用户名: 密码: 验证码:
现代电子元器件工艺水平评价模型与算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在当今微电子制造领域,随着工艺过程和设备的日益复杂,电子元器件产品自身功能的不断完善,以及客户对工艺水平要求的不断提高,使得评价、控制工艺水平的技术日益显得重要。同时,目前军用产品实施工艺评价标准,明确要求军方电子元器件生产厂家全面实施工艺评价技术;且越来越多的国内企业为了向国际型企业标准迈进,开始重视质量管理与工艺水平评价技术。因此,全面实施工艺水平评价技术具有重要意义。
     本论文选取工序能力指数为研究对象,对工艺水平评价中遇到的几个主要问题建立相应的模型和算法,以及提出解决方案。在工序能力指数与成品率关系,非正态工序能力指数模型与算法,多变量工序能力指数模型与算法,高精度正态分布函数计算以及样本容量对工序能力影响等问题做了一定的研究工作,主要工作和成果总结如下:
     1,在分析工序能力指数C_p与成品率一一对应的关系基础上,指出工序能力指数C_(pk)与成品率没有一一对应关系的原因,然后引入中间变量,取数据的均值和规范限中值的差与规范长度的一半的比值作为系数,推导出工序能力指数C_(pk)与成品率之间的关系表达式。然后针对实施6σ设计技术情况下C_(pk)与成品率关系的选取,即采用偏离1.5σ作为参考,得出C_(pk)与成品率关系。
     2,建立了非正态分布工序能力指数模型与算法。该方法直接分析数据的均值、标准偏差、偏度和峰度,引用这四个变量,使用切比雪夫—埃尔米特多项式展开积分函数,有效地解决了已有非正态模型(如分位点)法无法计算有效工艺区域的问题。结果显示通过该模型能反映工序的能力,能有效的避免其他方法在数据分布与正态分布偏差大时计算不准确的情况,有效完成工艺评价的要求,实现半导体生产线的质量控制。此外,在三类典型皮尔逊(Pearson)分布的中心矩与原点矩进行分析研究的基础上,推导了针对该分布的拟合表达式,得到了相应分布类型的参数,并给出分布的拟合步骤。
     3,建立基于成品率的多变量工序能力指数模型与算法。该模型将工序能力指数与成品率直接联系起来,能让使用者从成品率角度理解工序能力指数的含义。在变量独立的情况下,利用综合成品率等于单个变量成品率乘积关系,然后通过单变量工序能力指数与成品率的关系得出多变量工序能力指数计算式。此算法不会因为变量个数的增多而难以计算,并讨论其应用时根据工艺水平等级得出单变量工序能力指数的范围。在变量不独立的情况下,因为不能利用不相关变量综合成品率与单个变量成品率的关系,则应用函数积分计算成品率,直接对函数进行多重积分。
     4,建立基于权重系数的多变量工序能力指数模型与算法。使用主成分分析法计算因子载荷,提取因子分析中全部因子,保证数据所有信息不丢失,建立计算模型。该方法不用考虑变量相互之间是否相关,不用考虑变量个数的多少。结合基于成品率的多变量工序能力指数模型以及精度考虑,为多变量工序能力指数的计算提出了现实可行的解决方案。
     5,PPM水平工艺评价需要高精度的分布函数值。针对一维正态分布,本论文根据正态分布函数和误差函数的关式,采用有限连分式展开此关系式,并用泰勒级数表达对应指数项,建立一维正态分布函数高积分限和高精度的算法,然后得出结果。由已有资料表明该算法正确,同时列出了积分变量大于5的部分数值。
     针对二维正态分布,分析了相关系数对二维正态分布的重要影响,提出相关系数的拟合算法。给出了实现高精度二维正态分布函数值的算法。以数组作为大数存储结构,解决受到计算机字节长度制约无法实现高精度运算的问题;并引入复化辛普森公式、复化柯特斯公式和龙贝格公式加速收敛,最终得到所需要的结果。
     该算法得到的数据不仅能解决当前工序能力评价中一维和二维正态分布函数的精度要求,而且对于其他行业的高精度要求也提供有价值的参考。
     6实际使用工序能力指数时,往往要面对样本量到底要取多大的问题。获取大的样本量会带来经济上浪费,或者很难得到大样本量;获取少量的样本量是否可以得到能正确表征工艺的工序能力指数值等这些问题直接面对工序能力指数的使用者。本论文区分完整样本容量和非完整样本容量两种情况,讨论了样本量的变化对工序能力分析的影响,并以图形表示两者之间的关系曲线,为使用者根据要求取样量的选择提供了参考。
     7,此外,在本课题的研究基础上,开发了工序能力评价软件系统。该软件不仅包含常规工序能力指数的计算,通常遇到的分布函数的计算与拟合,而且具有非正态和多变量工序能力指数计算两个重要模块。成为目前针对工序能力评价的专用分析工具。
In the field of modern microcircuit manufacturing, because process and equipments are becoming more and more complicated, the function of electronic devices is becoming more perfect and users bring more requirements to process, it is necessary that we should pay more attention to evaluating and controlling technologies of process. At the same time, all factories which produce electronic device for army equipment are required to adopt systemically process evaluating technologies; and in order to keep abreast of time and compete with international companies, domestic companies begin to implement technologies of quality management and process evaluation. So, their implement are of important significant.
     In the dissertation, process capability index is chosen as research object, many main problems which come from using process evaluating technologies are solved though setting up relevant model and algorithm. Such research works include studying relationship between process capability index and yield, building model and algorithm of process capability index for non-normal distribution, building model and algorithm of process capability index for multivariate, getting more precise value of normal distribution and relationship between sample numbers with process capability index analysis. The major achievements are listed as followed:
     1. After analyzing relationship between process capability index Cp and yield, the reason that Cpk value alone is not sufficient to determine the yield are pointed out, then using intermediate variable and setting the ratio of the difference of mean and median to half of specification width, the equation about Cpk and yield is developed successfully. Last, relationship about process capability index and yield when concerning 6σdesign technology is analyzed.
     2. Model and algorithm of process capability index for non-normal distribution are built successfully. It is common to compute process capability index for non-normal data when concerning the level of semiconductor process. Firstly, analyzing several main process capability indexs which have been already presented, their advantages and disadvantages are presented. Then, based on Chebyshev-Hermite polynomials, a model for computing process capability index for non-normal is given when regarding the fact that these four moments, i.e. mean, standard deviation, skewness, and kurtosis, are suitable to approximately characterize the data distribution properties , which also work effectively even data deviation to normal distribution is large.
     In order to evaluate modern process, a probability distribution family named Pearson distribution is introduced and its three types of probability density function are deeply analyzed. Based on the study of distribution's central moments and origin moments, the parameters of the distribution are obtained and fitting method is presented.
     3. Model and algorithm of process capability index for multivariate based on yield are built successfully. The model connects process capability index with yield, which makes user understand process capability index meaning easier. When variables are independent, the model is built according to relationship between single variable yield and total yield. The model is still effective when variable number is much large, and can deduce single process capability index interval according to process level class. When variable is not independent, the model is built successfully after using multi-dimension function integral.
     4. Model and algorithm of process capability index for multivariate based on weighting Coefficient are built successfully. After analyzing factor analysis and using principal component analysis to compute load matrix, then considering all public factors and contributing ratio, the model is presented, which has not requirement of variable number and of variable correlation. An example of calculating process capability index for multivariate is given. Real application shows that the method presented is effective and actual. A system scheme computing process capability index for multivariate is given when also considering process capability index for multivariate based on yield.
     5. At PPM(Parts Per Million) level, using process evaluation needs high accuracy distribution function value. As for one-dimension normal distribution, after using relationship between normal distribution function and error function, adopting continued-fraction expansion and Taylor series expansion for exponential term, algorithm of high range of integration and accuracy of normal distribution is built successfully.
     As for two-dimension normal distribution, algorithm for fitting relative coefficient and getting high precise two-dimension normal distribution value are presented. The dissertation puts forward a way of testing two-dimension normality using testing marginal distribution and data figure, and analyzes important significance of relative coefficient on two-dimension normal distribution value. It needs high precise function value of normal distribution. After building big data storage structure and constructing decimal code array, an algorithm for high-accuracy value of two-dimensional normal distribution is built through using Laguerre Polynomial expansion, and accelerating operation with Compound Simpson formula, Compound Cotes formula and Romberg formula. At last result is gotten.
     6. Sample number has much influence on computing process capability index. When sample number is large, the cost will be also large and it will waste more time and cost; when sample number is small, it is possible the precise process capability index value can not be gotten. The dissertation discusses the influence of sample number to process capability evaluation in two cases which are full sample number and non-full sample number. Last curve about sample number and process capability index is gotten, from which users can determine sample number according to their need.
     7. At last, based on the models and algorithms discussed above, the computer-aid process capability evaluation software is developed. The software system not only performs common process capability index computation, common distribution function computation and curve fitting, but also has the function especially for computing process capability index for non-normal distribution and multivariate. The software offers an effective analysis tool for electronic element evaluation.
引文
[1.1]Crook D L.Evolution of VLSI Reliability Engineering[C].Proc.IRPS,1990,PP:2-11
    [1.2]朗志正,质量管理技术与方法[M],北京:中国标准出版社,1998
    [1.3]贾新章,李京苑,统计过程控制与评价-Cpk、SPC和PPM技术[M],电子工业出版社,2004;
    [1.4]Kane V.E.Process Capability Indices[J],Journal of Quality Technology[J],1986,18(1):41-52.
    [1.5]Kotz S,Johnson N.Process Capability Indices-A Review[J],Journal of Quality Technology,2002,34(1):2-19
    [1.6]Norma F.Hubele,Discussion,Journal of Quality Technology[J],2002,34(1):20-22
    [1.7][美]Eugene L.Grant,Richard S.Leavenworth著.统计质量控制[M].北京清华大学出版社,2001
    [1.8][美]Lothar Sachs著.罗永泰史道济译.应用统计手册[M].天津天津科技翻译出版公司,1988
    [1.9][美]西格蒙·哈尔朋著 谭振学译 保证科学--质量控制及可靠性导论[M].中国标准出版社.1984.3
    [1.10][美]彼得S.潘得,罗伯特P.纽曼,罗兰R.卡瓦纳著.刘合光等译.6á管理法[M].机械工业出版社.2001.10
    [1.11][美]J.M.朱兰,小弗兰克 M.格里纳著.李本兴,陈豫贤译.质量计划与分析[M]。石油工业出版社.1985.12
    [1.12][美]J.M.朱兰著.质量控制手册编译组编.质量控制手册上[M].上海科学技术文献出版社,1980.10
    [1.13][美]J.M.朱兰著.质量控制手册编译组编.质量控制手册下[M].上海科学技术文献出版社,1980.10
    [1.14][日]森口繁一编.王世芳译.新编质量管理的统计学方法[M].机械工业出版社.1988.11
    [1.15][日]田口玄一著.魏锡禄王和福译.质量工程学概论[M].中国对外 翻译出版公司. 1985.12
    
    [1.16] Kotz S and Johnson N. L., Process Capability Indices, Chapman and Hall, London[M], U.K. ,1993a
    [1.17] Bothe D.R., Measuring Process Capability, McGraw-Hill[M], New York, 1997
    [1.18] Kotz S. and Lovelace C., Introduction to Process Capability Indices[M], Arnold, London, U.K., 1998
    [1.19] Wheeler, D, J., Beyond Capability Confusion[M], SPC Press, Knoxville, T.N., 1999
    [1.20] Rinne, M. and Mittag, H. J., Proze β fajigkeitsmessung fur die industrielle Praxis(with English summary)[M], Carl Hanser Verlag Munchen Wien, 1999
    [1.21] Russell A. Boyles, Discussion, Journal of Quality Technology [J], 2002,34(1), 43-44
    [1.22] Kurt, P. and Kwok L. T., A review and interpretations of process capability indices[J], Annals of Operations Research, 1999,87: 31-47
    [1.23] Berton H. Gunter. The Use and Abuse of Cpk:Part 1. Quality Progress [J], 1989, 22 (1): 72-73
    [1.24] Berton H. Gunter. The Use and Abuse of Cpk :Part 2. Quality Progress [J], 1989, 22 (3): 108-109
    [1.25] Berton H. Gunter. The Use and Abuse of Cpk:Part 3. Quality Progress [J], 1989, 22 (5): 79-80
    [1.26] Berton H. Gunter. The Use and Abuse of Cpk :Part 4. Quality Progress [J], 1989, 22 (7): 86-87
    [1.27] Clements J. A., Process Capability Calculations for non-normal distributaries [J], Quality Progress, 1989;22(2):95-100
    [1.28] Pearn W. L. and Kotz S., Application of Clements' method for calculating second and third generation process capability indices for non-normal Pearsonian populations [J], Quality Progress, 1994; 7(1): 139-145
    [1.29] Bittanti S., Lovera M., and Moiraghi L., Application of non-normal process capability indices to semiconductor quality control [J]. IEEE Transactions on Semiconductor Manufacturing, 1998;11(2):296-303
    [1.30] Polansky A. M., A smooth nonparametric approach to process capability, Quality and Reliability Engineering International [J], 1998;14:43-48
    [1.31] Polansky A. M., An algorithm for computing non-parametric capability estimate[J]. Journal of Quality Technology, 2000;32:284-289
    [1.32] Page M., Analysis of non-normal process distributions. Semiconductor International[J], 1994;17:88-96
    [1.33] Farnum N. R., Using Johnson curves to describe non-normal data [J]. Quality Engineering, 1996-97;9:329-336
    [1.34] Chou Y. M., Polansky A. M., and Mason R. L., Transforming non-normal data to normality in statistical process control [J]. Journal of Quality Technology, 1998;30:133-141
    [1.35] Polansky A. M., Chou Y. M., and Mason R. L., An algorithm for fitting Johnson transformations to non-normal data [J]. Journal of Quality Technology 1999;31:345-350
    [1.36] Box G. E. P., and Cox D. R., An analysis of transformations [J]. Journal of the Royal Statistical Society Series B. 1964;26:221-251
    [1.37] Breyfogle F. W., Implementing Six Sigma [M]. Wiley: New York, 1999
    [1.38] Lu M. W., and Rudy R. J., Discussion on process capability indices—a review, 1992-2000 [J]. Journal of Quality Technology 2002;34(1):38-39
    [1.39] Choi I.S., and Bai D. S., Process Capability indices for skewed populations [C]. Proceeding of 20~(th) International Conference on Computers and Industrial Engineering. ICC&IE: Kyongju, Korea, 1996;1211-1214
    [1.40]Wu H.H., and Swain J., A Monte Carlo comparison of capability indices when processes are non-normally distributed [J]. Quality and Reliability Engineering International 2001;17:219-231
    [1.41] Wright P.A., A process capability index sensitive to skewness [J]. Journal of Statistical Computation and Simulation 1995;52:195-203
    [1.42] Kotz S., and Lovelace C. R., Process Capability Indices in Theory and Practice [M]. Arnold: London, 1998
    [1.43] Chan L. K., Cheng S. W., and Spring F. A., A multivariate measure of process capability [M]. Journal of Modeling and Simulation 1991;11:1-6
    [1.44] Pearn W. L., Kotz S., and Johnson N. L., Distributional and inferential properties of process capability indices [J]. Journal of Quality Technology 1992;24:216-231
    [1.45]Wierda S.J.,A multivariate process capability index[C].ASQC Quality Congress Transactions,Boston,MA,1993 American Society for Quality Control:Milwaukee,WI,1993:342-248
    [1.46]Team W.,Subbaiah P.,and Liddy J.W.A note on multivariate capability indices[J].Journal of Applied Statistics 1993;20:339-351
    [1.47]Chen H.,A multivariate process capability index over a rectangular solid tolerance zone[J].Statistica Sinica 1994;4:749-758
    [1.48]Shahriari H.,Hubele N.F.,and Lawrece F.P.,A multivariate process capability vector[C].Proceedings of the 4~(th) Industral Engineering Research Conference.Institute of Industral Engineers:Nashville,TN,1995;304-309
    [1.49]Veevers A.,Viability and capability indices for multi-response process[J].Journal of Applied Statistics 1998;25:545-558
    [1.50]Wang F.K.,and Hubele N.F.,Quality evaluation using geometric distance approach[J].International Journal of Reliability,Quality and Safety Engineering 1999;6:139-153
    [1.51]Wang F.K.,and Du T.C.,Using principal component analysis in process performance for multivariate data[J].Omega 2000;28:185-194
    [1.52]Yeh A.B.,and Chen H.,A nonparametric multivariate process capability index[J].International Journal of Modeling and Simulation 2001;21:218-223
    [1.53]Wang F.K.,Quality Evaluation of a Manufactured product with multiple characteristics[J].Quality and Reliability Engineering International,2006;22:225-236
    [1.54]Chen K.S.Pearn W.L.Lin P.C.Capability Measures for Processes with Multiple Characteristics[J],Quality and Reliability Engineering International,2003,19(2):101-110
    [1.55]Chao,M.T.Another Look at the Process Capability Index[J].Quality and Reliability Engineering International.2005,22(2):153-163
    [2.1]Taam W.,Subbaiah,P.Liddy,J.W.,A note on multivariate capability indices[J],Journal of Applied Statistics,1993;20(3):229-351
    [2.2]林少宫、李从珠、朱茂源等,现代质量管理统计方法[M],北京:学术期刊出版社,1988
    [2.3]Kane V.E.Process Capability Indices[J],Journal of Quality Technology,1986,18(1):41-52.
    [2.4]Pearn W.L.,Kotz S.,and Johnson N.L.,Distributional and inferential properties of process capability indices[J].Journal of Quality Technology 1992;24:216-231
    [2.5]Choi,B.C.and Owen,D.B.A study of a new capability index[J],communications in statistic:Theory and Methods,1990,19;1231-1245.
    [2.6]贾新章,曾志华,从工序能力指数评价到6σ设计[J],电子产品可靠性与环境试验,2002,(3):31-34
    [2.7]贾新章.元器件内在质量评价技术[J].电子产品可靠性与环境试验,2000,(5):2-6.
    [2.8]贾新章,刘宁.PPM水平下元器件内在质量评价系统[J].电子产品可靠性与环境试验,2001,5:2-7.
    [2.9]彼得S.潘德,罗伯特P.纽曼,罗兰R.卡瓦纳(美).6σ管理法[M].北京:机械工业出版社,2001.
    [2.10]张公绪,孙静,新编质量管理学[M].北京:高等教育出版社。2003
    [2.11]宋明顺,质量管理学。 北京,科学出版社[M]。 2005
    [2.12]杰夫·坦南特(英),6σ设计[M],北京:电子工业出版社,2002
    [3.1]Somerville S.E.,and Montgomery D.C.,Process indices and non-distributions[J].Quality Engineering.1996-1997;9:305-369
    [3.2]理查德莱斯,阿奎拉诺,亚革不斯.生产动作管理-制造与服务[M].北京:中国人民大学出版社,2001
    [3.3]Sergio Bittanti,Marco Lovera,Luca Moiraghi,Application of non-normal process capability indices to semiconductor quality control[J],IEEE.Trans on Semiconductor Manufacturing,Vol.11,No.2,May 1998
    [3.4]龚自立、贾新章,“元器件质量与可靠性数据统计分布规律的拟合”[J],西安电子科技大学学报,2001,28(3):336-339,
    [3.5]贾新章、龚自立,现代工艺水平下工序能力指数Cpk的计算[J][J],西安电子科技大学学报,2001,28(4):452-455
    [3.6]N.L.Johnson,Eric Nixon,D.E.Amos,E.S.Pearson,Table of percentage points of Pearson curves,for given β_1~(1/2) and β_2[J],expressed in standard measure,Biometrika,1963,50,P459-498,
    [3.7]梁小筠,正态性检验[M],北京:中国统计出版社,1996
    [3.8]刘宁,集成电路可靠性评价与设计中的关键技术研究,西安电子科技大学硕士论文,2002
    [3.9]Sergio B,Marco L and Luca M Application of Non-Normal Process Capability Indices to Semiconductor Quality Control[J],IEEE transaction on semiconductor manufacturing,1998,11(2):296-303
    [3.10]Bissell D,Statistical Methods for SPC and TQM[M],London,Chapman and Hall,1994
    [3.11]Chan L.K.,Cheng S.W.and Spiring F.A[C].A Graphical Technique for process Capability,ASQC Quality Congr.Trans.,Dallas,1995:pp 268-275
    [3.12]Choi I.S.,and Bai D.S.,Process Capability Indices for Skewed populations[C],Proc.20th Int.Conf.on Computer and Industrial Engineering,1996,pp:1211-1214
    [3.13]Clements J.A.,Process Capability Indices for Non-normal calculations[J],Quality Progress,1989,22,49-55
    [3.14]Box G.E.,and Cox D.R.,An analysis of transformations[J],Journal of the Royal Statistical Society,Series B,1964,26,221-252
    [3.15]Johnson N.L.,Systems of Frequency curves generated by methods of translation[J],Biometrika,1949,36,149-176
    [3.16]Wright P.A.,A process capability index sensitive to skewness[J],Journal of Statistical Computation and Simulation,1995,52,195-203
    [3.17]Somerville S.and Montgomery D.,Process Capability Indices and non-normal distribution[J],Quality Engineering,1996,19(2):149-176
    [3.18]Liu Pei-Hsi and Chen Fei-Long,Process capability analysis of non-normal process data using the Burr Ⅻ distribution[J],The International Journal of Advanced Manufacturing Technology,2006,27(2):975-984
    [3.19]Hamaker H.C.,Relative merits of using maximum error versus 3σin describing the performance of laser-exposure reticle writing systems.Optical/Laser Microlithography Ⅷ(Proceedings of SPIE,vol.2621),Sheldon GV,Wiley JN(eds.).SPIE:Bellingham,WA,1995
    [3.20]Hamaker H.C.,Improved estimates of the range of errors on photomask using measured values of skewness and kurtosis.15~(th) annual Symposium on Photomask Technology and Management(Proceeding of SPIE,vol.2621),Sheldon GV,Wiley JN(eds.).SPIE:Bellingham,WA,1995
    [3.21]Bordignon S,and Scagliarini M.,Statistical analysis of process capability indices with measurement errors[J],Quality and Reliability Engineering International,2002,18:321-332
    [3.22]Pearn W.L.,and Chem K.S.,Making decisions in assessing process capability index Cpk[J],Quality and Reliability Engineering International,1999,15:321-326
    [3.23](美)M.R斯皮格尔,杨纪龙,杜秀丽,姚奕,赵媛媛,梁志彬,统计学[M],北京:科学出版社,2002
    [3.24]Kendall MG,and Stuart A,The Advanced Theory of Statistics Volume 1 Distribution Theory[M],Macmillan,New York,1977
    [4.1]王少熙,贾新章,多变量工序能力评价[J],系统工程理论与实践,2006:26(7):129-133
    [4.2]Taam W.,Subbaiah P,and Liddy J.W.,A note on multivariate capability indices[J],Journal of Applied Statistics,20:339-351
    [4.3]J.Jessenberger,C.Weihs,A note on a multivariate analogue of the peocess capability index C_p,Department of Statistics,University of Dortmund,D-44221,Dortmund,Germany,2004
    [4.4]Samuel Kotz and Cynthia R.Lovelace Process Capability Indices in Theory and Practice[M].London:Arnold,1998
    [4.5]袁志发,周静芋,多元统计分析[M],北京:科学出版社,2002
    [4.6]Mardia,K.V.,Kent,J.T.and Bibby,J.M.Multivariate analysis [M].Academic Press.London.1979
    [4.7]Shahriari,H.;Hubele,N.F;and Lawrence,F.P.,A Multivariate Process Capability Vector[C].Proceedings of the 4~(th) Industrial Engineering Research Conference,Institute of Industrial Engineers,Nashlville,T.N.,1995:pp304-309
    [4.8]Bothe D.R.,A capability study for an entire product[C].ASQC Quality Congress Transactions 1992;46:172-178
    [4.9]贾新章,王少熙,蒲建斌.6σ设计水平的评价[J].电子产品可靠性与环境试验,2004,2:22-25.
    [4.10](美)Thomas H.Cormen Charles E.Leiserson Ronald L.Rivest Clifford Stein算法导论(第二版影印版)[M],高等教育出版社2002
    [4.11]贾新章、龚自立,现代工艺水平下工序能力指数Cpk的计算[J],西安电子科技大学学报,2001.28(4):452-455
    [4.12]张尧庭,方开泰,多元统计分析引论[M],科学出版社,1997
    [4.13]王学仁、王松桂编译,实用多元统计分析[M],上海科学技术出版社,1990
    [4.14]Wang K F,Chen J C.Capability index using principal components analysis[J].Quality Engineering:1998-99:11(1):21-27
    [4.15]Mardia K.V.,Kent J.Z.,Bibby J.M..Multivariate analysis[M].London:Academic Press:1979
    [5.1]高惠璇,统计计算[M],北京:北京大学出版社1995
    [5.2]徐士良,常用算法程序集(c语言描述)[M],北京:清华大学出版社2004
    [5.3]杨振海,拟合优度检验[M],合肥:安徽教育出版社,1994
    [5.4]朗志正,质量控制方法与管理。北京:国防工业出版社,1984
    [5.5]李庆海、陶本藻,概率统计原理和在测量中的应用[M],测绘出版社,1990
    [5.6]刘志万,实验数据的统计分析和计算机处理[M],中国科学技术大学出版社,1989
    [5.7]刘金山,Wishart分布引论[M],北京:科学出版社,2005
    [5.8].贡金鑫 赵国藩 二维正态分布函数的一个近似算法[J]计算结构力学及其应用1996 13(4)pp:494-499
    [5.9]金一庆,数值方法[M],北京:机械工业出版社,2000
    [5.10]李孟山 李少元 计算公路匝道点位坐标的复化辛普森公式[J]测绘通报2001(1)pp 35-37
    [5.11]Rowland J.H.,Miel G.J.Exit Criteria for Newton-Cotes Quadrature Rules[J],Journal of numerical Analysis 1977 14(6),pp:1145-1150
    [5.12]Ali Yazici,manil Ergenc,Irfan Altas Romberg Integration:A Symbolic Approach with Mathematica[M],Lecture Notes in Computer Science 2004 2,pp:691-700
    [5.13]Tables of the Bivariate Normal Distribution Function and Related Functions,National Bureau of Standard,America,1989.
    [6.1]程兴新,曹敏.统计计算方法[M].北京:北京大学出版社,1989,11
    [6.2]方再根.计算机模拟和蒙特卡洛方法[M].北京:北京工业学院出版社, 1988
    [6.3]杨华中.数值计算方法与C语言工程函数库[M].北京:科学出版社,1996
    [6.4]邓乃扬等.无约束最优化计算方法[M].北京:科学出版社,1982,12
    [6.5]邓勃.数理统计方法在分析测试中的应用[M].北京:化学工业出版社,1984,11
    [6.6]汪荣鑫.数理统计[M].西安:西安交通大学出版社,1987,6
    [6.7]D.C.Montgomery.Introduction to Statistical Quality Control[M].New York:Wiley,1996.
    [6.8]Wei Xing Zheng.A Least-Squares Based Method for Autoregressive Signals in the Presence of Noise[J].IEEE Transactions on circuits and systems-Ⅱ:analog and digital signal processing,1999,46-1 81-84
    [6.9]D.W.Marquardt.An Algorithm for Least-squares Estimation of Non-liner Parameters[J].J-Soc.Indust.Appl.Math,1963,vol.11-10.2,pp.431-441.
    [6.10]S.Kotzand,N.L.Johnson,Process Capability Indices[M].London,U.K.:Chapman&Hall,1993.
    [6.11]程正兴,数据拟合[M]。西安:西安交通大学出版社,1986,10

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700