用户名: 密码: 验证码:
基于TMTD硫源的CdS纳米晶体的合成及其对左氧氟沙星的光催化降解研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为治疗各种细菌感染或以致病微生物感染的药物,氟喹诺酮类抗生素在医药业、畜牧养殖业得到广泛使用。然而,绝大部分抗生素不能完全被机体吸收,以原型药物或者代谢物形式排入环境,特别是水体环境,虽然环境中抗生素的浓度普遍较低,但仍可能对环境和人体造成生物冲击和潜在危害。随着世界经济的发展,环境问题成为人类可持续发展的首要问题,本论文通过探讨第三代氟喹诺酮类抗生素左氧氟沙星(LVFX)在环境中的降解来寻求降低环境中抗生素污染的方法。
     本着以上研究目的,采用半导体纳米材料光催化氧化技术降解LVFX。本文主要制备了CdS纳米晶体,选用二硫化四甲基秋兰姆(TMTD)作为特殊结构的有机硫源,采用溶剂热方法,分别在水-苯、水、乙二胺、苯四种不同的反应介质中,成功制备出花簇状、冰锥状、线状、粒子状CdS晶体,系统地从热力学和动力学两方面研究了反应介质、反应温度、反应时间等条件对CdS纳米晶体形貌、结构、光学性能的影响。采用紫外-可见光谱(UV-Vis)和阴极射线发光光谱(CL)研究了CdS纳米晶体的光学性能。研究结果表明,温度是影响晶体生长的主要因素,反应介质的物化性质也从动力学方面影响了CdS纳米晶体的成核生长过程,从而影响晶体的形貌和尺寸。晶体的形貌不同,导致光学性能有所不同,良好的光学性能,在光催化的应用上具有潜在优势。CdS纳米线、纳米粒子得到了紫外-可见光谱,由于量子尺寸效应,与体相CdS材料比较,发生了蓝移,但花簇状、冰锥状没有得到UV-Vis光谱。花簇状、冰锥状、线状CdS晶体在可见光区均有阴极射线发光,得到了CL谱,但没有得到纳米粒子的CL谱。
     为了对比CdS的光催化效果,本论文还分别以聚乙二醇(PEG)、聚乙烯吡咯烷酮(PVP)作分散剂,采用共沉淀法、共沉淀—γ辐射法、溶剂热法制备了Fe_3O_4纳米晶体,并以透射电镜(TEM)、XRD粉末衍射、傅立叶红外光谱(FT-IR)、振动样品磁强计(VSM)对晶体进行表征和分析。与传统的共沉淀方法比较,引入γ射线,可改善纳米粒子的结晶性和分散性。溶剂热方法制备了球形单分散的立方晶型Fe_3O_4晶体,与聚乙二醇分散剂比较,聚乙烯吡咯烷酮作分散剂得到的晶体尺寸更小、结晶性和分散性更好。
     本论文以紫外光为光源,分别选用0.005g自制的CdS、Fe_3O_4作光催化剂,对100mL浓度为10mg/L的左氧氟沙星水溶液进行光催化降解。与LVFX溶液的直接光降解比较,光催化氧化技术具有更好的降解效果。以花簇状、粒子状、冰锥状、线状四种形貌的CdS晶体作光催化剂降解LVFX水溶液,较短时间光照,纳米粒子和纳米线的催化降解速率明显优于花簇状和冰锥状晶体;当紫外照射时间延长至60min时,以四种形貌的CdS晶体作催化剂,LVFX的降解百分率分别达到99%、99%、89%、97%,而LVFX的直接光解百分率为85%,说明以整体形貌为亚微米/纳米级的CdS晶体作光催化剂,小尺寸效应、晶体的表面粗糙度均有利于提高CdS光催化活性,而小尺寸效应是影响CdS光催化剂的主要因素。在UV-Fe_3O_4的高级氧化技术中,当紫外照射时间60min时,以PVP作分散剂溶剂热法制备的Fe_3O_4作光催化剂,LVFX的降解百分率为95%,以PEG作分散剂溶剂热法制备的Fe_3O_4作光催化剂,LVFX的降解百分率为98%,以PVP作分散剂共沉淀-γ辐射法制备的Fe_3O_4作光催化剂的LVFX降解百分率为89%,而LVFX的直接降解百分率仍为85%。溶剂热法制备的Fe_3O_4具有更佳的催化效果,说明在UV-Fe_3O_4的高级氧化技术中,尺寸效应并不一定占主导地位,Fe_3O_4中的铁能否进入水中,即形成配合物的趋势,以及晶体生长完善与否也是LVFX降解的重要影响因素。
Fluorinated quinolone-type antibiotics are widely used in human and veterinary systems for infectiousdisease prevention and growth promotion. However, most of them are only partially metabolized andexcreted into the environment with parent compounds and metabolites. Although there is the presenceof antibiotics at low concentration in the aquatic systems, their occurrence has become a concern asbiological impacts and potential risks to the environment and human health. With the development ofworld economy, environmental problems have become the primary problem for the sustainabledevelopment of mankind. In this dissertation, we want to seek the method of reducing antibioticpollution in environment by studying the degradation of the third generation fluoquinolones-levofloxacin lactate (LVFX) in aquatic environment.
     In the above purpose, LVFX was degradated applying semiconductor photocatalytic oxidationtechnique. Flower-like, ice-piton, wire-like and particle-like CdS nanocrystals were successfullysynthesized using solvothermal route in water-benzene, water, ethylenediamine and benzenerespectively, which took tetramethyl thiuram disulfide (TMTD) as a special structured organic sulphursource. The influence of reaction medium, temperatures and time on microstructure and opticalproperties of CdS nanocrystals was systematically investigated from thermodynamics and kinetics. Theoptical properties of CdS crystals were investigated by ultraviolet-visible spectroscopy (UV-Vis) andcathodoluminescence (CL). The results indicated that the solvothermal temperature played a moreimportant role in the formation of crystal morphology, and the physical and chemical properties ofsolvent also affected the structure and formation of CdS nanocrystals from kinetics. Furthermore,It wasthus evident that different synthesis conditions and crystal morphologies led to different opticalproperties, and excellent optical property implied potential applications for the CdS nanocrystals asphotocatalysts. UV-Vis spectra of CdS nanowire and namoparticles were obtained. Quantumconfinement effects were revealed by blue shifts at the onset of absorption, compared with theabsorption of the bulk CdS, but UV-Vis spectra of flower-like and ice-piton CdS weren’t obtained. CLspectra of flower-like, ice-piton, wire-like CdS crystals were acquired in the visible region, whereasspectra of CdS nanoparticles weren’t obtained.
     In order to contrast the photocatalytic effect of CdS, Fe_3O_4nanocrystals were also synthesized withpolyethylene glycol (PEG) and polyvinyl pyrrolidone (PVP) as dispersant respectively bycoprecipitation, coprecipitation-gamma radiation and solvothermal process. Nanocrystals werecharacterized by transmission electron microscopy(TEM),X-ray diffraction(XRD), fourier transform infrared spectroscopy(FT-IR) and vibrating sample magnetometer(VSM) respectively. The crystallinityand dispersity of nano-particles were improved by gamma radiation,compared with the particlesobtained by traditional coprecipitation. Globular and monodisperse Fe_3O_4nanocrystals synthesized bysolvothermal method had cubic phase no matter what dispersant was. However, the crystals had smallerdiameter, better dispersibility and crystallinity with PVP as dispersant.
     Photocatalytic degradation experiments were carried out with UV radiation as the energy source, and0.005g CdS or Fe_3O_4, which were catalysts, were put into a100mL LVFX aqueous solution with aconcentration of10mg/L. Compared with direct photolysis, the photocatalytic degradation effect ofLVFX is better. As the UV radiation time was short, the catalytic rate of particle-shape and wire-likeCdS was good to flower-like and ice-piton CdS crystals. As the UV radiation time was60min, thephotocatalytic degradation percentage of LVFX was about99%,99%,89%and97%respectively withflower-like, particle-shape, ice-piton, wire-like CdS crystals as photocatalyst. However, the directphotolysis percentage of LVFX was about85%. Thus, size effects and surface roughness of crystalsfavored increasing catalytic activity with submicron/nano grade CdS crystals as photocatalysts,nevertheless quantum size effect was more prominent. As the UV radiation time was60min, thephotocatalytic degradation percentage of LVFX with Fe_3O_4as catalyst, which were synthesized withPEG and PVP as dispersant respectively by solvothermal process, was about98%and95%respectively.When Fe_3O_4nanocrystals were synthesized by coprecipitation-γ with PVP as dispersant, thephotocatalytic degradation percentage of LVFX was89%. However, the direct photolysis percentage ofLVFX was about85%. It’s indicated that Fe_3O_4nanocrystals prepared by solvothermal process werebetter photocatalyst. Size effects don’t necessarily dominates AOPs of UV-magnetite, and moreover,crystal growth and the tendency of iron ions in solution to form complexes are also consideredimportant in mechanistic studies.
引文
[1] Kolpin D W, Furlong E T, Meyer M T, et al. Pharmaceuticals, Hormones, and Other OrganicWastewater Contaminants in U.S. Streams,19992000: A National Reconnaissance [J]. Environ. Sci.Technol.,2002,36(6):1202~1211.
    [2] Jeong J, Song Weihua, Cooper William J, et al. Degradation of Tetracycline Antibiotics:Mechanisms and Kinetic Studies for Advanced Oxidation/reduction Processes [J]. Chemosphere,2010,78(5):533~540.
    [3] Kim S D, Cho J, Kim In S, et al. Occurrence and Removal of Pharmaceuticals and EndocrineDisruptors in South Korean Surface, Drinking, and Waste Waters [J]. Water Res.,2007,41(5):1013~1021.
    [4] Richardson B J, Lam P K S, Martin M. Emerging Chemicals of Concern: Pharmaceuticals andPersonal Care Products (PPCPs) in Asia, with Particular Reference to Southern China [J]. Mar. Pollut.Bull.,2005,50:913~920.
    [5] Picó Y, Andren V. Fluoroquinolones in Soil-risks and Challenges [J]. Anal. Bioanal. Chem.,2007,387(4):1287~1299.
    [6]周启星,罗义,王美娥.抗生素的环境残留,生态毒性及抗性基因污染[J].生态毒理学报,2007,2:244~251.
    [7] Boxall A B A, Kolpin D W, Sorensen B H, et al. Are Veterinary Medicines CausingEnvironmental Risks?[J]. Envi. Sci. Technol.,2003,37:286A~294A.
    [8] Giger W, Alder A C, Golet E M, et al. Occurence and Fate of Antibiotics as Trace Contaminantsin Wastewaters, Sewage Sludges, and Surface Waters [J]. Chimia International Journal for Chemistry,2003,57(9):485~491.
    [9] Zhang H, Huang C H. Oxidative Transformation of Fluoroquinolone Antibacterial Agents andStructurally Related Amines by Manganese Oxide [J]. Environ. Sci. Technol.,2005,39(12):4474~4483.
    [10] Paesen J, Cypers W, Busson R, et al. Isolation of Decomposition Products of Tylosin usingLiquid Chromatography [J]. J. Chromatogr. A,1995,699(1-2):99~106.
    [11] Keith A L, Craig D A, Michael T M, et al. Effects of Ionic Strength, Temperature, and pH onDegradation of Selected Antibiotics [J]. J. Environ. Qual.,2008,37(2):378~386.
    [12] Esther T, Guy B, Adela R R. Study of the Evolution and Degradation Products of Ciprofloxacinand Oxolinic Acid in River Water Samples by HPLC-UV/MS/MS-MS [J]. J. Environ. Monit.,2005,7:189~195.
    [13]崔浩.抗生素的细菌耐药性:酶降解和修饰[J].国外医药:药学分册,2006,33(1):34~36.
    [14] Ingerslev F, Sorensen B H. Biodegradability Properties of Sulfonamides in Activated Sludge [J].Environ. Toxicol. Chem.,2000,199(10):2467~2473.
    [15]黄健,张华,杨伟伟.抗生素废水的铁屑微电解预处理研究[J].工业安全与环保,2007,33(8):1~3.
    [16] Alexy R, Kümpel T, Kümmerer K. Assessment of Degradation of18Antibiotics in the ClosedBottle Test [J]. Chemosphere,2004,57(6):505~512.
    [17] Werner J J, Arnold W A, McNeill K. Water Hardness as a Photochemical Parameter:Tetracycline Photolysis as a Function of Calcium Concentration, Magnesium Concentration, and pH[J]. Environ. Sci. Technol.,2006,40(23):7236~7241.
    [18] Andreozzi R, Caprio V, Ciniglia C, et al. Antibiotics in the Environment: Occurrence in ItalianSTPs, Fate, and Preliminary Assessment on Algal Toxicity of Amoxicillin [J]. Environ. Sci. Technol.,2004,38(24):6832~6838.
    [19] Boreen A L, Arnold W A, Mcneill K. Triplet-Sensitized Photodegradation of Sulfa DrugsContaining Six-Membered Heterocyclic Groups: Identification of an SO2Extrusion Photoproduct [J].Environ. Sci. Technol.,2005,39(10):3630~3638.
    [20]左红影.光催化氧化处理半合成抗生素制药废水试验研究[J].广东化工,2006,33(161):39~41.
    [21] Edhlund B L, Arnold W A, McNeill K. Aquatic Photochemistry of Nitrofuran Antibiotics [J].Environ. Sci. Technol.,2006,40(17):5422~5427.
    [22] Werner J J, Chintapalli M, Lundeen R A, et al. Environmental Photochemistry of Tylosin:Efficient, Reversible Photoisomerization to a Less-active Isomer, Followed by Photolysis [J]. J. Agric.Food. Chem.,2007,55(17):7062~7068.
    [23] Koyuncu I, Arikan O A, Wiesner M R, et al. Removal of Hormones and Antibiotics byNanofiltration Membranes [J]. J. Membr. Sci.,2008,309(1-2):94~101.
    [24] Comerton A M, Andrews R C, Bagley D M, et al. Membrane Adsorption of EndocrineDisrupting Compounds and Pharmaceutically Active Compounds [J]. J. Membr. Sci.,2007,303(1-2):267~277.
    [25] Yu Z, Peldszus S, Huck P M. Adsorption Characteristics of Selected Pharmaceuticals and anEndocrine Disrupting Compound-naproxen, Carbamazepine and Nonylphenol-on Activated Carbon[J]. Water Res.,2008,42(12):2873~2882.
    [26] Li K, Yediler A, Yang M, et al. Ozonation of Oxytetracycline and Toxicological Assessment ofits Oxidation By-products [J]. Chemosphere,2008,72(3):473~478.
    [27] Bobu M, Yediler A, Siminiceanu I, et al. Degradation Studies of Ciprofloxacin on a Pillared IronCatalyst [J]. Appl. Catal. B: Environmental,2008,83(1-2):15~23.
    [28] Nghiem L D, Sch fer A I, Elimelech M. Pharmaceutical Retention Mechanisms byNanofiltration Membranes [J]. Environ. Sci. Technol.,2005,39(19):7698~7705.
    [29] Zwiener C, Frimmel F H. Oxidative Treatment of Pharmaceuticals in Water [J]. Wat. Res.,2000,34(6):1881~1885.
    [30] Glaze W H, Kang J W, Chapin D H. The Chemistry of Water Treatment Processes InvolvingOzone, Hydrogen Peroxide and Ultraviolet Radiation [J]. Ozone: Sci. Eng.,1987,9(4):335~352.
    [31] Azbar N, Yonar T, Kestioglu K. Comparison of Various Advanced Oxidation Processes andChemical Treatment Methods for COD and Color Removal from a polyester and acetate fiber dyeingeffluent [J]. Chemosphere,2004,55(1):35~43.
    [32] Huber M M, G bel A, Joss A, et al. Oxidation of Pharmaceuticals during Ozonation ofMunicipal Wastewater Effluents: A Pilot Study [J]. Environ. Sci. Technol.,2005,39(11):4290~4299.
    [33]杨俊.内电解法处理依诺沙星制药废水[J].武汉科技学院学报,2004,17(4):15~19.
    [34] Gogate P R. Treatment of Wastewater Streams Containing Phenolic Compounds using HybridTechniques based on Cavitation: A Review of the Current Status and the Way Forward [J]. Ultrason.Sonochem.,2008,15(1):1~15.
    [35] Guo W, Shi Y, Wang H, et al. Intensification of Sonochemical Degradation of AntibioticsLevofloxacin using Carbon Tetrachloride [J]. Ultrason. Sonochem.,2010,17(4):680~684.
    [36] Balc o lu I A, Alaton I A, tker M, et al. Application of Advanced Oxidation Processes toDifferent Industrial Wastewaters [J]. J. Environ. Sci. Health. Part A,2003,38(8):1587~1596.
    [37] Fujiwara T, Mohammadzai I U, Inoue H, et al. Photocatalytic Dehalogenation Coupled On-lineto a Reversed Micellar-mediated Chemiluminescence Detection System: Application to theDetermination of Iodinated Aromatic Compounds [J]. Anal. Chem.,2003,75(17):4493~4498.
    [38] Doll T E, Frimmel F H. Removal of Selected Persistent Organic Pollutants by HeterogeneousPhotocatalysis in Water [J]. Catal. Today,2005,101(3-4):195~202.
    [39] Molinari R, Pirillo F, Loddo V, et al. Heterogeneous Photocatalytic Degradation ofPharmaceuticals in Water by using Polycrystalline TiO2and a Nanofiltration Membrane Reactor [J].Catal. Today,2006,118(1-2):205~213.
    [40] Ziegmann M, Frimmel F H. Photocatalytic Degradation of Clofibric Acid, Carbamazepine andIomeprol using Conglomerated TiO2and Activated Carbon in Aqueous Suspension [J]. Water Sci.Technol.,2010,61(1):273~281.
    [41]肖健,刘林梅,邹世春.水环境中红霉素和罗红霉素抗生素光降解的研究[J].广州化学,2008,33(2):1~6.
    [42] Chatzitakis A, Berberidou C, Paspaltsis I, et al. Photocatalytic Degradation and Drug ActivityReduction of Chloramphenicol [J]. Water Res.,2008,42(1-2):386~394.
    [43] An T, Yang H, Li G, et al. Kinetics and Mechanism of Advanced Oxidation Processes (AOPs) inDegradation of Ciprofloxacin in Water [J]. Appl. Catal. B: Environmental,2010,94(3-4):288~294.
    [44] Araki T, Kawai Y, Ohta I, et al. Photochemical Behavior of Sitafloxacin, FluoroquinoloneAntibiotic, in an Aqueous Solution [J]. Chem. Pharm. Bull.,2002,50(2):229~234.
    [45] Knapp C W, Cardoza L A, Hawes J N, et al. Fate and Effects of Enrofloxacin in Aquatic Systemsunder Different Light Conditions [J]. Environ. Sci. Technol.,2005,39(23):9140~9146.
    [46] Espinoza L A T, Neamtu M, Frimmel F H. The Effect of Nitrate, Fe(Ⅲ) and Bicarbonate on theDegradation of Bisphenol A by Simulated Solar UV-irradiation [J]. Water Res.,2007,41(19):4479~4487.
    [47] Prabhakaran D, Sukul P, Lamsh ft M, et al. Photolysis of Difloxacin and Sarafloxacin inAqueous Systems [J]. Chemosphere,2009,77(6):739~746.
    [48] Guinea E, Garrido J A, Rodríguez R M, et al. Degradation of the Fluoroquinolone Enrofloxacinby Electrochemical Advanced Oxidation Processes based on Hydrogen Peroxide Electrogeneration [J].Electrochim. Acta,2010,55(6):2101~2115.
    [49] Paul T, Miller P L, Strathmann T J. Visible-light-mediated TiO2Photocatalysis ofFluoroquinolone Antibacterial Agents [J]. Environ. Sci. Technol.,2007,41(13):4720~4727.
    [50] An T, Yang H, Song W, et al. Mechanistic Considerations for the Advanced OxidationTreatment of Fluoroquinolone Pharmaceutical Compounds using TiO2Heterogeneous Catalysis [J]. J.Phys. Chem. A,2010,114(7):2569~2575.
    [51] Litter M I. Heterogeneous Photocatalysis: Transition Metal Ions in Photocatalytic Systems [J].Appl. Catal. B: Environ.,1999,23(2-3):89~114.
    [52] Bhatkhande D S, Pasngarkar V G, Beenackers A A. Photocatalytic Degradation forEnvironmental Applications–a review [J]. J. Chem. Technol. Biotechnol.,2002,77(1):102~116.
    [53] Méndez-Arriaga F, Esplugas S, Giménez J. Photocatalytic Degradation of Non-steroidalAnti-inflammatory Drugs with TiO2and Simulated Solar Irradiation [J]. Water Res.,2008,42(3):585~594.
    [54] Deng Z, Chen M, Gu G, et al. A Facile Method to Fabrieate ZnO Hollow Spheres and TheirPhotocatalytic Property [J]. J. Phys. Chem. B,2008,112(1):16~22.
    [55] Ao Y, Xu J, Fu D, et al. Visible-light Responsive C, N-codoped Titania Hollow Spheres for X-3Bdye Photodegradation [J]. Microporous Mesoporous Mater.,2009,118(1-3):382~386.
    [56] Wang Changzheng, E Yifeng., Fan Louzhen, et al. Directed Assembly of Hierarchical CdSNanotube Arrays from CdS Nanoparticles: Enhanced Solid State Electro-chemiluminescence in H2O2Solution [J]. Adv. Mater.,2007,19(21):3677~3681.
    [57] Zhai T Y, Fang X S, Bando Y, et al. Characterization, Cathodoluminescence, and Field-EmissionProperties of Morphology-Tunable CdS Micro/Nanostructures [J]. Adv. Funct. Mater.,2009,19(15):2423~2430.
    [58] Cheng C W, Xu G Y, Zhang H Q, et al. Solvothermal Synthesis and Photolumine-scenceProperties of Single-crystal Mn2+Doped CdS Nanowires [J]. Mater. Chem. Phys.,2006,97(2-3):448~451.
    [59] Liu Xiaohe. A Facile Route to Preparation of Sea-urchinlike Cadmium Sulfide Nanorod-basedMaterials [J]. Mater. Chem. Phys.,2005,91(1):212~216.
    [60] Stichmair J, Schmidt J, Proplesch R. Electroextraction: A Novel Separation Technique [J]. Chem.Eng. Sci.,1992,47(12):3015~3021.
    [61] Siegel R W. Nanostructured Materials-mind over Matter [J]. Nanostruct. Mater.,1994,4(1):121~138.
    [62] Kucza W. Electrostatically Driven Charge-ordering in Magnetite below the VerweyTemperature[J]. Solid State Commun.,2001,118(8):401~405.
    [63] Zhu Maiyong, Diao Guowang. Synthesis of Porous Fe3O4Nanospheres and its Application forthe Catalytic Degradation of Xylenol Orange [J]. J. Phys. Chem. C,2011,115(39):18923~18934.
    [64] Cesar Ilkay, Kay Andreas, Martinez José A Gonzalez, et al. Translucent Thin Film Fe2O3Photoanodes for Efficient Water Splitting by Sunlight: Nanostructure-Directing Effect of Si-Doping[J]. J. Am. Chem. Soc.,2006,128(14):4582~4583.
    [65] Ramajo L A, Cristóbal A A, Botta P M, et al. Dielectric and Magnetic Response of Fe3O4/epoxyComposites [J]. Composites: Part A,2009,40:388~393.
    [66] Nam J M, Thaxton C S, Mirkin C A. Nanoparticle-Based Bio-Bar Codes for the UltrasensitiveDetection of Proteins [J]. Science,2003,301:1884~1886.
    [67] Yang Ta-I, Rene N C. Brown, Leo C. Kempel, et al. Magneto-dielectric Properties ofPolymer–Fe3O4Nanocomposites [J]. J. Magn. Mag. Mater.,2008,320(21):2714~2720.
    [68] Zheng Y H, Cheng Y, Bao F, et al. Synthesis and Magnetic Properties of Fe3O4Nanoparticles [J].Mater. Res. Bull.,2006,41:525~529.
    [69]余保龙.半导体纳米材料的非线性光学性质[M].郑州:河南大学出版社,1999.
    [70]杜卫平.(羟基)氧化铁光催化降解有机物的反应机理[博士学位论文].杭州:浙江大学,2007.
    [71] Sun Y, Pignatello J J. Evidence for a Surface Dual Hole-radical Mechanism in the TitaniumDioxide Photocatalytic Oxidation of2,4-Dichlorophenoxyacetic Acid [J]. Environ. Sci. Technol.,1995,29(8):2065~2072.
    [72] Turchi C S, Ollis D F. Photocatalytic Degradation of Organic Water Contaminants: Mechanismsinvolving Hydroxyl Radical Attack [J]. J. Catal.,1995,122(1):178~192.
    [73] Richard C, Lemaire J. Analytical and Kinetic Study of the Phototransformation of FurfurylAlcohol in Aqueous ZnO Suspensions [J]. J. Photochem. Photobiol. A:Chem.,1990,55(1):127~134.
    [74] Kamat P V. Photochemistry on Nonreactive and Reactive (semiconductor) Surfaces [J]. Chem.Rev.,1993,93(1):267~300.
    [75] Palominos R, Freer J, Mondaca M A, et al. Evidence for Hole Participation during thePhotocatalytic Oxidation of the Antibiotic Flumequine [J]. J. Photochem. Photobiol. A: Chem.,2008,193(2-3):139~145.
    [76] Hapeshi E, Achilleos A, Vasquez M I, et al. Drugs Degrading Photocatalytically: Kinetics andMechanisms of Ofloxacin and Atenolol Removal on Titania Suspensions [J]. Water Res.,2010,44(6):1737~1746.
    [77] Feng Xin-Xing, Chen Jian-Yong, Yao Ju-Ming, et al. Preparation of Nanosize Cadmium SulfideParticles with a Silk Fibroin Membrane and Their Photocatalytic Activity [J]. J. Appl. Polym. Sci.,2006,101:2162~2166.
    [78] Zhu Huayue,Jiang Ru,Xiao Ling,et al. Photocatalytic Decolorization and Degradation of CongoRed on Innovative Crosslinked Chitosan/nano-CdS Composite Catalyst under Visible LightIrradiation [J]. J. Hazard. Mater.,2009,169(1-3):933~940.
    [79] Wang Qun, Chen Gang, Zhou Chao,et al. Sacrificial Template Method for the Synthesis of CdSNanosponges and their Photocatalytic Properties [J]. J. Alloys Compd.,2010,503(2):485~489.
    [80] Apte Sanjay K, Garaje Sunil N, Mane Gurudas P, et al. A Facile Template-Free Approach for theLarge-Scale Solid-Phase Synthesis of CdS Nanostructures and Their Excellent PhotocatalyticPerformance [J]. Small,2011,7(7):957~964.
    [81]王永康,王立.纳米材料科学与技术[M].杭州:浙江大学出版社,2002.
    [82] Manna L, Scher E C, Alivisatos A P. Synthesis of Soluble and Processable rod-, arrow-, teardrop-,and tetrapod-shaped CdSe Nanocrystals [J]. J. Am. Chem. Soc.,2000,122(51):12700~12706.
    [83] Yin Y D, Alivisatos A P. Colloidal Nanocrystal Synthesis and the Organic-inorganic Interface [J].Nature,2005,437(7059):664~670.
    [84] Manna L, Milliron D J, Meisel A, et al. Controlled Growth of Tetrapod-branched InorganicNanocrystals [J]. Nature Material,2003,2(6):382~385.
    [85] Li Y, Xu D S, Zhang Q M, et al. Preparation of Cadmium Sulfide Nanowire Arrays in AnodicAluminum Oxide Templates [J]. Chem. Mater.,1999,11(12):3433~3435.
    [86] Tang H X, Yan M, Zhang H, et al. Preparation and Characterization of Water-souble CdSNanocrystals by Surface Modification of Ethylene Diamine [J]. Mater. Lett.,2005,59(8-9):1024~1027.
    [87] Nair P S, Radhakrishnan T, Revaprasadu N, et al. Cd(NH2CSNHNHCSNH2)Cl2: a NewSingle-source Precursor for the Preparation of CdS Nanoparticles [J]. Polyhedron,2003,22(23):3129~3135.
    [88] Siegfried M J, Choi K S. Electrochemical Crystallization of Cuprous Oxide with SystematicShape Evolution [J]. Adv. Mater.,2004,16(19):1743~1746.
    [89] Milliron D J, Hughes S M, Cui Y, et al. Colloidal Nanocrystal Heterostructures with Linear andBranched Topology [J]. Nature,2004,430(6996):190~195.
    [90] Tang J, Alivisatos A P. Crystal Splitting in the Growth of Bi2S3[J]. Nano Lett.,2006,6(12):2701~2706.
    [91]钭建宁,郭睿倩,彭波,等. CdS和CdSe新型纳米结构的高效溶剂热合成[J].无机化学学报,2006,22(10):1766~1770.
    [92] Chen M, Pan L J, Huang Z Q, et al. A Novel Route to CdS Nanocrystals with StrongElectrogenerated Chemiluminescence [J]. Mater. Chem. Phys.,2007,101(2):317~321.
    [93] Wang W L, Bai F L. A Simple Aqueous-Solution Processing Route to PrepareQuantum-Confined CdS Nanorods [J]. Chem. Phys. Chem.,2003,4(7):761~763.
    [94] Xu D, Liu Z, Liang J, et al. Solvothermal Synthesis of CdS Nanowires in a Mixed Solvent ofEthylenediamine and Dodecanethiol [J]. J. Phys. Chem. B,2005,109(30):14344~14349.
    [95] Yang J, Zeng J H, Yu S H, et al. Formation Process of CdS Nanorods via Solvothermal Route [J].Chem. Mater.,2000,12(11):3259~3263.
    [96] Barrelet C J, Wu Y, Bell D C, et al. Synthesis of CdS and ZnS Nanowires using Single-Source[J]. J. Am. Chem. Soc.,2003,125(38):11498~11499.
    [97] Liang Y Q, Zhen C G, Zou D H, et al. Preparation of Free-Standing Nanowire Arrays onConductive Substrates [J]. J. Am. Chem. Soc.,2004,126(50):16338~16339.
    [98] Jun Y W, Lee S M, Kang N J, et al. Controlled Synthesis of Multi-armed CdS NanorodArchitectures using Monosurfactant System [J]. J. Am. Chem. Soc.,2001,123(21):5150~5151.
    [99] Wankhede M E, Haram S K. Synthesis and Characterization of Cd DMSO Complex CappedCdS Nanoparticles [J]. Chem. Mater.,2003,15(6):1296~1301.
    [100] Cao B L, Jiang Y, Wang C, et al. Synthesis and Lasing Properties of Highly Ordered CdSNanowire Arrays [J]. Adv. Funct. Mater.,2007,17(9):1501~1506.
    [101] Jang J S, Joshi U A, Lee J S. Solvothermal Synthesis of CdS Nanowires for PhotocatalyticHydrogen and Electricity Production [J]. J. Phys. Chem. C.,2007,111(35):13280~13287.
    [102]袁履冰.物理有机化学导论[M].大连:大连理工大学出版社,1989.
    [103]吴瑾光.近代傅里叶变换红外光谱技术及应用(上卷)[M].北京:科学技术文献出版社,1994.
    [104]荆煦瑛,陈式棣,么思云.红外光谱实用指南[M].天津:科学技术出版社,1992.
    [105] Zhang J, Sun L D, Yin J L, et al. Control of ZnO Morphology via a Simple Solution Route [J].Chem. Mater.,2002,14(10):4172~4177.
    [106] Lee S M, Cho S N, Cheon J. Anisotropic Shape Control of Colloidal Inorganic Nanocrystals[J].Adv. Mater.,2003,15(5):441~444.
    [107] Li Y D, Liao H W, Ding Y, et al. Nonaqueous Synthesis of CdS Nanorod Semiconductor [J].Chem. Mater.,1998,10(9):2301~2303.
    [108] Chen M H, Kim Y N, Li C C, et al. Controlled Synthesis of Hyperbranched Cadmium SulfideMicro/Nanocrystals [J]. Cryst. Growth Des.,2008,8(2):629~634.
    [109] Beecroft L L, Ober C K. Nanocomposite Materials for Optical Applications [J]. Chem. Mater.,1997,9(6):1302~1317.
    [110]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2002.
    [111] Andrew J S. Quantum dots as lumineseent Probes in biological systems [J]. Current. Opin.Solid. Mater. Sci.,2002,6:365~370.
    [112]徐叙瑢,苏勉曾.发光学与发光材料[M].北京:化学工业出版社,2004.
    [113]张龙.半导体纳米晶的制备及其光学性能研究[博士学位论文].武汉:武汉理工大学,2011.
    [114] Yacobi B G, Holt D B. Cathodoluminescence Microscopy of Inorganic Solids, edtied byPlenum Press, New York,1990.
    [115] He S L, Zhang H W, Delikanli S, et al. Bifunctional Magneto-Optical FePt CdS HybridNanoparticles [J]. J. Phys. Chem. C.,2009,113(1):87~90.
    [116] Premachandran R, Banerjee S, John V T, et al. The Enzymatic Synthesis of Thiol-ContainingPolymers to Prepare Polymer CdS Nanocomposites [J]. Chem. Mater.,1997,9(6):1342~1347.
    [117] Ip K M, Wang C R, Li Q, et al. Excitons and Surface Luminescence of CdS Nanoribbons [J].Appl. Phys. Lett.,2004,84(5):795~797.
    [118] Hagfeldt A, Graetzel M. Light-Induced Redox Reactions in Nanocrystalline Systems [J].Chem.Rev.,1995,95(1):49~68.
    [119]许并社.纳米材料及应用技术[M].北京:化学工业出版社,2004.
    [120] Suh Y J, Jang H D, Chang H K, et al. Kinetics of Gas Phase Reduction of Nickel Chloride inPreparation for Nickel Nanoparticles [J]. Mater. Res. Bull.,2005,40(12):2100~2109.
    [121] Say lkan F, Erdemoglu S, Asilturk M, et al. Photocatalytic Performance of Pure AnataseNanocrystallite TiO2Synthesized under Low Temperature Hydrothermal Conditions [J]. Mater. Res.Bull.,2006,41(12):2276~2285.
    [122] Susan J M,Simon H R D.The Use of Ozonization to Degrade Organic Contaminants inWastewaters [J]. Environ. Sci. Techno1.,1994,28(4):180~185.
    [123] Zeng H, Li J, Liu J P, et al. Exchange-coupled Nanocomposite Magnets by Nanoparticleself-assembly [J]. Nature,2002,420:395~398.
    [124] Li F B, Li X Z, Li X M, et al. Heterogeneous Photodegradation of Bisphenol A with IronOxides and Oxalate in Aqueous Solution [J]. J. Colloid Interface Sci.,2007,311(2):481~490.
    [125] Wang X, Liu C, Li X, et al. Photodegradation of2-mercaptobenzothiazole in theγ-Fe2O3/oxalate Suspension under UVA Light Irradiation [J]. J. Hazard. Mater.,2008,153(1-2):426~433.
    [126] Li F B, Li X Z, Liu C S, et al. Effect of Oxalate on Photodegradation of Bisphenol A at theInterface of Different Iron Oxides [J]. Ind. Eng. Chem. Res.,2007,46(3):781~787.
    [127] Nakatsuka K, Jeyadevan B, Neveu S, et al. The Magnetic Fluid for Heat Transfer Applications[J]. J. Magn. Magn. Mater.,2002,252:360~362.
    [128] Khollam Y B, Dhage S R, Potdar H S, et al. Microwave Hydrothermal Preparation ofSubmicron-sized Spherical Magnetite (Fe3O4) Powders [J]. Mater. Lett.,2002,56(4):571~577.
    [129] Lee H, Yu M K, Park S J, et al. Thermally Cross-linked Superparamagnetic Iron OxideNanoparticles: Synthesis and Application as a Dual Imaging Probe for Cancer in Vivo [J]. J. Am.Chem. Soc.,2007,129(42):12739~12745.
    [130] Jordan A, Scholz R, Wust P, et al. Endocytosis of Dextran and Silan-coated MagnetiteNanoparticles and the Effect of Intracellular Hyperthermia on Human Mammary Carcinoma Cells inVitro [J]. J. Magn. Magn. Mater.,1999,194(1-3):185~196.
    [131] Daou T J, Pourroy G, Bégin-Colin S, et al. Hydrothermal Synthesis of Monodisperse MagnetiteNanoparticles [J]. Chem. Mater.,2006,18(18):4399~4404.
    [132] Iwasaki T, Kosaka K, Mizutani N, et al. Mechanochemical Preparation of MagnetiteNanoparticles by Coprecipitation [J]. Mater. Lett.,2008,62(25):4155~4157.
    [133] Zhou Z H, Wang J, Liu X, et al. Synthesis of Fe3O4Nanoparticles from Emulsions [J]. J. Mater.Chem.2001,11(6):1704~1709.
    [134] Xu J, Yang H, Fu W, et al. Preparation and Magnetic Properties of Magnetite Nanoparticles bySol-gel Method [J]. J. Magn. Magn. Mater.,2007,309(2):307~311.
    [135] Hu C, Gao Z, Yang X. Fabrication and Magnetic Properties of Fe3O4Octahedra [J]. Chem.Phys. Lett.,2006,429(4-6):513~517.
    [136] Wang J,Yao M, Xu G, et al. Synthesis of Monodisperse Nanocrystals of High CrystallinityMagnetite through Solvothermal Process [J]. Mater. Chem. Phys.,2009,113(1):6~9.
    [137] Cheng F Y, Su C H, Yang Y S, et al. Characterization of Aqueous Dispersions of Fe3O4Nanoparticles and their Biomedical Applications [J]. Biomaterials,2005,26(7):729~738.
    [138] Iijima S. Helical Microtubules of Graphitic Carbon [J]. Nature,1991,354:56~58.
    [139] Zhang Y, Wang S N, Ma Song, et al. Self-assembly Multifunctional Nanocomposites withFe3O4Magnetic Core and CdSe/ZnS Quantum Dots Shell [J]. J. Biomed. Mater. Res. Part A.,2007,840~846.
    [140] Zhao G, Feng J J, Zhang Q L, et al. Synthesis and Characterization of Prussian Blue ModifiedMagnetite Nanoparticles and its Application to the Electrocatalytic Reduction of H2O2[J]. Chem.Mater.,2005,17(12):3154~3159.
    [141] Sun S H, Zeng H, Robinson D B, et al. Monodisperse MFe2O4(M=Fe, Co, Mn) Nanoparticles[J]. J. Am. Chem. Soc.,2004,126(1):273~279.
    [142] Ichiyanagi Y, Uehasha T, Yamada S, et al. Thermal Fluctuation and Magnetization of Ni-ZnFerrite Nanoparticles by Particle Size [J]. J. Therm. Anal. Calorim.,2005,81:541~544.
    [143] Deng H, Li Xiaolin, Peng Q, et al. Monodisperse Magnetic Single-Crystal Ferrite Microspheres[J]. Angew. Chem. Int. Ed.,2005,44(18):2782~2785.
    [144]崔英德,易国斌,廖列文.聚乙烯吡咯烷酮的合成与应用[M].北京:科学出版社,2001:35~37.
    [145] Mazellier P, Rachel A, Mambo V. Kinetics of Benzenesulfonates Elimination by UV andUV/H2O2[J]. J. Photochem. Photobiol. A: Chem.,2004,163(3):389~393.
    [146] Safarzadeh-Amiri A, Bolton J R, Cater S. Ferrioxalate-mediated Photodegradation of OrganicPollutants in Contaminated Water [J]. Water Res.,1997,31(4):787~798.
    [147] Franch M I, Ayllón J A, Peral J, et al. Fe(III) Photocatalyzed Degradation of Low ChainCarboxylic Acids Implications of the Iron Salt [J]. Appl. Catal. B: Environmental,2004,50(2):89~99.
    [148] Rodríguez Eva M, Nú ez Beatriz, Fernández Guadalupe, et al. Effects of Some CarboxylicAcids on the Fe(III)/UVA Photocatalytic Oxidation of Muconic Acid in Water [J]. Appl. Catal. B:Environ.,2009,89:214~222.
    [149] Blesa M A, Morando P J, Regazzoni A E. Chemical Dissolution of Metal Oxides, edited byCRC Press, Publisher, Boca Raton, FL,1994,269~308.
    [150] Cornell R M, Schwertmann U. The Iron Oxides: Structure, Properties, Reactions, Occurrencesand Uses,2nd Ed., Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim,2003.
    [151] Rodríguez Eva, Fernández Guadalupe, Ledesma Beatriz, et al. Photocatalytic Degradation ofOrganics in Water in the Presence of Iron Oxides: Influence of Carboxylic Acids [J]. AppliedCatalysis B: Environmental,2009,92(3-4):240~249.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700