfenning T. Evaluation of a triggered vacuum switch for ETC applications. 10th IEEE International Pulsed Power Conference, US: Albuquerque, 1995:769-774.
    [102] Zou J, Chen J, Lin Q. Theory and application of triggered vacuum switches. 19th IEEE International Symposium on Discharges and Electrical Insulation, China: Xi'an, 2000:363-366.
    [103] Hiroshi A, Kouji S, Yukio K. Switching characteristics of the triggered vacuum gap for a high-repetition-ratepulse-power source. IEEE Transactions on Plasma Science, 1992, 20 (2): 76-79.
    [104] Shang W, Damstra G C. Triggerable 250kA/20kV prevacuum gaps for pulsed high current and voltage applications. 15th International Symposium on Discharges and Electrical Insulation in Vacuum, Germany: Darmstadt, 1992: 508-512.
    [105] 刘国治,姚东升.触发真空开关的特性及其在毫秒级脉冲系统中的应用.核科学与工程,1995,15(2):184-188.
    [106] Alferov D F, Ivanov V P, Sidorov V A. High-current vacuum switching devices for power energy storages. IEEE Transactions on Magnetics, 1999, 35 (1): 323-327.
    [107] Osmokrovic P, Arsic N. Application of vacuum three electrode spark gaps for synthetic circuits. 15th International Symposium on Discharges and Electrical Insulation in Vacuum, Germany: Darmstadt, 1992: 624-627.
    [108] 范兴明,邹积岩,董恩源等.全电压关合试验的控制策略及其实现.电网技术,2005,29(17):8-13.
    [109] Shi J, Zou J, He J et al. Preliminary research on triggered vacuum switch based fault current limiter. 19th International Symposium on Discharges and Electrical Insulation in Vacuum, China: Xi'an, 2000: 507-510.
    [110] Singh H, Eccleshall D, McNab I et al. Alternator power conditioning for launchers. 23th International Power Modulator Symposium, US: Rancho Mirage, 1998:38-41.
    [111] Zou J, Duan X, Qin S. Experimental investigation on operation capacity of triggered vacuum switches. 19th International Symposium on Discharges and Electrical Insulation in Vacuum, China: Xi'an, 2000: 504-506.
    [112] Lafferty J M. Triggered vacuum gaps. Proceedings of the IEEE, 1966, 54(1): 23-32.
    [113] Raju G R G, Hackam R, Benson F A. Firing characteristics of a triggered vacuum gap employing a dielectric coated with a semiconducting layer. Journal of Applied Physics, 1977, 48 (3): 1101-1105.
    [114] Earley L M, Scott G L. Firing characteristics of a low-jitter miniature laser-triggered vacuum switch. IEEE Transactions on Plasma Science, 1990, 18 (2): 247-249.
    [115] He J, Zou J, Qin S et al. A high-capacity triggered vacuum switch with single axial magnetic field electrode. IEEE Transactions on Magnetics, 1999, 35 (1) : 352-355.
    [116] Warren T, Dickens J, Neuber A et al. Development of improved triggered vacuum switches. 12th IEEE International Pulsed Power Conference, US: Monterey, 1999:1264-1267.
    [117] Seo K S, Lee T H, Hwang L Ho et al. A high power vacuum rotary arc gap closing switch for pulsed power applications. 25th International Power Modulator Symposium, South Korea: Changwon, 2002: 366-369.
    [118] 何俊佳,邹积岩,王海等.高性能大功率触发真空开关的研究.电工电能新技术,1997,16(2):28-32.
    [119] Warren F T, Wilson J M, Thompson J E et al. Vacuum switch trigger delay characteristics. IEEE Transactions on Plasma Science, 1982, 10 (4): 298-301.
    [120] 何俊佳,邹积岩,王海等.触发真空开关中初始等离子体的产生和扩展.高压电器,1996,32(6):3-5.
    [121] Vozdvijensky V A, Sidorov V A. Initial stage of discharge current growth in a triggered vacuum gap. IEEE Transactions on Plasma Science, 1991, 19 (5): 778-781.
    [122] Farrall G A. Low voltage firing characteristics of a triggered vacuum gap. IEEE Transactions on Electron Devices, 1966, 13(4): 432-438.
    [123] Osmokrovic P, Arsic N, Lazarevic Z et al. Triggered vacuum and gas spark gaps. IEEE Transactions on Power Delivery, 1996, 11 (2): 858-864.
    [124] 赵纯,邹积岩,廖敏夫等.一种多级重接式电磁发射系统的触发电路.电工电能新技术,2006,25(3):77-80.
    [125] 华中工学院,上海交通大学.高电压试验技术.北京:水利电力出版社,1983.
    [126] 周志付,姜若婷,劳国强.电磁污染及其防护对策.电力环境保护,2005,21(1):60-62.
    [127] Zhao C, Li X, Zou J et al. The whole design of a 3-stage recormection electromagnetic launcher. 14th International Symposium on High Voltage Engineering, China: Beijing, 2005: 13.
    [128] 赵纯,李小鹏,柏兴林等.三级重接炮的控制系统设计.中国电机工程学会高电压专业委员会学术会议,中国:重庆,2004:964-968.
    [129] 张可畏.电子式高压电力互感器的设计与实用化研究:(博士学位论文).大连:大连理工大学,2005.
    [130] Zhao C, Zou J, Li X et al. The velocity measurement and firing trigger system of a multi-stage reconnection electromagnetic launcher. 6th International Symposium on Test and Measurement, China: Dalian, 2005: 4245-4248.
    [131] 柏兴林.三级重接型电磁发射测控单元的设计与实现:(硕士学位论文).大连:大连理工大学,2005.
    [132] 刘乐善,欧阳星明,刘学清.微型计算机接口技术及应用.武汉:华中理工大学出版社,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700