用户名: 密码: 验证码:
模拟太阳光作用下水环境中烷基酚光转化机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
典型的内分泌干扰物壬基酚(Nonylphenol, NP)和辛基酚(Octylphenol, OP)因其在工业过程的广泛应用,现在普遍存在于水体环境中,且因为其环境持久性、生物累积性及生殖毒性而受到人们的广泛关注。本论文选取4-n-NP、4-t-OP作为研究对象,研究其在水溶液体系中的光化学行为;并着重模拟水环境中各常见环境要素,考察它们对NP、OP光转化影响及作用机制,旨在深入理解NP、OP在水环境中的光转化机理和环境行为。主要研究结论如下:
     在实验室控制光转化条件下,通过测定光转化过程中NP、OP的残留率,考察了天然水环境各主要因素(光照强度、温度、浓度、pH、Fe(Ⅲ)、DO、NO_3~-、H_2O_2、HCO_3~-、HA等)对它们光转化的影响。结果表明,DO、NO_3~-、H_2O_2、HA是影响NP、OP在水环境中光转化的重要因素,而温度、光照强度、浓度、Fe(Ⅲ)、pH、HCO_3~-等对APs的转化影响较小。在不同介质(纯水、人工海水和天然海水)中,DO、NO_3~-、H_2O_2、HA均在NP、OP的光转化中起重要作用,但由于不同体系中所含物质的差异性,且主要组分在光转化时生成的活性粒子与NP、OP作用机理不同,导致了不同目标物、不同体系间光转化速率间的差异较大。在此基础上,通过转化中间产物的检测,系统研究NP、OP在水中的光转化机理。
     NP在DO作用下产物主要有4-壬基~-邻苯二酚、壬醇、壬醛和壬酸,其中以壬酸为主。推测NP在O_2-作用下,生成邻酚类物质,继续反应转变为邻醌再发生共轭加成;共轭加成产物不稳定,生成壬醇、壬醛和壬酸。H_2O_2光照生成的OH进攻NP的三个电子云较集中的位置(即碳链末端、酚羟基邻位、连接苯环的烷基碳),主要转化产物有碳链缩短(2-8碳)的酚、4-壬基~-邻苯二酚、壬醇、壬醛、壬酸,其中以壬醛为主。NO_3~-在光照下同时生成OH与NO_2,因此具有与H_2O_2存在时相同的作用机制和转化产物;另外NO_2能硝化NP,检测到2-硝基-4-壬基酚。当OH过剩时Cl~-的存在有利于OH的充分利用,能够进一步促进反应的进行,当OH较少时则会与NP竞争从而产生抑制作用。转化产物与H_2O_2单独存在时相同,另外还检测到壬酰氯,其前驱体可能是壬醛。在天然海水中检测到的NP转化产物为4-壬基-邻苯二酚,而其他小分子产物并未检测到,可能是因为在天然海水中存在的活性粒子较多,反应路径较多,产物并不单一,以至最终小分子产物的量比较少,而难以被检测到。
     水溶液中DO作用下OP的光转化主要产物是4-叔辛基-邻苯二酚。推测反应机理为:吸收光能处于激发态的OP被O_2~-攻击,生成邻酚类物质。由于未检测到其他小分子产物的存在,邻酚类产物的进一步转化途径尚难推测。水溶液中的H_2O_2在光照下生成OH,在其作用下OP的主要转化产物有4-叔辛基-邻苯二酚、戊基酚(以前者为主)。推测转化机理为: OH进攻OP的酚羟基邻位,生成4-叔辛基-邻苯二酚;同时OP在OH作用下烷基链末端的叔碳脱掉一个小分子醇,转变为相对较不稳定的仲碳结构,仲碳结构经过重排,转变为两个叔碳直接相连的庚基。但是在光转化后样品中并没有检测到这种物质,可能是由于其末端烷基碳相对更活泼,在OH的作用下极易从烷基脱离,烷基碳逐步脱离的结果最终就转变为戊基酚。NO_3~-作用下OP光转化产物主要有4-叔辛基-邻苯二酚和2-硝基-4-叔辛基酚,以硝化产物(后者)累积为主,可能是因为该硝化产物较为稳定。推测该机制下OP的光转化机理是NO_3~-光转化生成的OH与NO_2进攻OP的酚羟基邻位。在天然海水作用下,检测到的OP主要转化产物是2-硝基-4-叔辛基酚,可能是因为在天然海水中OP光转化生成的硝化产物相对比较稳定的原因。
The typical endocrine disrupting chemicals, nonylphenol (NP) and octylphenol(OP), have been widely used in various industrial processes and they are ubiquitous inthe aquatic environment. The strong biologically cumulative effect, stability andestrogenic character of NP and OP have caused public concern. It is therefore of greatsignificance to investigate their environmental fate. The primary route of exposure toNP and OP for human and wildlife is through water, and phototransformation is animportant abiotic process for the elimination of NP and OP in water. Therefore, wechose4-n-NP and4-t-OP as target compounds to investigate theirphototransformation pathways and to elucidate the effects of common waterconstituents on the phototransformation mechanisms of NP and OP. The majorconclusions of the study are as following:
     The influence of each common environmental factor on the phototransformationof NP and OP has been assessed through contrasting the residual rate of NP and OP.In pure water, dissolved oxygen (DO) played a key role in the phototransformation ofNP, as the degradation rate obviously decreased when the concentration of DO wasdecreased. Other factors such as NO_3-, HCO_3~-, Fe(Ⅲ), H_2O_2and HA increased thephototransformation of NP. However, the influences of NO_3-, H_2O_2and HA on theNP phototransformation were more obvious. The photolysis rate of NP was morerapid in an alkaline solution than in an acidic medium. In the condition of higher lightintensity or higher temperature, the phototransformation rate of NP increased. Theeffects of common water constituents on the OP phototransformation in pure waterwere also assessed. And DO was also a significant influencing factor on the OPphototransformation and other factors (NO_3~-, H_2O_2, HA) accelerated thephototransformation rate of OP due to their photoactivity. Although the photolysisrates of NP and OP were different in the three water systems, the four factors (DO,NO_3~-, H_2O_2, HA) were significant on the phototransformation of NP and OP.
     The phototransformation pathways in different conditions have been proposedaccording to the intermediate products identified by GC-MS. In pure water, when NPreacted with DO,4-nonyl-catechol, nonanol, nonanal and nonoic acid have beenidentified as the major degradation products, while the accumulated amount of nonoicacid was the most. We therefore proposed that4-nonyl-catechol and ortho-quinonederivative were produced after the formation of4-nonylphenoxyl radical andsuperoxide radical anions (O_2~-), then the intermediates underwent conjugate additionto produce nonanol, nonanal and nonoic acid. In the presence of H_2O_2,4-n-akylphenol(HOC_6H_4-CnH_(2n+1), n=2~8),4-nonyl-catechol, nonanol, nonanal and nonoic acid werethe major products, and nonanal was the most accumulated one. We proposed that thehydroxyl radicals (OH) generated by the photolysis of H_2O_2attacked the electronicgathered positions of NP molecules. In the presence of NO_3~-, the same products werealso detected as in the presence of H_2O_2in addition to2-nitryl-4-nonylphenol. Theirradiated NO_3-can produce OH and NO2, and NO_2attacked the ortho position ofphenolic hydroxyl to generate2-nitryl-4-nonylphenol. In the condition of coexistenceof Cl-and H_2O_2in an aqueous solution, two opposite effects of Cl-were observed: itcan make full use of OH with surplus amount of H_2O_2, resulting in an accelerateddegradation rate of NP, while Cl-compete with NP when the amount of H_2O_2is verylimited, leading to a retarded degradation rate of NP. In any case, the same productswere detected in the coexistence of Cl-and H_2O_2as in the presence of H_2O_2, inaddition to nonanoyl chloride. The fact that nonanal was the most accumulatedproduct let us believe that it was most probable that the chlorine radical (·Cl)(generated from the reaction of OH and Cl-) reacted with nonanal to producenonanoyl chloride.
     The degradation rate of NP in natural seawater was slower than in pure water.Only4-nonylcatechol was identified as the intermediate, no other products werefound in the irradiated samples. There are many photoactive species in naturalseawater. These species may rapidly react with intermediate products. This may bethe reason why it is difficult to detect those small molecules.
     When OP reacted with DO,4-octylcatechol was the main degradation product.The proposed mechanism was that4-octylcatechol derivative was produced after theformation of4-nonylphenoxyl radical and superoxide radical anions (O_2~-). However,since other small molecules were not detected during the process of OP degradation, itis not possible to propose further transformation pathways of4-octylcatechol. In thepresence of H_2O_2, OH generated by the photolysis of H_2O_2is the active species toreact with OP.4-octylcatechol and4-amylphenol were found in this condition and theformer one was the most abundant intermediate. The proposed mechanism was that4-octylcatechol was formed after that· OH attacked the ortho position of phenolichydroxyl. Also, with the reaction of·OH,tertiary carbon turned to secondary carbon,then after the rearrangement of secondary carbon structure, the heptylphenol that hastwo tertiary carbons was formed. However, heptylphenol was not detected in thephotolysis samples due to its very active nature of OH. At last,4-amylphenol wasformed. In the presence of NO_3-,2-nitryl-4-octylphenol and4-octylcatechol werefound as the intermediate products and the former one was the most accumulatedproduct of OP phototransformation owing to the stability of2-nitryl-4-octylphenol.We proposed that OH and NO2(produced by irradiated NO_3-) attacked the orthoposition of phenolic hydroxyl. In natural seawater, the phototransformation of OP wasslower than in pure water. The existence of many species in natural seawater maycompete with OP, resulting in a retarded degradation of OP. The main intermediateproduct of OP phototransformation in natural seawater was2-nitryl-4-octylphenol,while other products were not detected. We therefore postulated that the existence ofNO_3-may play a key role in degradation of OP in natural seawater. This is obviouslydifferent from the case of NP phototransformation in natural seawater. The alkylchain of OP may be responsible for its different pathway of photolysis in naturalseawater and the stability of2-nitryl-4-octylphenol may account for the fact that itwas the only product detected during OP phototransformation.
引文
[1]石莹,张宏伟.环境内分泌干扰物的研究进展[J].国外医学(卫生学分册),2006,33(6):342-348
    [2]王宏,沈英娃.烷基酚聚氧乙烯醚类物质的环境雌激素效应[J].中国环境科学,1999,19(5):427-431
    [3]胡燕金,许梦漾,龚剑,等.壬基酚对环境中动物危害的研究进展[J].2012,25(4):53-59
    [4]张昌辉,谢瑜.烷基酚聚氧乙烯醚的安全性问题[J].日用化学品科学,2007,30(2):20-25
    [5] Jobling S, Sumpter J.P. Detergent components in sewage effluent are weaklyoestrogenic to fish: An in vitro study using rainbow trout (Oncorhynchus mykiss)hepatocytes [J]. Aquatic Toxicology,1993,27(3–4):361–372
    [6]臧瑞玲,胡晓芳,印春生,等.辛基酚聚氧乙烯醚好氧生物降解产物的GC-MS测定[J].环境化学,2005,24(6):714-717
    [7] Rice C.P., Isabelle Schmitz-Afonso, Jorge E. Loyo-Rosales, et al. Alkylphenoland Alkylphenol-Ethoxylates in Carp, Water, and Sediment from the CuyahogaRiver, Ohio [J]. Environ. Sci. Technol.,2003,37(17):3747–3754
    [8] Mitchelmorea C.L., Rice C. P. Correlations of nonylphenol-ethoxylates andnonylphenol with biomarkers of reproductive function in carp (Cyprinus carpio)from the Cuyahoga River [J]. Science of The Total Environment,2006,371(1-3):391–401
    [9] Renner R., European Bans on Surfactant Trigger Transatlantic Debate U.S. andEuropean regulators and researchers disagree over risks of a common class ofsurfactants [J]. Environ. Sci. Technol.,1997,31(7):316A–320A
    [10]Takada H., Eganhouse RP. Molecular markers of anthropogenic waste. InEncyclopedia of Environmental Analysis and Remediation; Meyers, RA, Ed.;John Wiley&Sons: New York,1998; Vol.5, pp28832940.
    [11]Shang DY, Ikonomou MG, Macdonald, RW, Quantitative determination ofnonylphenol polyethoxylate surfactants in marine sediment using normal-phaseliquid chromatography-electrospray mass spectrometry [J]. J. Chromatogr. A,1999,849:467-482.
    [12]Vazquez D.R., Marquez R. F., Ponce E.,et al., Nonyphenol, an integrated visionof a pollutant [J], J. Appl. Ecol. Environ. Res.2005,4:1-25.
    [13]杨颖,黄国兰,孙红文.烷基酚和烷基酚聚氧乙烯醚的环境行为[J].安全与环境学报,2005,5(6):38-43.
    [14]Anonymous (2001). Nonylphenol. Chemical Market Reporter,260,31.
    [15]Lintelmann J, Katayama A, Kurihara N, et al. Endocrine disruptors in theenvironment (IUPAC Technical Report)[J]. Pure Appl. Chem.2003,75,631681
    [16]HELCOM (Helsinki Commission)(2002). Guidance document onnonylphenol/nonylphenol ethoxylates (Np/NPEs). Finland: Baltic MarineEnvironment Protection
    [17]Commission.JME (Japanese Ministry of Environment)(2001). Report on the testresults of endocrine disrupting ef fects of nonylphenol on f ish (draft). Tokyo:Environmental
    [18]Anonymous (2004). Demand increase for nonylphenol in China. FocusSurfactants,5,3. Health Department, Government of Japan.
    [19]Michael D. Vincent, Joseph Sneddon. Nonylphenol: An overview and itsdetermination in oysters and wastewaters and preliminary degradation resultsfrom laboratory experiments [J]. Microchemical Journal,2009,92(1):112–118
    [20]Sole,M. Lopez de Alda M.J., Castillo M., et al. Estrogenicity determination insewage treatment plants and surface waters from the Catalonian area (NE Spain)[J], Environ Sci Technol,34(2000):5076–5083
    [21]Nice H.E., Thorndyke M.C., Morritt D., Steele S., Crane M., Development ofCrassostrea gigas larvae is affected by4-nonylphenol [J], Marine PollutionBulletin40(6)(2000)491–496.
    [22]顾志华,黄祖娟,陈秉,等.对叔辛基酚的合成研究[J].精细石油化工,2004,4:48-50
    [23]Brooke D, Johnson I, Mitchell R, Watts C. Environmental risk evaluation report:4-tert-octylphenol,2005. www.environment-agency.gov.uk.
    [24]OSPAR, Review of actions on priority substances identified in backgrounddocuments adopted by OSPAR (2006update), Hazardous Substances SeriesOSPAR Commission, London, UK (2006)
    [25]Dodds E.C., Lawson W. Molecular structure in relation to oestrogenic activity:Compounds without a phenanthrene nucleus Proc. R. Soc. London, Ser. B,125(1938), pp.222–232
    [26]Giger W., Brunner P.H., Schaffner C..4-Nonylphenol in sewage sludge:accumulation of toxic metabolites from nonionic surfactants Science N.Y.,1984,225:623–625
    [27]Soto AM, Justicia H, Wray JW. p-Nonyl-phenol: an estrogenic xenobioticreleased from" modified" polystyrene [J]. Environmental Health Perspectives,1991,92:167-173
    [28]Lee, P. C., and Lee, W. In vivo estrogenic action of nonylphenol in immaturefemale rats [J]. Bull. Eviron. Contam. Toxicol.1996,57,341–348
    [29]Russo J., Fernandez S. V., Russo P. A., et al.17-Beta-estradiol inducestransformation and tumorigenesis in human breast epithelial cells [J]. The FASEBJournal,2006,20(10):1622-1634
    [30]Vincent MD, Sneddon J. Nonylphenol: An overview and its determination inoysters and wastewaters and preliminary degradation results from laboratoryexperiments [J]. Microchemical Journal,2009,92(1):112–118
    [31]Cunny HC, Mayes BA, Rosica KA, et al. Subchronic Toxicity (90-Day) Studywithpara-Nonylphenol in Rats [J]. Regulatory Toxicology and Pharmacology,1997,26(2):172–178
    [32]Flouriot G., Pakdel F., Ducouret B., Valotaire Y., Influence of xenobiotics onrainbow trout liver estrogen receptor and vitellogenin gene expression [J], Journalof Molecular Endocrinology,1995,15(2):143–151.
    [33]Yadetie F., Arukwe A., Goksoyr A., Male R., Induction of hepatic estrogenreceptor in juvenile Atlantic salmon in vivo by the environmental estrogen,4-nonylphenol [J], Science of the Total Environment,1999,233(1–3):201–210.
    [34]Soto A.M., Lin T.M., Justicia H., Silvia R.M., Sonnenschein C., An “in culture”bioassay to assess the estrogenicity of xenobiotics (E-screen)[J], Advances inModern Environmental Toxicology,1992,295–309.
    [35]Cherry N, Labreche F, Collins J, Tulandi T. Occupational exposure to solventsand male infertility [J]. Occup Environ Med,2001,58:635–40.
    [36]De Rosa M, Zarrilli S, Paesano L, Carbone U, Boggia B, Petretta M, et al. Trafficpollutants affect fertility in men [J]. Hum Reprod,2003,18:1055–61.
    [37]Swan SH, Kruse RL, Liu F, Barr DB, Drobnis EZ, Redmon JB, et al. Semenquality in relation to biomarkers of pesticide exposure [J]. Environ HealthPerspect,2003,111:1478–84.
    [38]Guenther K, Heinke V, Thiele B, Kleist E, Prast H, Raecker T. Endocrinedisrupting nonylphenols are ubiquitous in food [J]. Environ Sci Technol,2002,36:1676–80.
    [39]Ramarathnam N, Rubin LJ, Diosady LL. Studies on meat flavor3. A novelmethod for trapping volatile components from uncured and cured pork [J]. JAgric Food Chem,1993a,41:933–8.
    [40]Ramarathnam N, Rubin LJ, Diosady LL. Studies on meat flavor4. Fractionation,characterization, and quantitation of volatiles from uncured and cured beef andchicken [J]. J Agric Food Chem,1993b,41:939–45.
    [41]Muller S, Schmid P, Schlatter C. Pharmacokinetic behavior of4-nonylphenol inhumans [J]. Environ Toxicol Pharmacol,1998,5:257–65.
    [42]WFD. Amended proposal for a Decision of the European Parliament and of theCouncil establishing the list of priority substances in the field of water policy(presented by the Commission pursuant to Article250(2) of the EC Treaty);Brussels,16.1.2001, COM (2001)17final;2000/0035(COD).
    [43]Canadian Environmental Protection Act, Priority Substances List AssessmentReport Nonylphenol and its Ethoxylates,1999.
    [44]Campbell P. Alternatives to nonylphenol ethoxylates. Review of toxicity,biodegradation&technical-economic aspects. ToxEcology EnvironmentalConsulting, Vancouver, B.C., Canada. Report for Environment Canada;2002.
    [45]Brooke, L.; Thursby, G.;2005Ambient aquatic life water quality criteria fornonylphenol. Washington DC, USA: Report for the United States EPA, Office ofWater, Office of Science and Technology.
    [46]Routledge EJ, Sumpter JP. Estrogenic activity of surfactants and some of theirdegradation products assessed using a recombinant yeast screen [J], Environ.Toxicol. Chem.1996,15(3):241-248.
    [47]Ning B., Graham N.J.D., Zhang Y., Degradation of octylphenol and nonylphenolby ozone–Part I: Direct reaction [J], Chemosphere,2007a,68,1163–1172.
    [48]Ferreira-Leach A.M.R., Hill E.M., Bioconcentration and distribution of4-tert-octylphenol residues in tissues if the rainbow trout (Oncorhynchus mykiss)[J], Marine Environmental Research,2001,51,75–89.
    [49]邵兵,胡建英,杨敏.重庆流域嘉陵江和长江水环境中壬基酚污染状况调查[J].环境科学学报,2002,22(1):13-16.
    [50]段菁春,陈兵,麦碧娴,等.洪季珠江三角洲水系烷基酚污染状况研究[J].环境科学,2004,25(3):48-52.
    [51]沈钢,张祖麟,余刚,等.夏季海河与渤海湾中壬基酚和辛基酚污染的状况[J].中国环境科学,2005,25(6):733-736.
    [52]郭栋升,李艳霞,赵艳红,等.活性炭吸附黄河水中邻苯二甲酸二丁酯、壬基酚和双酚A的研究[J].给水排水,2007,33(1):30-33.
    [53]李正炎,傅明珠,卫东.胶州湾及其邻近河流中壬基酚等有机污染物的分布特征[J].海洋与湖沼,2008,39(6):599-603.
    [54]张奎文,叶赛,那广水,等.高效液相色谱-串联质谱法测定环境水体中双酚A、辛基酚、壬基酚[J].分析试验室,2008,27(8):62-66.
    [55]傅明珠,李正炎,王波.夏季长江口及其临近海域不同环境介质中壬基酚的分布特征[J].海洋环境科学,2008,27(6):561-565.
    [56]邵晓玲,马军.松花江水中13中内分泌干扰物的初步调查[J].环境科学学报,2008,28(9):1910-1915.
    [57]刘文萍,石晓勇,王晓波,等.北黄海辽宁进岸水域中壬基酚污染状况调查及其生态风险评估[J].海洋环境科学,2009,28(6):664-667.
    [58]薛光璞,姚朝英.4-烷基酚的GC/MS检测及长江南京段的污染状况[J].环境科学与管理,2010,35(6):116-118.
    [59]Jin XL, Jiang GB, Huang GL, et al.. Determination of4-tert-octylphenol,4-nonylphenol and bisphenol A in surface waters from the Haihe River in Tianjinby gas chromatography-mass spectrometry with selected ion monitoring [J].Chemosphere,2004,56:1113-1119.
    [60]Stephanou E, Glger W. Persistent organic chemicals in sewage effluents.2.Quantitative determinations of nonylphenols and nonylphenol ethoxylates byglass capiIlary gas chromatography [J]. Environmental Science and Technology,1982,16:800-805.
    [61]Fu XM, Dai SG, Zhang Y. Comparion of extraction capacities between ionicliquids and dichloromethane. Chinese Journal of Analytical Chemistry [J],2006,34(5):598-602.
    [62]范奇元,金泰,将学之,等.我国部分地区环境中壬基酚的检测[J].中国公共卫生,2002,18(11):1372-1373.
    [63]Kim YS, Katase T, Horii YC, et al. Estrogen equivalent concentration ofindividual isomer-specific4-nonylphenol in Ariake sea water, Japan [J]. MarinePollution Bulletin,2005,51:850-856.
    [64]刘俊亭,王文彬.固相萃取法命名的由来[J].色谱,1994,12:5.
    [65]Lin WC, Wang SL, Cheng CY, et al. Determination of alkylphenol residues inbreast and commercial milk by solid-phase extraction and gaschromatography–mass spectrometry[J]. Food Chemistry,2009,114:753–757.
    [66]Ballesteros O, Zafra A, Alberto Naval′on, et al.. Sensitive gas chromatographic–mass spectrometric method for the determination of phthalate esters,alkylphenols, bisphenol A and their chlorinated derivatives in wastewatersamples [J]. Journal of Chromatography A,2006,1121:154-162.
    [67]Neam u M, Frimmel FH. Photodegradation of endocrine disrupting chemicalnonylphenol by simulated solar UV-irradiation [J]. Science of The TotalEnvironment,2006,369,(1–3):295–306
    [68]Pan YP, Tsai SW. Solid phase microextraction procedure for the determination ofalkylphenols in water by on-fiber derivatization withN-tert-butyl-dimethylsilyl-N-methyltrifluoroacetamide [J]. Analytica ChimicaActa,2008,624:247-252.
    [69]Alfredo D, Llu′s Vàzquez, Francesc Ventura,et al.. Estimation of measurementuncertainty for the determination of nonylphenol in water using solid-phaseextraction and solid-phase microextraction procedures [J]. Analytica ChimicaActa,2004,506:71-80.
    [70]Liu JF, Chi YG, Jiang GB, et al. Ionic liquid-based liquid-phase microextraction,a new sample enrichment procedure for liquid chromatography [J]. Journal ofChromatography A,2004,1026:143-147.
    [71]Yiantzi E, Psillakis E, Tyrovola K, et al.. Vortex-assisted liquid–liquidmicroextraction of octylphenol, nonylphenol and bisphenol-A [J]. Talanta,2010,80:2057-2062.
    [72]Kawaguchi M, Inoue K, Yoshimura M, et al. Determination of4-nonylphenol and4-tert.-octylphenol in water samples by stir bar sorptive extraction and thermaldesorption–gas chromatography–mass spectrometry [J]. Analytica Chimica Acta,2004,505:217-222.
    [73]Richter P, Leiva C, Choque C, et al.. Rotating-disk sorptive extraction ofnonylphenol from water samples [J]. Journal of Chromatography A,2009,1216:8598-8602.
    [74]陈玲,周海云,刘岚,等.自动固相微萃取一气相色谱法检测水样中壬基酚[J].中山大学学报(自然科学版),2007,46(5):45-48.
    [75]Li DH, Park JM. Silyl Derivatization of Alkylphenols, Chlorophenols,andBisphenol A for Simultaneous GC/MS Determination[J]. Anal. Chem,2001,73:3089-3095.
    [76]Gatidou G, Thomaidis N S.,Athanasios S. et al. Simultaneous determination ofthe endocrine disrupting compounds nonylphenol, nonylphenol ethoxylates,triclosan and bisphenol A in wastewater and sewage sludge by gaschromatography–mass spectrometry [J]. Journal of Chromatography A,2007,1138:32–41.
    [77]杨佰娟,蒋凤华,徐晓琴,等.固相萃取柱上衍生气相色谱-质谱法测定水中烷基酚[J].分析化学研究报告,2007,35(5):633-637.
    [78]王晓东,赵新华,张新波,等.固相萃取-高效液相色谱-荧光检测法同时测定水中的壬基酚和双酚A[J].分析试验室,2006,25(9):27-29.
    [79]Agnieszka ZG, Tomasz G, Robert R, et al. Determination of nonylphenol andshort-chained nonylphenol ethoxylates in drain water from an agricultural area [J].Chemosphere,2009,75:513–518.
    [80]Morales T. V, Torres Padro′n M.E., Ferrera Z. Sosa, et al..Determination ofalkylphenol ethoxylates and their degradationproducts in liquid and solid samples[J]. Trends in Analytical Chemistry,2009,28(10):1186-1200.
    [81]C′espedes R., Skryjov′a K., Rakov′a M, et al. Validation of an enzyme-linkedimmunosorbent assay (ELISA) for the determination of4-nonylphenol andoctylphenol in surface water samples by LC-ESI-MS [J]. Talanta,2006,70:745–751.
    [82]Mart’ianov A A., Dzantiev B B., Zherdev A V., et al.. Immunoenzyme assay ofnonylphenol: study of selectivity and detection of alkylphenolic non-ionicsurfactants in water samples [J]. Talanta,2005,65:367-374.
    [83]Matsui K, Kawaji I, Utsumi Y, et al.. Enzyme-linked immunosorbent assay fornonylphenol using antibody-bound microfluid filters in vertical fluidic operation[J]. Journal of bioscience and bioengineering,2007,104(4):347-350.
    [84]Xia W, Li YY, Wan YJ, et al.. Electrochemical biosensor for estrogenicsubstance using lipid bilayers modified by Au nanoparticles [J]. Biosensors andBioelectronics,2010,25:2253-2258.
    [85]Huang JD, Zhang XM, Liu S, et al.. Development of molecularly imprintedelectrochemical sensor with titanium oxide and gold nanomaterials enhancedtechnique for determination of4-nonylphenol [J]. Sensors and Actuators B:Chemical,2011,152:292-298.
    [86]杜志辉,李森林,高志贤,等.壬基酚免疫层析快速检测试纸条的研制[J].解放军预防医学杂志,2007,25(4):238-241.
    [87]Ferrara F, Fabietti F, Delise M, Funari E. Alkylphenols and alkylphenolethoxylates contamination of crustaceans and fishes from the Adriatic Sea (Italy)[J]. Chemosphere,2005,59:1145–1150
    [88]Isobe T., Nishiyama H., Nakashima A., et al. Distribution and behaviour ofnonylphenol, octylphenol, and nonylphenol monoethoxylate in Tokyometropolitan area: their association with aquatic particles and sedimentarydistributions [J]. Environ Sci Technol,2001,35:1041–1049
    [89]王德高.多环芳烃和多溴联苯醚的光化学行为研究[D](博士学位论文).大连:大连理工大学,2007.
    [90]谭平,张敬东,郭生练.太阳光对湖泊中有机污染物降解的研究进展[J].环境污染治理技术与设备,2003,4(8):13-18
    [91]邓南圣,吴峰.环境光化学[M].北京:化学工业出版社,2003.
    [92]徐宝才,岳永德,胡颍蕙等.多菌灵的光化学降解研究[J].环境科学学报,2000,20(5):616-620
    [93]刘毅华.三唑酮在水中的光化学降解及其影响因素[J].农村生态环境,2005,21(4):68-71
    [94]Kieber R J, Hydro L H, Seaton P.J. Photooxidation of triglycerides and fatty acidsin seawater: Implication toward the formation of marine humic substances[J].Limnol. Oceanogr,1997,42(6):1454-1462
    [95]王海,习志群,徐晓白.有机化合物光解实验室模拟测定法[J].环境化学,1994,13(3):210-213
    [96]Wong C C, Chu W. The direct photolysis and photocatalytic degradation ofalachlor at different TiO2and UV sources [J]. Chemosphere,2003,50(8):981-987
    [97]季跃飞,曾超,孟翠,等.阿替洛尔在硝酸根溶液中的光降解研究[J].环境科学,2012,33(2):481-487
    [98]Tjessem K, Aaberg A. Photochemical transformation and degradation ofpetroleum residues in the marine environment[J]. Chemosphere,1983,12(11/12):1373-1394
    [99]Berry R J, Mueller M R. Photocatalytic decomposition of crude oil slicks usingTiO2on a floating substrate[J]. Microchem J,1994,50(1):28-32
    [100] Rontani JF, Raphel D, Aubert C. Photochemical degradation of cholesterolinduced by anthraquinone[J]. J. Photochem. Photobiol. A:Chemistry,1993,72(2):189-193
    [101] Yoon U C, Oh S W, Lee S M. et al. A solvent effect that influences thepreparative utility of N-(Silylalkyl) phthalimide and N-(Silylalkyl) maleimidephotochemistry [J]. J. Org.Chem,1999,64(12),4411-4418
    [102] Motoyoshiya J, Okuda Y, Matsuoka I. et al. Tetraphenylporphine-sensitizedPhotooxygenation of (E,E)-and(E,Z)-aryl-1,3-pentadienes generatingcis-endoperoxides[J]. J.Org.Chem,1999,64(2):493-497
    [103]刘维屏.农药环境化学[M].北京:化学工业出版社,2006
    [104]徐利.乙草胺在水中光化学降解机理研究[D]:硕士学位论文,合肥:安徽农业大学,2003
    [105]陈燕.丙草胺在水体中的光化学降解研究[D]:硕士学位论文,合肥:安徽农业大学,2004
    [106]李培霞.水中内分泌干扰物的检测及直接光解研究[D]:硕士论文,武汉:武汉大学,2005
    [107]杨红,张克荣,郑波.水体中壬基酚光催化降解影响因素的研究[J].四川大学学报,2004,35(3):369-371.
    [108]花日茂,岳永德,樊德方.乙草胺在水中的光化学降解[J].农药学学报,2000,2(1):71-74
    [109] Headley J, Du J L, Xu X, et al. Kinetics of photodegradation ofthifensulfuronmethyl in aqueous solutions [J]. Comm.Soil.Sci.Plant.Anal.,2002,33(15):327-330
    [110] Liu SZ, Li Q X.. Photolysis of spinosyns in seawater,stream water andvarious aqueous solutions [J]. Chemosphere,2004,56(11):1121-1127
    [111]周作明.水中三唑磷的光化学降解[D]:硕士学位论文,长沙:湖南农业大学,2002
    [112] Mikami N., Imanishi K., Yamada H., et al. Photodegradation of fenitrothionin water and on soil surface, and its hydrolysis in water[J]. Nippon NoyakuGakkaishi,1985,10(2):263-272
    [113] Takahashi N., Mikami N., Yamada H., et al. Photodegradation of thepyrethroud insecticide fenitrothion in water, on soil, and on plant foilage[J].Pestic.Sci.,1985,16(2):119-131
    [114] Boberic G, Bait O, Sket B. Photochemical degradation of Butyl Acrylate indifferent aqueous media [J]. Chemosphere,1998,37(1):33-40
    [115] Zepp R G, Hoigne J, Bader H. Nitrate-induced Photooxidation of TraceChemicals in water[J].Environ.Sci.Technol.,1987,21(5):443-450
    [116] Zafiriou O C., Mary B. True.Nitrate Photolysis in Seawater by sunlight [J].Mar. Chem.,1979,8(1):33-42
    [117] Stangroom S J, Macleod C L, Lester J N. Photosensitized Transformation ofthe Herbicide4-chloror-2-methylphenoxy Acetic Acid(MCPA)in Water [J].Water Res.,1998,32(3):623-632
    [118]展漫军,杨曦,孔令仁等.双酚A在硝酸根溶液中的光解研究[J].中国环境科学,2005,25(4):487-490
    [119]刘国光,丁学军,张学治等.硝酸根对罗丹明B光解的敏化作用[J].环境化学,2003,22(6):564-567
    [120]樊邦棠,李坚.可溶性染料光催化降解研究(二)[J].环境污染与防治,1989,11(6):7-10
    [121]王连生,孔令仁,常城.17种多环芳烃在水溶液中的光解[J].环境化学,1991,10(2):15-20
    [122]周祖飞,蒋伟川,刘维屏.水溶液中a-萘乙酸的光降解研究[J].环境科学,1997,18(1):35-38.
    [123]黄国兰,庄源益,戴树桂.水环境中苯并(a)芘光致转化的实验研究[J].环境化学,1987,6(3):45-49
    [124]杨曦,王晓书,朱春媚等.磺酰脲类除草剂在环境中的光降解研究-水溶液中的光降解动力学[J].环境科学,1998,19(6):29-32
    [125] Mill T., Mabey W. R, Lanetal B. Y. Photolysis of polycyclic aromatichydro-carbons in water [J]. Chemosphere,1981,10(11/12):1281-1290
    [126]陈朝晖,戴广茂.水环境因素对六六六光化学降解的影响[J].环境化学,1984,3(2):11-18
    [127]肖邦定,胡凯,刘剑彤等.非离子表面活性剂在人工光源辐照下的光催化降解[J].中国环境科学,1999,19(1):9-13
    [128]吴敦虎,任淑芬,盛晓梅.紫外光照射水中腐殖酸分解的研究[J].环境化学,1985,4(3):56-60
    [129] Zhu H,Zhang MP,Xia Z-F. Titanium dioxide mediated photocatalyticdegradation of monocrotophos [J]. Water Res.,1995,29(12):2681-2688
    [130]李善奇.甲草胺的光化学降解研究[D]:硕士学位论文,合肥:安徽农业大学,2003
    [131]王丹军.氯苯嘧啶醇的光化学降解研究[D]:硕士学位论文,合肥:安徽农业大学,2004
    [132]郁志勇,王文华,彭安.紫外光作用下氯酚的矿化程度比较[J].环境化学,1998,17(5):490-493
    [133] Doong R, Chang WH. Photoassisted iron compound catalytic degradation oforganophorous presticides with hrdrogen peraxide[J]. Chemosphere,1998,37(13):2563-2572
    [134]孙晓静.海水中氨基甲酸酯类农药的光降解研究[D]:硕士学位论文,青岛:中国海洋大学,2005
    [135]占润.TiO2光催化降解有机物的动力学及盐效应[D]:硕士学位论文,青岛:青岛海洋大学,1994
    [136]杨桂朋,高先池,许高君等.海水中二苯并噻吩的光化学氧化动力学研究[J].青岛海洋大学学报,1999,29(3):500-506
    [137]欧晓霞.腐殖酸及其不同级分和铁的络合物对阿特拉津光降解的影响
    [D]:博士学位论文.大连:大连理工大学,2008.
    [138] Zhan M, Yang X, Xian Q, Kong L. Photosensitized degradation of bisphenolA involving reactive oxygen species in the presence of humic substances [J].Chemosphere,2006,63(3):378–386
    [139] Vialaton D, Richard C. Phototransformation of aromatic pollutants in solarlight: Photolysis versus photosensitized reactions under natural water conditions[J]. Aquatic Sciences-Research Across Boundaries,2002,64(2):207-21
    [140]韩书平.水中NO2-/NO3-对壬基酚的间接光解作用[D]:硕士学位论文.大连:大连理工大学,2009.
    [141] Zafiriou O C. Marine organic photochemistry previewed [J]. MarineChemistry,1977,5(4–6):497–522
    [142] Zepp RG, Wolfe NL, Baughman GL, Hollis RC. Singlet oxygen in naturalwaters [J]. Nature,1977,267:421–423
    [143] Gorman A. Rodgers A, M. A. J. Singlet molecular oxygen [J]. Chem. Soc.Rev.,1981,10,205-231
    [144] Zika RG. Photochemical generation and decay of hydrogen peroxide inseawater [J], Abstract No.0232. Trans. Am. Geophys. Union,1980,61:1010
    [145] Cooper WJ, Zika, RG,. Photochemical formation of hydrogen peroxide insurface and ground waters exposed to sunlight [J]. Science,1983,220:711-712
    [146] Draper WM, Crosby DG; The photochemical generation of hydrogenperoxide in natural waters. Arch. Environ [J]. Contam. Toxicol.,1983,12:121–126
    [147] Esplugas S., Gímenez J., Contreras S., Pascual E., Rodríguez M..Comparison of different advanced oxidation process for phenol degradation[J].Water Res.,2002,36:1034–1042
    [148] Burrows H D, Canle M, Santaballa J A, et al. Reaction pathways andmechanism of photodegradation of pesticides [J]. Journal of Photochemistry andPhotobiology B: Biology,2002,67(2):71-108
    [149] Zepp, R.G., Schlotzhauer, P. F., Sink,R.M. Photosensitized transformationsinvolving electrionic energy transfer in natural waters: Role of humic substances[J]. Environmental Science and Teclmology,1985,19(l):74-81.
    [150] Zepp RG, Braun AM, Hoigne J. Photoproduction of hydrated electronsfrom natural organic solutes in aquatic environments [J]. Environmental scienceand technology.1987,21:485-490
    [151] Kohtani S, Koshiko M, Kudo A, Tokumura K. Photodegradation of4-alkylphenols using BiVO4photocatalyst under irradiation with visible lightfrom a solar simulator [J]. Applied Catalysis B: Environmental,2003,46(3):573–586
    [152] Yamazaki S, Mori T, Katou T, Sugihara M. Photocatalytic degradation of4-tert-octylphenol in water and the effect of peroxydisulfate as additives [J].Journal of Photochemistry and Photobiology A: Chemistry,2008,199(2–3):330–335
    [153] Chang X, J Huang, Cheng C, Sha W. Photocatalytic decomposition of4-t-octylphenol over NaBiO3driven by visible light: Catalytic kinetics andcorrosion products characterization [J]. Journal of Hazardous Materials,2010,173(1–3):765–772
    [154] Mazellier P., Leverd J. Transformation of4-tertoctylphenol by UV radiationand an H2O2/UV process in aqueous solution [J], Photochem Photobiol. Sci.,2003,2:946–953
    [155] B dzka D, Gryglik D, Olak M, G bicki JL. Degradation of n-butylparabenand4-tert-octylphenol in H2O2/UV system [J]. Radiation Physics and Chemistry,2010,79(4):409–416
    [156] Brand N., Mailhot G., Sarakha M., Bolte M. Primary mechanism in thedegradation of4-octylphenol photoinduced by Fe(III) in water-acetonitrilesolution [J]. Photochem. Photobiol., A,2000,135:221–228
    [157] Ahel, M, Scully, Jr., Hoigné, J., and Giger, W.,. Photochemical degradation ofnonylphenol and nonylphenol polyethoxylates in nature waters [J]. Chemosphere,1994,28(7):1361-1368.
    [158] B dzka D, Gryglik D, Miller JS. Photolytic degradation of4-tert-octylphenol in aqueous solution [J]. Environment Protection Engineering,2009,35(3):235-247
    [159] Popa DM, Neam u M, Frimmel FH. Photodegradation of octylphenol usingsimulated sunlight radiation [J]. Acta Universitatis Cibiniensis Series E: FoodTechnology,2007,11(2):3-18
    [160]张昌辉,谢瑜.烷基酚聚氧乙烯醚的安全性问题[J].日用化学品科学,2007,30(2):20-25
    [161] Daneshvar, N., Behnajady, M.A., and Zorriyeh Asghar, Y,. Photooxidativedegradation of4-nitrophenol (4-NP) in UV/H2O2process: Influence ofoperational parameters and reaction mechanism [J]. Journal of HazardousMaterials B,2007,139:275-279.
    [162]范晓明.溶解有机物的光降解及其对Cu2+、Pb2+结合能力的影响[D]:硕士学位论文.青岛:中国海洋大学,2009.
    [163] Mazellier, P., Sarakha, M., Rossi,A., Bolte, M,. The aqueous photochemistryof2,6-dimethylphenol. Evidence for the fragmentation of the αC-C bond [J].Journal of Photochemistry and Photobiology A: Chemistry,1998,115:117-121.
    [164] Fasnacht, M.P., Blough, N.V. Mechanisms of the aqueous photodegradationof polycyclic aromatic hydrocarbons [J]. Environmental science and technology,2003,37:5767-5772.
    [165] Behnajady, M.A., Modirshahla, N., and Hamzavi, R.,. Kinetic study onphotocatalytic degradation of C.I. Acid Yellow23by ZnO photocatalyst [J].Journal of Hazardous Materoals.2006,133(1-3):226-232.
    [166] Tercero, E.L.A., Neamtu, M., and Frimmel, F.H. The effect of nitrate, Fe(Ⅲ) and bicarbonate on the degradation of bisphenol A by simulated solar UV-irradiation [J]. Water Research,2007,41(19):4479-4487.
    [167] Aplin R, Feitz AJ, Waite TD. Effect of Fe (III)-ligand properties oneffectiveness of modified photo-Fenton processes[J]. Water Science andTechnology,2001,44(5):23-30
    [168] Witter AE, Hutchins DA, Butler A, Luther GW. Determination of conditionalstability constants and kinetic constants for strong model Fe-binding ligands inseawater [J]. Marine Chemistry,2000,69(1–2):1–17
    [169] Brand, N., Mailhot, G., and Bolte, M. Degradation photoinduced by Fe (Ⅲ):method of alkylphenol ethoxylates removal in water [J]. Environmental Scienceand Technology,1998,32(18):2715-2720.
    [170] Vione D, Falletti G, Maurino V, Minero C. Sources and Sinks of HydroxylRadicals upon Irradiation of Natural Water Samples [J]. Environ. Sci. Technol.,2006,40(12):3775–3781
    [171] Liu, H., Zhao, H.M., Quan, X., Zhang, Y.B., and Chen, S. Formation ofchlorinated intermediate from bisphenol A in surface saline water under simulatedsolar light irradiation [J]. Environmental Science and Technology,2009,43(20):7712-7717.
    [172] Zhou, D., Wu, F., Deng, N.S., and Xiang, W. Photooxidation of bisphenol A(BPA) in water in the presence of ferric and carboxylate salts [J]. Water Research,2004,38(19):4107-4116.
    [173] Mack J., Bolton J.R. Photochemistry of motrite and nitrate in aqueoussolution: a review [J]. Photochem. Photobiol.A: Chem.,1999,128:1-13
    [174] Avery GB, Cooper WJ, Kieber RJ, Willey JD. Hydrogen peroxide at theBermuda Atlantic Time Series Station: Temporal variability of seawater hydrogenperoxide [J]. Marine Chemistry,2005,97(3–4):236–244
    [175] Mansour M., Feicht, E. A. Transformation of chemical contaminants bybiotic and abiotic processes in water and soil [J]. Chemosphere,1994,28(2):323–332
    [176]朱承驻,秦艳,周元祥,董文博,侯惠奇.266nm光照下水溶液中氯苯与H2O2的反应机理研究[J].化学学报,2007,65(5):451-458
    [177] Vione D., Maurino V., Minero C. et al. Nitration and photonitration ofnaphthalene in aqueous systems [J], Environ. Sci. Technol.,2005,39(4):1101–1110
    [178] Suzuki J, Sato T, Ito A, Suzuki S. Mutagen formation and nitration byexposure of phenylphenols to sunlight in water containing nitrate or nitrite ion [J].Bulletin of Environmental Contamination and Toxicology,1990,45(4):516-522
    [179] Matykiewiczová N., Kurková R, Klánová J., Klán P. J.,Photochemically induced nitration and hydroxylation of organic aromaticcompounds in the presence of nitrate or nitrite in ice [J]. Journal ofPhotochemistry and Photobiology A: Chemistry,2007,187(1):24–32
    [180] Rayne S, Forest K, Friesen KJ. Mechanistic aspects regarding the directaqueous environmental photochemistry of phenol and its simple halogenatedderivatives. A review [J]. Environment International,2009,35(2):425–437
    [181] Moore R. M. A photochemical source of methyl chloride in saline waters [J].Environ. Sci. Technol.2008,42,1933–1937
    [182] Kiwi J., Lopez A., Nadtochenoko V. Mechanism and kinetics of theOH-radical intervention during fenton oxidation in the presence of a significantamount of radical scavenger (Cl)[J]. Environ. Sci. Technol.2000,34,2162–2168
    [183] Kong L, Ferry JL. Effect of Salinity on the Photolysis of Chrysene Adsorbedto a Smectite Clay [J]. Environ. Sci. Technol.,2003,37(21):4894–4900
    [184] Hatz S, Poulsen L, Ogilby PR. Time-resolved Singlet OxygenPhosphorescence Measurements from Photosensitized Experiments in SingleCells: Effects of Oxygen Diffusion and Oxygen Concentration [J].Photochemistry and Photobiology,2008,84(5):1284–1290
    [185] Vione, D., Maurino, V., Minero, C., Pelizzetti, E., Harrison, M.A., Olariu,R.L., and Arsene. C.,. Photochemical reactions in the tropospheric aqueous phaseand on particulate matter [J]. Chemical Society Reviews,2006,35(5):441-453.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700