用户名: 密码: 验证码:
大气层外自旋稳定拦截器末制导控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了应对未来空间武器的威胁、适应动能拦截器技术的发展趋向、克服现有动能拦截器结构复杂与成本高的不足,美国从90年代起开始探索研究新一代动能拦截器。这种动能拦截器的突出特点是追求微小型化,比较典型的如“蜂群微型中段拦截器”和“谢弗”拦截器,用多拦截器应对多目标威胁。这种类型拦截器不需要惯性测量装置和姿控系统,而是将多个脉冲发动机沿弹身布置在质心周围,利用弹体自旋,将脉冲发动机旋转到所需的理想位置,产生控制力,实现快速变轨,在此过程中脉冲发动机产生的力矩作为扰动,通过自旋增强系统稳定性。由于脉冲发动机的快速响应,使得拦截器具有很高的制导精度,利用与目标高速接近并直接碰撞产生的巨大动能来完成对目标的摧毁。在这一背景下,本文研究了一种自旋稳定拦截器的末制导控制问题。
     首先,在考虑变质量后质心位置变化所产生的扰动力矩对拦截器姿态的干扰,以及弹体自旋运动对脉冲发动机推力方向影响的基础上,建立了自旋稳定拦截器六自由度数学模型。定义了研究自旋稳定拦截器所需要的坐标系,并且给出了相应的坐标转换关系;在此基础上给出了自旋稳定拦截器的数学模型,其中包括拦截器的质量变化方程、质心位置变化方程、转动惯量及转动惯量变化率方程、质心动力学方程、绕质心动力学方程、运动学方程、脉冲发动机等效推力及力矩模型等。
     其次,建立拦截器与目标的相对运动模型,并在此基础上设计导引控制律。通过研究脉冲发动机在不同点火方法下的算法实现,分析了不同点火算法的优势和缺陷,在此基础上设计出本文所采用的脉冲点火算法;利用指标函数进行寻优,得出最佳的点火位置并在此基础上给出脉冲发动机点火算法的实现过程。
     最后,设计了自旋稳定拦截器制导仿真平台。在仿真需求分析的基础上,设计仿真平台结构,基于VC++建立了自旋稳定拦截器的制导仿真平台,对拦截器制导过程进行仿真验证。仿真结果证明本文提出的自旋稳定拦截器的制导方法和脉冲发动机点火算法的正确性和有效性。
     本文的研究结果为大气层外自旋稳定拦截器末制导控制问题提供了解决方案,并且为相关问题的进一步研究奠定了基础。
American have commenced researching the advanced kill vehicle since 1990s, to front the threat of“space weapon”, adapt the development of kill vehicle to the technology current and overcome the disadvantage of the existing kill vehicle’s complex configuration and high cost. This kind of kill vehicle’s outstanding excellence is pursueing micraminature; the typical interceptors are“Swarm miniature interceptor”and“Schafer miniature mid-course kill vehicle”; this kind of kill vehicle does not need intertia mearurement device and attitude control system,and that installs several mini-pulse thrusters upon the circumambience of vehicle’s centroid. This kind of vehicle can circumrotate the mini-pulse thrusters at the right positions where the pulses bring forth control power to realize the orbit maneuver fleetly according to spinning. During the process of orbit maneuver, the procreant moments are considered as interference, utilizing the spinning to reinforce the stability. This kind of vehicle possesses the high guidance precision depending on the pulse’s fast response; and destroys the target relying on the immense kinetic energy produced by being close the aim fast. In this paper, the ability of guidance law to control a spinning extra-atmospheric interceptor with multi-pulse control was reseached.
     Firstly, a six-dimension model for spinning interceptor was established based on the impacts of centroid excursion. After analyzing the pulse control, impacts of lateral thrust on the motion of the spinning interceptor were presented. Based on the requisite reference frames and transform relation of reference frames, the movement equations ware constituted for the Mini-Interceptor. The models include the mass transformation equation, center of mass transformation equation, the moment of inertia and the rate of moment of inertia transformation equations, the equivalent thrust and moment equations, and so on. The research work lays the groundwork for the successive research.
     Secondly, the fire algorithm of pulse thrusters was presented for spinning interceptor missile. According to different fire principles, the fire algorithms of pulse thrusters ware presented. And the advantage and defects of this fire algorithms ware analyzed. Design the guide line function to seek the best parameters of fire positions and provide the right fire logic manipulation process based on the request of guidance. The simulation results showed the validity and superiority of this fire algorithm.
     Finally, the guidance simulation platform of spinning mini-interceptor was designed. The requirement of guidance simulation platform was analyzed. And the framework of guidance simulation platform was designed. The guidance simulation platform of spinning mini-interceptor was constituted using VC++. And with a view to interceptor missile and target, the guidance simulation test was realized. The simulation results demonstrate the feasibility and validity of guidance methods of spinning mini-interceptor.
     The research work provides an effective solution for guidance problems of spinning mini-interceptor, which provided the academic base of farther research of spinning mini-interceptor missile.
引文
1殷兴良.关于发展我国战术防御系统的一些思考,战术导弹防御技术研讨会文集.
    2俄罗斯战区导弹防御技术的发展概况,863先进防御技术通讯.
    3王毓兰.苏联解体后美欧地面防空体系的先变迁.现代防御技术,1995.
    4钱杏芳,林瑞林,赵亚男,导弹飞行力学.北京理工大学出版社.
    5张有济主编.战术导弹飞行力学设计.宇航出版社,1996.
    6 Keith J Costa. Senate Panel Recommends $10 Million to Study the Concepet Experts Mull Use of Multiple Small Kill Vehicles for Missile Defense[Z].Inside the Pentagon,2002,6
    7 R Richard C Barnard.KEI Now Seen as Multi-purpose Missile Defense Weapon[J].Sea Po-wer,2004,(4):10-13
    8 M. Xin, S. N. Balakrishnan. Missile Autopilot Design Using a New Suboptimal Nonlinear Control Method. AIAA-2003-0577.
    9袁天宝,刘新建.自旋反卫拦截器末制导研究.弹箭与制导学报.2004.24.134-137.
    10张毅,何念念,马清华.防空导弹防御系统中的TBM突防能力研究.飞行力学, 2001, 19(3): 49-55.
    11强胜,易东云,涂先勤.战术弹道导弹拦截的仿真研究.弹道学报, 2007, 19(3): 34-37.
    12吴文海,曲建岭,王存仁.飞行器比例导引综述.飞行力学, 2004, 22(2): 1-5.
    13周荻,寻的导弹的新型导引规律,国防出版社,2002.10.
    14方群,陈武群,袁建平.一种抗干扰修正比例导引律的研究.宇航学报, 2000, 2(3).
    15 M. Sharma, N. Richards. Adaptive, Integrated Guidance and Control for Missile Interceptors. AIAA-2004-4880.
    16郝波.直接侧向力技术的引用研究.西北工业大学硕士研究生学位论文, 2004.
    17张斌.末端直接侧向力/气动力复合控制.西北工业大学硕士学位论文, 2004.
    18尹永鑫,杨明.直接力/气动力复合控制拦截弹轨迹控制.航空动力学报. 2008.23.569-573..
    19邹晖,陈万春,王鹏等,敏捷导弹气动力侧向推力复合控制特性分析研究,北京航空航天大学学报,2004,30(3):192~196.
    20王进,陈万春,殷兴良.大气层内拦截弹脉冲姿控发动机快响应控制.北京航空航天大学学报, 2007, 33(4): 397-400.
    21徐劲祥,宋锦武,夏群力.弹道修正弹末端脉冲推力控制研究.弹道学报, 2005, 17(2): 19-23.
    22 Y. Wang, Y. Yao, K. Ma. Lateral Thrust and Aerodynamic Blended Control System Design Based on Variable Structure Model Following. The Sixth World Congress on Intelligent Control and Automation, 2006, 8183-8186.
    23 P. A. Servidia, P. Sanchez, S. Ricardo. Thruster Design for Position/Attitude Control of Spacecraft. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(4): 1172-1180.
    24程国采.战术导弹导引方法[M].北京:国防工业出版社,1996.
    25吴瑞林,周红建,空间自旋稳定拦截器的数字比例导引[J],现代防御技术,1997,2:34~37.
    26吴启星,刘世勇,张为华.大气层外拦截器末段轨控方案分析.长沙:国防科技大学航天与材料工程学院,北京跟踪与通信技术研究所.战术导弹控制技术,2007.
    27邹晖,陈万春,殷兴良,具有侧向脉冲推力的旋转导弹建模与控制研究,系统工程与电子技术2005,27(4):687~691.
    28尹永鑫.气动力/直接力复合控制拦截弹制导与控制方法研究,哈尔滨工业大学博士论文,2008.11.71~76.
    29 Yongxin Yin, Ming Yang, Zicai Wang. Modeling and Simulation of the Interceptor by Combined Control of Lateral Thrust and Aerodynamic Force. In Proceedings of the World Congress on Intelligent Control and Automation, Dalian, China, 2006: 1805-1809. (EI Accession Number: 071510541521)
    30沈明辉,陈磊,吴瑞林,等.大气层内动能拦截弹脉冲矢量发动机点火控制算法研究.宇航学报, 2007, 28(2): 278-281.
    31杨锐,徐敏,陈士橹.动能拦截弹姿控发动机组合点火算法研究.西北工业大学学报, 2006, 24(1): 15-18.
    32于喜河,单家元,刘藻珍.基于脉冲推力控制的超高速动能导弹控制算法设计.战术导弹控制技术.2006.52.14-17.
    33 S. F. Gimelshein, A. A. Alexeenko, D. A. Levin. Modeling of the Interaction of a Side Jetwith a Rarefied Atmosphere. AIAA-2001-0503.
    34 W. Sun, Z. Zheng. 3D Variable Structure Guidance Law Based on Adaptive Model-Following Control with Impact Angular Contraints. Chinese Control Conference, 2007, 61-66.
    35 Y. Zhang, Y. Hu, W. Gu. Lyapunov Stability Based on Three-Dimensinal Guidance for Missiles against Maneuvering Targets. World Congress on Intelligent Control and Automation, 2002, 4: 2836-2840.
    36 F. Yeh, K. Cheng, L. Fu. Variable Structure-Based Nonlinear Missile Guidance/Autopilot Degisn with Highly Maneuverable Actuators. IEEE Transactions on Control Systems Technology, 2004, 12: 944-949.
    37程凤舟,万自明,陈士橹等,防空导弹直接力气动力复合控制系统设计,飞行力学,2003,21(2):49~66.
    38袁天宝,刘新建等,弹道导弹滚动飞行稳定仿真,国防科技大学学报,2004,2:9~12.
    39 S. A. Hoffman, W. D. Blair. Guidance, Tracking and Radar Resource Management for Self Defence. IEEE Conference on Decision and Control, 1995, 3: 2772-2777.
    40 W. K. Schroeder, K. Liu. An Appropriate Application of Fuzzy Logic: a Missile Autopilot for Dual Control Implementation. IEEE International Symposium on Intelligent Control-Proceedings, 1994, 93-98.
    41 G. Hexner, H. Weiss. A Stochastic Approach to Optimal Guidance with Uncertain Time-to-Go. IEEE Conference on Decision and Control, 2006, 1972-1977.
    42 I. Rusnak. Optimal Guidance Laws with Uncertain Time-of-Flight. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36: 721-725.
    43 C. Ryoo, H. Cho, M. Tahk. Time-to-Go Weighted Optimal Guidance with Impact Angle Constraints. IEEE Transactions on Control Systems Technology, 2006, 14: 483-492.
    44 C. Tournes, R. Frederick, T. Carroll, et al. Minature Interceptor Guidance and Control Using Second Order Sliding Mode and Adapative Control. AIAA-2005-6158.
    45 D. Zhou, C. Mu, Q. Ling, et al. Optimal Sliding-Mode Guidance of a Homing Missile. Proceedings of the IEEE Conference on Decision and Control, 1999, 5:5131-5136.
    46 M. Bahrami, B. Ebrahimi, J. Roshanian. Optimal Sliding-Mode Guidance Law for Fixed-Interval Propulsive Maneuvers. IEEE Inteenational Conference on Control Applications, 2006, 1014-1018.
    47 S. Deskovski, Z. Gacovski, G. Dimirovsk. Homing Guidance Laws Using Applied Fuzzy Systems. IEEE International Conference on Recent Advances in Space Technologies, 2003: 680-685.
    48 G. M. Dimirovski, S. M. Deskovski, Z. M. Gacovski. Classical and Fuzzy-System Guidance Laws in Homing Missiles Systems. IEEE Aerospace Conference Proceedings, 2004, 5: 3032-3047.
    49 P. K. Menon and V. R. Iragavarapu. Blended Homing Guidance Law Using Fuzzy Logic. 1998 AIAA Guidance, Navigation, and Control Conference, Portland, Oregon, August, 1998: 251-259.
    50 C. Lin, H. Hung, Y. Chen. Development of an Integrated Fuzzy-Logic-Based Missile Guidance Law against High Speed Target. IEEE Transactions on Fuzzy Systems. 2004, 12(2): 157-169.
    51郑逸峰.拦截导弹直接力控制、制导及其动画仿真.南京航空航天大学硕士学位论文, 2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700