用户名: 密码: 验证码:
基因定位方法的创新与DNA自动机硬件的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基因分型,统计分析和基因功能研究是现代遗传学研究中的三个核心组成部分。这三个部分顺序衔接,成为揭开遗传疾病致病机制的重要手段。本文对这三个部分的研究方法做出细致的分析并针对存在的问题提出改进方法。首先,应用纳米金粒子对基于等位基因特异性PCR方法的SNP基因分型作出改进,增强了等位基因特异性PCR方法的基因分型能力。由于纳米金的成本很低,且不需要对原有的实验方法作出大的改动,所以这种方法有望发展成为高性价比的基因分型方法。其次,基于Haseman-Elston模型对受累同胞对法作出改进,使其可以应用到顺序性状的研究中。数据模拟的结果表明新的方法更加适合小样本,及存在较强连锁关系的标记位点的情况。最后,在实验结果的基础上探讨了DNA自动机硬件对连接酶的依赖性。而DNA自动机已经可以根据一定的逻辑在体外调控基因的表达,为基因功能的研究提供了一种新的方法。从实验结果可以看出,FokI是本文涉及的几种限制性内切酶中最适合的无连接酶DNA自动机的硬件,而其他几种酶则各具特色。这项研究给向无酶DNA自动机的跨越提供了有力支持。
Genotyping, statistical analysis and gene function research are the three key parts of modern genetics. This three parts linking in turn becomes an important method for discovering the mechanism of genetic dieases. In this thesis, the research methods in these three parts were analyzed and improvement was presented to solve the existing problems. At first, a novel AuNP assisted allele specific PCR was presented to enhance the genotyping ability of ASPCR. Because AuNP is cheap and the original protocol is changed little, this method is hopeful to become a new cost-efficient genotyping method. At second, the sib-pair linkage analysis method is improved based on the Haseman-Elston model to be applied to ordinal trait loci mapping. The data simulation results showed that the new linkage analysis method is optimal for small sample with strong linkage. At last, the ligase dependency of type II restriction enzymes when performing DNA automaton computing was investigated based on the experiment result. Moreover, DNA automaton could also be used to regulate gene expression in vitro logically. This provided a novel method for gene function analysis. From the result, we can see that FokI is the most suitable DNA automaton hardware, but other enzymes have their advantages. This investigation supported the development to enzyme-free DNA automaton.
引文
[1]主编陈.中国的生物多样性-现状及其保护对策[M].北京:科学出版社, 1993.
    [2]白晶,张月学. .几种重要的分子标记原理及RAPD应用[J].哈尔滨师范人学自然科学学报, 2004, 20(5): 89-91.
    [3] LITT M, LUTY J A. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene [J]. American Journal of Human Genetics, 1989, 44(3): 397-401.
    [4] TAUTZ D. Hypervariability of simple sequences as a general source for polymorphic DNA markers [J]. Nucleic Acids Research, 1989, 17(16): 6463-71.
    [5] TAUTZ D, RENZ M. Simple sequences are ubiquitous repetitive components of eukaryotic genomes [J]. Nucleic Acids Research, 1984, 12(10): 4127-38.
    [6] HANSEN C, SHRESTHA J N B, PARKER R J, et al. Genetic diversity among Canadienne, Brown Swiss, Holstein, and Jersey cattle of Canada based on 15 bovine microsatellite markers [J]. Genome, 2002, 45(5): 897-904.
    [7] KWOK P Y, CHEN X. Detection of single nucleotide variations [J]. Genetic engineering, 1998, 20(125-34.
    [8] LANDER E S. The new genomics: Global views of biology [J]. Science, 1996, 274(5287): 536-9.
    [9] NEWTON-CHEH C, HIRSCHHORN J N. Genetic association studies of complex traits: Design and analysis issues [J]. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2005, 573(1-2): 54-69.
    [10] SCHORK N J, FALLIN D, LANCHBURY J S. Single nucleotide polymorphisms and the future of genetic epidemiology [J]. Clinical Genetics, 2000, 58(4): 250-64.
    [11] SHERRY S T, WARD M H, KHOLODOV M, et al. DbSNP: The NCBI database of genetic variation [J]. Nucleic Acids Research, 2001, 29(1): 308-11.
    [12] MARSHALL E. The hunting of the SNP [J]. Science, 1997, 278(5346): 2047.
    [13] HOUSMAN D, LEDLEY F D. Why pharmacogenomics? Why now? [J]. Nature biotechnology, 1998, 16(6): 492-3.
    [14] KRUGLYAK L. The use of a genetic map of biallelic markers in linkage studies [J]. Nature genetics, 1997, 17(1): 21-4.
    [15] LANDER E S, SCHORK N J. Genetic dissection of complex traits [J]. Science, 1994, 265(5181): 2037-48.
    [16] ZHAO L P, ARAGAKI C, HSU L, et al. Mapping of complex traits by single-nucleotide polymorphisms [J]. American Journal of Human Genetics, 1998, 63(1): 225-40.
    [17] LANDEGREN U, NILSSON M, KWOK P Y. Reading bits of genetic information: Methods for single-nucleotide polymorphism analysis [J]. Genome Research, 1998, 8(8): 769-76.
    [18] KWOK P Y. High-throughput genotyping assay approaches [J]. Pharmacogenomics, 2000, 1(1): 95-100.
    [19] DE LA VEGA F M, LAZARUK K D, RHODES M D, et al. Assessment of two flexible and compatible SNP genotyping platforms: TaqMan? SNP Genotyping Assays and the SNPlex? Genotyping System [J]. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2005, 573(1-2): 111-35.
    [20]曾朝阳,沈守荣.利用动态等位基因特异性杂交技术进行单核苷酸多态高通量分型[J].生物化学与生物物理进展, 2002, 29(5): 806-10.
    [21] HOLLOWAY J W, BEGHE B, TURNER S, et al. Comparison of three methods for single nucleotide polymorphism typing for DNA bank studies: Sequence-specific oligonucleotide probe hybridisation, TaqMan liquid phase hybridisation, and microplate array diagonal gel electrophoresis (MADGE) [J]. Human Mutation, 1999, 14(4): 340-7.
    [22] PASTINEN T, RAITIO M, LINDROOS K, et al. A system for specific, high-throughput genotyping by allele-specific primer extension on microarrays [J]. Genome Research, 2000, 10(7): 1031-42.
    [23] CHEN J, IANNONE M A, LI M S, et al. A microsphere-based assay for multiplexed single nucleotide polymorphism analysis using single base chain extension [J]. Genome Research, 2000, 10(4): 549-57.
    [24] HARDENBOL P, YU F, BELMONT J, et al. Highly multiplexed molecular inversion probe genotyping: Over 10,000 targeted SNPs genotyped in a single tube assay [J]. Genome Research, 2005, 15(2): 269-75.
    [25] HARDENBOL P, BANE?R J, JAIN M, et al. Multiplexed genotyping with sequence-tagged molecular inversion probes [J]. Nature Biotechnology, 2003, 21(6): 673-8.
    [26] LANGAEE T, RONAGHI M. Genetic variation analyses by Pyrosequencing [J]. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2005, 573(1-2): 96-102.
    [27] AHMADIAN A, EHN M, HOBER S. Pyrosequencing: History, biochemistry and future [J]. Clinica Chimica Acta, 2006, 363(1-2): 83-94.
    [28] DIGGLE M A, CLARKE S C. Pyrosequencing(TM): Sequence typing at the speed of light [J]. Applied Biochemistry and Biotechnology - Part B Molecular Biotechnology, 2004, 28(2): 129-38.
    [29] SAUER S, LECHNER D, BERLIN K, et al. A novel procedure for efficient genotyping of single nucleotide polymorphisms [J]. Nucleic acids research, 2000, 28(5):
    [30] HALLE J P, WURST H, SCHMIDT C. Genomic sequencing by ligation mediated polymerase chain reaction using direct blotting and non-radioactive detection [J]. DNA sequence : the journal of DNA sequencing and mapping, 1993, 3(5): 283-9.
    [31] SOBRINO B, BRIO?N M, CARRACEDO A. SNPs in forensic genetics: A review on SNP typing methodologies [J]. Forensic Science International, 2005, 154(2-3): 181-94.
    [32] FARUQI F A, HOSONO S, DRISCOLL M D, et al. High-throughput genotyping of single nucleotide polymorphisms with rolling circle amplification [J]. BMC Genomics, 2001, 2(
    [33] OLIVIER M. The Invader(R) assay for SNP genotyping [J]. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2005, 573(1-2): 103-10.
    [34] BENIT P, KARA-MOSTEFA A, BERTHELON M, et al. Mutation analysis of the hamartin gene using denaturing high performance liquid chromatography [J]. Human Mutation, 2000, 16(5): 417-21.
    [35] ELLIS L A, TAYLOR C F, TAYLOR G R. A comparison of fluorescent SSCP and denaturing HPLC for high throughput mutation scanning [J]. Human Mutation, 2000, 15(6): 556-64.
    [36] SANGER F, NICKLEN S, COULSON A R. DNA sequencing with chain-terminating inhibitors [J]. Proc Natl Acad Sci U S A, 1977, 74(12): 5463-7.
    [37] WEISS K M, TERWILLIGER J D. How many diseases does it take to map a gene with SNPs? [J]. Nature genetics, 2000, 26(2): 151-7.
    [38] YAMAZAKI K, MCGOVERN D, RAGOUSSIS J, et al. Single nucleotide polymorphisms in TNFSF15 confer susceptibility to Crohn's disease [J]. Human Molecular Genetics, 2005, 14(22): 3499-506.
    [39] DAVIDSON S. Research suggests importance of haplotypes over SNPs [J]. Nature biotechnology, 2000,18(11): 1134-5.
    [40] ZHANG L, GAO L, LI Z, et al. Progressive sutural cataract associated with a BFSP2 mutation in a Chinese family [J]. Molecular Vision, 2006, 12(1626-31.
    [41] ZHAO X, TANG R, GAO B, et al. Functional variants in the promoter region of chitinase 3-like 1 (CHI3L1) and susceptibility to schizophrenia [J]. American Journal of Human Genetics, 2007, 80(1): 12-8.
    [42] COLLINS F S, GUYER M S, CHAKRAVARTI A. Variations on a theme: Cataloging human DNA sequence variation [J]. Science, 1997, 278(5343): 1580-1.
    [43] LEE N, DALY M J, DELMONTE T, et al. A genomewide linkage-disequilibrium scan localizes the Saguenay-Lac-Saint-Jean cytochrome oxidase deficiency to 2p16 [J]. American Journal of Human Genetics, 2001, 68(2): 397-409.
    [44] MIRETTI M M, WALSH E C, KE X, et al. A high-resolution linkage-disequilibrium map of the human major histocompatibility complex and first generation of tag single-nucleotide polymorphisms [J]. American Journal of Human Genetics, 2005, 76(4): 634-46.
    [45] STEPHENS J C, SCHNEIDER J A, TANGUAY D A, et al. Haplotype variation and haplotype linkage disequilibrium in 313 human genes [J]. Science, 2001, 293(5529): 489-93.
    [46] ARDLIE K G, KRUGLYAK L, SEIELSTAD M. Patterns of linkage disequilibrium in the human genome [J]. Nature Reviews Genetics, 2002, 3(4): 299-309.
    [47] GOLDSTEIN D B. Islands of linkage disequilibrium [J]. Nature genetics, 2001, 29(2): 109-11.
    [48] NOTHNAGEL M, RONDE K. The effect of single-nucleotide polymorphism marker selection on patterns of haplotype blocks and haplotype frequency estimates [J]. American Journal of Human Genetics, 2005, 77(6): 988-98.
    [49] KE X, DURRANT C, MORRIS A P, et al. Efficiency and consistency of haplotype tagging of dense SNP maps in multiple samples [J]. Human Molecular Genetics, 2004, 13(21): 2557-65.
    [50] TABOR H K, RISCH N J, MYERS R M. Candidate-gene approaches for studying complex genetic traits: Practical considerations [J]. Nature Reviews Genetics, 2002, 3(5): 391-7.
    [51] TAKEUCHI F, YANAI K, MORII T, et al. Linkage disequilibrium grouping of single nucleotide polymorphisms (SNPs) reflecting haplotype phytogeny for efficient selection of tag SNPs [J]. Genetics, 2005, 170(1): 291-304.
    [52] DOUGLAS J A, BOEHNKE M, GILLANDERS E, et al. Experimentally-derived haplotypes substantially increase the efficiency of linkage disequilibrium studies [J]. Nature genetics, 2001, 28(4): 361-4.
    [53] PATIL N, BERNO A J, HINDS D A, et al. Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21 [J]. Science, 2001, 294(5547): 1719-23.
    [54] DING C, CANTOR C R. Direct molecular haplotyping of long-range genomic DNA with M1-PCR [J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(13): 7449-53.
    [55] RUANO G, KIDD K K, STEPHENS J C. Haplotype of multiple polymorphisms resolved by enzymatic amplification of single DNA molecules [J]. Proceedings of the National Academy of Sciences of the United States of America, 1990, 87(16): 6296-300.
    [56] TOST J, BRANDT O, BOUSSICAULT F, et al. Molecular haplotyping at high throughput [J]. Nucleic acids research, 2002, 30(19):
    [57] MITRA R D, BUTTY V L, SHENDURE J, et al. Digital genotyping and haplotyping with polymerase colonies [J]. Proceedings of the National Academy of Sciences of the United States of America, 2003,100(10): 5926-31.
    [58] MITRA R D, CHURCH G M. In situ localized amplification and contact replication of many individual DNA molecules [J]. Nucleic acids research, 1999, 27(24):
    [59] MCDONALD O G, KRYNETSKI E Y, EVANS W E. Molecular haplotyping of genomic DNA for multiple single-nucleotide polymorphisms located kilobases apart using long-range polymerase chain reaction and intramolecular ligation [J]. Pharmacogenetics, 2002, 12(2): 93-9.
    [60] STEPHENS J C, ROGERS J, RUANO G. Theoretical underpinning of the single-molecule-dilution (SMD) method of direct haplotype resolution [J]. American Journal of Human Genetics, 1990, 46(6): 1149-55.
    [61] WABUYELE M B, SOPER S A. PCR amplification and sequencing of single copy DNA molecules [J]. Single Molecules, 2001, 2(1): 13-21.
    [62] OHUCHI S, NAKANO H, YAMANE T. In vitro method for the generation of protein libraries using PCR amplification of a single DNA molecule and coupled transcription/translation [J]. Nucleic Acids Research, 1998, 26(19): 4339-46.
    [63] YE S, DHILLON S, KE X, et al. An efficient procedure for genotyping single nucleotide polymorphisms [J]. Nucleic Acids Res, 2001, 29(17): E88-8.
    [64] MICHALATOS-BELOIN S, TISHKOFF S A, BENTLEY K L, et al. Molecular haplotyping of genetic markers 10 kb apart by allele-specific long-range PCR [J]. Nucleic Acids Research, 1996, 24(23): 4841-3.
    [65] AYYADEVARA S, THADEN J J, SHMOOKLER REIS R J. Discrimination of primer 3'-nucleotide mismatch by Taq DNA polymerase during polymerase chain reaction [J]. Analytical Biochemistry, 2000, 284(1): 11-8.
    [66] HUANG M M, ARNHEIM N, GOODMAN M F. Extension of base mispairs by Taq DNA polymerase: Implications for single nucleotide discrimination in PCR [J]. Nucleic Acids Research, 1992, 20(17): 4567-73.
    [67] KWOK S, KELLOGG D E, MCKINNEY N, et al. Effects of primer-template mismatches on the polymerase chain reaction: Human immunodeficiency virus type 1 model studies [J]. Nucleic Acids Research, 1990, 18(4): 999-1005.
    [68] LATORRA D, CAMPBELL K, WOLTER A, et al. Enhanced allele-specific PCR discrimination in SNP genotyping using 3′locked nucleic acid (LNA) primers [J]. Human Mutation, 2003, 22(1): 79-85.
    [69] CHENG S, CHANG S Y, GRAVITT P, et al. Long PCR [J]. Nature, 1994, 369(6482): 684-5.
    [70] WONG S S, WOOLLEY A T, JOSELEVICH E, et al. Covalently-functionalized single-walled carbon nanotube probe tips for chemical force microscopy [21] [J]. Journal of the American Chemical Society, 1998, 120(33): 8557-8.
    [71] WONG S S, WOOLLEY A T, ODOM T W, et al. Single-walled carbon nanotube probes for high-resolution nanostructure imaging [J]. Applied Physics Letters, 1998, 73(23): 3465-7.
    [72] WOOLLEY A T, GUILLEMETTE C, CHEUNG C L, et al. Direct haplotyping of kilobase-size DNA using carbon nanotube probes [J]. Nature Biotechnology, 2000, 18(7): 760-3.
    [73] HARUTA M. Gold as a key element for green nanotechnology [J]. Gold Bulletin, 2001, 34(2): 40-.
    [74] FRANCIS G, PALME R. The place of gold in nano world [J]. Gold Bulletin, 1996, 29(47-51.
    [75] WHYMAN R. Gold nanoparticles: a renaissance in gold chemistry [J]. Gold Bulletin 1996, 29(1): 11-5.
    [76] BOND G C. Gold: a relatively new catalyst [J]. Catalysis Today, 2002, 72(1-2): 5-9.
    [77] THOMPSON D. New advances in gold catalysis part I [J]. Gold Bulletin, 1998, 31(4): 111-8.
    [78] LI H, HUANG J, LV J, et al. Nanoparticle PCR: nanogold-assisted PCR with enhanced specificity [J]. Angewandte Chemie (International ed, 2005, 44(32): 5100-3.
    [79] LIJUAN. M, HONGPING. Z, XIAODONG. Z, et al. Mechanism of the interaction between Au nanoparticles and polymerase in nanoparticle PCR [J]. CHINESE SCIENCE BULLETIN -ENGLISH EDITION-, 2007, 52(17): 2345-9.
    [80] GRABAR K C, GRIFFITH FREEMAN R, HOMMER M B, et al. Preparation and characterization of Au colloid monolayers [J]. Analytical Chemistry, 1995, 67(4): 735-43.
    [81]杜勇,杨小成,方炎.激光烧蚀法制备纳米银胶体及其特征研究[J].光电子.激光, 2003, 14(4): 383-6.
    [82] BARNES W M. PCR amplification of up to 35-kb DNA with high fidelity and high yield from lambda bacteriophage templates [J]. Proc Natl Acad Sci U S A, 1994, 91(6): 2216-20.
    [83] MICHALATOS-BELOIN S, TISHKOFF S A, BENTLEY K L, et al. Molecular haplotyping of genetic markers 10 kb apart by allele-specific long-range PCR [J]. Nucleic Acids Res, 1996, 24(23): 4841-3.
    [84]倪中福,陈希勇.数量性状基因定位与作物杂种优势[J].作物杂志, 1996, 3): 14-6.
    [85] GELDERMANN H. Investigations on inheritance of quantitative characters in animals by gene markers I. Methods [J]. Theoretical and Applied Genetics, 1975, 46(7): 319-30.
    [86]施季森,童春发.林木遗传图谱构建和QTL定位统计分析[M].科学出版社, 2006.
    [87] AMOS C I, ELSTON R C. Robust methods for the detection of genetic linkage for quantitative data from pedigrees [J]. Genetic Epidemiology, 1989, 6(2): 349-60.
    [88] OLSON J M, WIJSMAN E M. Linkage between quantitative trait and marker loci: Methods using all relative pairs [J]. Genetic Epidemiology, 1993, 10(2): 87-102.
    [89] WRIGHT F A. The phenotypic difference discards sib-pair QTL linkage information [6] [J]. American Journal of Human Genetics, 1997, 60(3): 740-2.
    [90] ELSTON R C, BUXBAUM S, JACOBS K B, et al. Haseman and Elston revisited [J]. Genetic Epidemiology, 2000, 19(1): 1-17.
    [91] PENROSE L S. The general purpose sib-pair linkage test [J]. Ann Eugen, 1953, 18(120-4.
    [92] PENROSE L S. The detection of autosomal linkage in data which consist of pairs of brothers and sisters of unspeci?ed parentage [J]. Ann Eugen, 1935, 8(133-8.
    [93] HASEMAN J K, ELSTON R C. The investigation of linkage between a quantitative trait and a marker locus [J]. Behavior Genetics, 1972, 2(1): 3-19.
    [94] FEYNMAN R P. There's plenty of room at the bottom [data storage] [J]. Microelectromechanical Systems, Journal of, 1992, 1(1): 60-6.
    [95] HEAD T. Formal language theory and DNA: An analysis of the generative capacity of specific recombinant behaviors [J]. Bulletin of Mathematical Biology, 1987, 49(6): 737-59.
    [96] ADLEMAN L M. Molecular computation of solutions to combinatorial problems [J]. Science, 1994, 266(5187): 1021-4.
    [97] CAI W, CONDON A E, CORN R M, et al. The power of surface-based DNA computation [J]. Proceedings of the first annual international conference on Computational molecular biology 1997, 67-74
    [98] WINFREE E, YANG X, SEEMAN N C. Universal computation via self-assembly of DNA: some theory and experiments, F, 1999 [C].
    [99] KARI. L, P?UN. G, ROZENBERG. G, et al. DNA computing, sticker systems, and universality [J].Acta Informatica, 1998, 35(5): 401-20.
    [100] L.KARI. DNA computing: the arrival of biological mathematics [J]. The mathematical intelligencer, 1997, 19(2):
    [101] LIPTON R J. DNA solution of hard computational problems [M]. 1995: 542-5.
    [102] FU T J. DNA double-crossover molecules [J]. Biochemistry, 1993, 32(13): 3211-20.
    [103] GEHANI A, LABEAN T, REIF J. DNA-based cryptography [J]. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2004, 2950(167-88.
    [104] HOPCROFT J E, MOTWANI R, ULLMAN J D. Introduction to automata theory, languages, and computation, 2nd edition [J]. ACM SIGACT News, 2001, 32(1): 60-5.
    [105] SIPSER M. Introduction to the Theory of Computation [J]. PWS Publishing, 1997,
    [106] BENENSON Y, PAZ-ELIZUR T, ADAR R, et al. Programmable and autonomous computing machine made of biomolecules [J]. Nature, 2001, 414(6862): 430-4.
    [107] BENENSON Y, ADAR R, PAZ-ELIZUR T, et al. DNA molecule provides a computing machine with both data and fuel [J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(5): 2191-6.
    [108] YAN H, ZHANG X P, SHEN Z Y, et al. A robust DNA mechanical device controlled by hybridization topology [J]. Nature, 2002, 415(6867): 62-5.
    [109] YURKE B, TURBERFIELD A J, MILLS A P, et al. A DNA-fuelled molecular machine made of DNA [J]. Nature, 2000, 406(6796): 605-8.
    [110] ROBERTS R J, BELFORT M, BESTOR T, et al. A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes [M]. 2003: 1805-12.
    [111] BRUNI A, TOSI B, DALL'OLIO G. Fluorescamine, a fluorescence probe for amino groups in histochemical studies of plant cells and the effect of mercury fixation [J]. The Histochemical Journal, 1977, 9(6): 703-9.
    [112] GAO B, GUO J, SHE C, et al. Mutations in IHH, encoding Indian hedgehog, cause brachydactyly type A-1 [J]. Nature genetics, 2001, 28(4): 386-8.
    [113] NEW ENGLAND BIOLABS I. T4 DNA Ligase Technical Bulletin #M0202 [M].
    [114] HEALTHCARE G. INSTRUMENTATION - MEGABACE 1000 [M].
    [115] JIAN Z, ZHANG Z Z, SHI Y Y, et al. Linearly programmed DNA-based molecular computer operated on magnetic particle surface in test-tube [J]. Chinese Science Bulletin, 2004, 49(1): 17-22.
    [116] SORENI M, YOGEV S, KOSSOY E, et al. Parallel biomolecular computation on surfaces with advanced finite automata [J]. Journal of the American Chemical Society, 2005, 127(11): 3935-43.
    [117] BENENSON Y, GIL B, BEN-DOR U, et al. An autonomous molecular computer for logical control of gene expression [J]. Nature, 2004, 429(6990): 423-9.
    [118] Y. CHEN X C, Z. ZHANG, L. HE. A Novel DNA Sequencing Strategy by DNA Automaton [M]. DNA11: The Eleventh International Meeting on DNA Computing. Canada. 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700