用户名: 密码: 验证码:
黄芩苷对脓毒症大鼠肾脏的保护作用和机制探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
[目的]
     本研究旨在通过观察黄芩苷(Baicalin)对盲肠结扎和穿孔术(cecal ligation and puncture, CLP)诱导的脓毒症大鼠血清中性粒细胞明胶酶相关载脂蛋白(Neutrophil gelatinase associated lipocalin, NGAL)浓度、血清肌酐浓度,肾组织肿瘤坏死因子α(tumor necrosis factor-α, TNF-α)水平、肾组织核因子κB (nuclear factor-κB, NF-κB)水平,肾组织细胞凋亡率、肾组织内半胱氨酸天冬氨酸蛋白酶-3信使核糖核酸(casepase-3mRNA)相对含量以及肾组织病理变化的影响,探讨黄芩苷对脓毒症大鼠的肾脏保护作用及其可能的机制。
     [方法]
     清洁级雄性Sprague Dawley (SD)大鼠采用盲肠结扎和穿刺术制备大鼠脓毒症模型。实验大鼠随机分为假手术组、模型组、黄芩苷干预组(每组24只)假手术组(Sham组):行剖腹术,术后立即腹腔注射0.9%氯化钠溶液2mL;模型组(CLP组):行盲肠结扎和穿刺术,术后立即腹腔注射0.9%氯化钠溶液2mL;黄芩苷干预组(Baicalin+CLP组):行盲肠结扎穿刺术造模后,黄芩苷按照120mg/kg剂量,用0.9%氯化钠溶液稀释至2mL,行腹腔注射。每组大鼠在CLP术后0h、3h、6h、24h分别采血标本和右肾组织标本。血清NGAL浓度由酶联免疫法(enzyme-linked immuno sorbent, ELISA)测得。血清肌酐浓度由自动生化分析仪测得。肾组织TNF-α和NF-κB水平由免疫组织化学法测得。肾组织细胞凋亡率由原位末端标记法(TdT-mediated dUTP nick end labeling, Tunel)测得。肾组织内相对casepase-3mRNA含量,由实时荧光定量多聚酶链反应法(real-time fluorescent quatitative reverse transcription polymerase chain reaction, FQ RT-PCR)测得。术后24h肾组织标本经HE染色观察病理变化。
     [结果]
     1、血清NGAL和肌酐浓度:CLP组大鼠自术后3h明显升高,分别为171.04±13.35 pg/mL和42.17±3.19umol/L,与Sham组相比(分别为57.93±13.77pg/mL和25.50±2.42μmol/L),CLP组明显高于Sham组,差别有统计学意义,P<0.05;黄芩苷干预组术后3h分别为112.77±17.32 pg/mL和37.83±4.54μmol/L,明显低于CLP组,差异有统计学意义,P<0.05。
     2、大鼠肾组织TNF-α和NF-κB水平:CLP组大鼠术后3h即显著升高,TNF-α和NF-κB免疫组织化学指数(immunohistochemistry index)分别为53460.25±1936.97和30611.14±1682.88,明显高于Sham组(19103.82±1800.99和13752.87±1375.66),差别有统计学意义,P<0.05;黄芩苷干预组术后3h分别为28205.23±774.44和18907.09±1110.95明显低于CLP组,差异有统计学意义,P<0.05。
     3、肾组织细胞凋亡率以及肾组织内相对casepase-3mRNA含量:CLP组大鼠术后3h肾组织细胞凋亡率和肾组织相对caspase-3mRNA含量均明显增高,分别为18.92±1.56%和3.323±0.240,明显高于Sham组(7.06±1.37%和1.310±0.130),差别有统计学意义,P<0.05;黄芩苷干预组术后3h分别为12.00±1.49%和1.900±0.171,明显低于CLP组,差异有统计学意义,P<0.05。
     4、大鼠肾组织病理改变:术后24 h, CLP组大鼠肾脏病理可见部分肾小球系膜基质有所增加,系膜细胞增生,肾组织内大量炎性细胞浸润,部分肾小管细胞肿胀,空泡变性等改变;而黄芩苷+CLP组大鼠在术后24 h肾组织上述病理改变明显减轻。
     [结论]
     脓毒症早期应用黄芩苷对脓毒症大鼠急性肾脏损伤有保护作用。其机制可能与降低脓毒症大鼠肾组织TNF-α和NF-κB水平,减少casepase-3表达,从而减轻炎症反应以及减少脓毒症大鼠肾脏组织细胞凋亡有关。
Objective
     Through observing the change of the serum NGAL and Creatinine concentration, the level of TNF-αand NF-κB in the kidney tissue, the apoptosis ratio and the casepase-3mRNA relative content in the septic rats' kidney tissue and the pathological alterations of the kidney with the treatment of Baicalin, we investigate the protective effects of Baicalin for Septic Rats' Kidneys and the possible mechanism.
     Methods
     Sepsis model was induced by cecal ligation and puncture (CLP) in male Sprague-Dawley (SD) rats. Rats were randomly divided into 3 groups, which were the sham group (n=24), the CLP group(n=24) and the Baicalin treatment group(n=24). We intraperitoneally administered Baicalin at the dose of 120 mg/kg, altogether 2ml liquid to the rats after the operation in the Baicalin group and the rats of the other two groups were treated with 2ml saline. The rats were separately sacrificed at Oh,3h,6h or 24h after the operation (n=6). The sample of blood and the right kidney tissues were harvested at each time point. The serum NGAL concentration was examined by enzyme-linked immuno sorbent (ELISA) assay. The serum Creatinine concentration was examined by auto analyzer. The level of TNF-αand NF-κB in the kidney tissue were examined by immunohistochemistry assay. The apoptosis ratio of the kidney tissues was examined by TdT-mediated dUTP nick end labeling (Tunel) assay. The casepase-3mRNA relative content in the septic rats' kidney was examined by real-time fluorescent quatitative reverse transcription polymerase chain reaction (FQ RT-PCR) assay. The kidney tissue's histological alterations were observed by HE staining.
     Results
     1、The serum concentrations of NGAL and Creatinine:Compared with the sham group, the serum concentrations of NGAL and Creatinine of the CLP group significantly increased at 3h after the operation were 171.04±13.35 pg/mL and 42.17±3.19μmol/L in the CLP group vs.57.93±13.77 pg/mL and 25.50±2.42 miu2 mol/L in the sham group, P<0.05. Compared with the CLP group, the serum concentrations of NGAL and Creatinine of the Baicalin+CLP group significantly decreased at each time point after the operation (the serum concentrations of NGAL and Creatinine at 3h after the operation were 112.77±17.32 pg/mL and 37.83±4.54μmol/L in the Baicalin+CLP group vs.171.04±13.35pg/mL and 42.17±3.19μmol/L in the CLP group, P<0.05).
     2、The level of TNF-αand NF-κB in the kidney tissues:Compared with the sham group, the level of TNF-αand NF-κB in the kidney tissues of the CLP group significantly increased at 3h,6h, and 24h after the operation (the immunohistochemistry index of TNF-αand NF-κB in the kidney tissues at 3h after the operation were 53460.25±1936.97 and 30611.14±1682.88 in the CLP group vs.19103.82±1800.99 and 13752.87±1375.66 in the sham group, P<0.05). Compared with the CLP group, the level of TNF-αand NF-κB in the kidney tissues with the treatment of Baicaline significantly decreased at each time point after the operation (the immunohistochemistry index of TNF-αand NF-κB in the kidney tissues at 3h after the operation were 28205.23±774.44 and 18907.09±1110.95 in the Baicalin+CLP group vs. 53460.25±1936.97 and 30611.14±1682.88 in the CLP group, P<0.05).
     3、The apoptosis ratio and the casepase-3mRNA relative content in the kidney tissues:Compared with the sham group, the apoptosis ratio and the casepase-3mRNA relative content in the kidney tissues of the CLP group significantly increased at 3h,6h, and 24h after the operation (the apoptosis ratio and the casepase-3mRNA relative content in the kidney tissues at 3h after the operation were 18.92±1.56% and 3.323±0.240 in the CLP group vs.7.06±1.37% and 1.310±0.130 in the sham group, P<0.05). Compared with the CLP group, the apoptosis ratio and the casepase-3mRNA relative content in the kidney tissues with the treatment of Baicaline significantly decreased at each time point after the operation (the apoptosis ratio and the casepase-3mRNA relative content in the kidney tissues at 3h after the operation were 12.00±1.49% and 1.900±0.171 in the Baicalin+CLP group vs.18.92±1.56% and 3.323±0.240 in the CLP group, P<0.05).
     4、Histological alterations:Obvious histological alterations were discovered in the kidney tissues at 24h after the operation in the CLP group, characterized by increased mesangial matrix, mesangial cell proliferation partly, inflammatory cell infiltration in tubular area and part of the tubular cell swelling, vacuolar degeneration. Such histological alterations in the Baicalin+CLP group at 24h after the operation were much milder than those in the CLP group.
     Conclusion
     These data revealed that Baicalin has protective effects on the kidney of rats with sepsis. These beneficial effects are partly due to decreasing the levels of TNF-αand NF-κB, the casepase-3 expression and the apoptosis ratio in the kidney tissues. Thus, treatment with Baicalin may be effective in the clinical setting.
引文
[1]Greg S, Martin MD, David M, et al.The Epidemiology of Sepsis in the United States from 1979 through 2000[J]. New England Journal of Medicine,2003,348 (16):1546-1554.
    [2]Vincent JL, Abraham E. The last 100years of sepsis[J]. Am J Respir Crit Care Med,2006,173(3):256-263.
    [3]Zanon F, Caovilla JJ, Michel RS, et al. Sepsis in the intensive care unit:etiologies, prognostic factors and mortality[J]. Rev Bras Ter Intensiva,2008,20(2):128-134.
    [4]Engel C, Brunkhorst FM, Bone HG, et al. Epidemiology of sepsis in Germany:results from a national prospective multicenter study[J]. Intensive Care Med,2007,33(4):606-618.
    [5]Sutton TA, Mang HE, Campos SB, et al. Injury of the renal micro vascular endothelium alters barrier function after ischemia[J]. Am J Physiol Renal Physiol,2003,285(2):F191-F198.
    [6]Bellomo R. Septic acute kidney injury:new concepts[J]. Nephron. Experimental Nephrology,2008,109(4):95-100.
    [7]Webb S, Dobb G. ARF, ATN or AKI? It's now acute kidney injury[J]. Anaesthesia and Intensive Care,2007,35(6):843-844.
    [8]Mehta RL, Kellum JA, Shah SV, et al. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury [J]. Critical Care,2007,11(2):R31.
    [9]Bellomo R, Ronco C, Kellum JA, et al. Acute renal failure-definition, outcome measures, animal models, fluid therapy and information technology needs:the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group[J]. Crit Care, 2004,8(4):R204-212.
    [10]Lameire N, Van Biesen W, Vanholder R. Acute renal failure [J]. Lancet, 2005,365(9457):417-430.
    [11]Trof RJ, Di Maggio F, Leemreis J, et al. Biomarkers of acute renal injury and renal failure. Shock,2006,26(3):245-253.
    [12]Langenberg C, Bagshaw SM, May CN, et al. The histopathology of septic acute kidney injury:a systematic review [J]. Crit Care,2008,12(2): R38.
    [13]Derek S. Wheeler, Prasad Devarajan, et al. Serum Neutrophil Gelatinase-associated Lipocalin (NGAL) as a Marker of Acute Kidney Injury in Critically I11 Children with Septic Shock[J]. Crit Care Med, 2008,36(4):1297-1303.
    [14]Bellomo R, Ronco C, Kellum JA, et al. Acute renal failure definition, outcome measures, animal models, fluid therapy and information technology needs:the Second International Consensus Conference of the Acute Dialysis Quality Initiative(ADQI) Group[J]. Crit Care,2004,8(4):R204-211.
    [15]Di Grande, Giuffrida C, Carpinteri G, et al. Neutrophil gelatinase-associated lipocalin:a novel biomarker for the early diagnosis of acute kidney injury in the energency department [J]. Eur Rev Med Pharmacol Sci,2009,13(3):197-200.
    [16]Wan L, Bagshaw SM, Langenberg C, et al. Pathophysiology of septic acute kidney injury:What do we really know? Crit Care Med,2008, 36 (4):S198-203.
    [17]Lai MY, Hsiu SL, Tsai SY, et al. Comparison of metabolic pharmacokinetics of Baicalin and baicalein in rats[J]. J Pharmacol,2003,55(2):205.
    [18]吕健,吴晓冬.黄芩苷对异丙肾上腺素诱导大鼠心肌缺血的治疗作用[J].中国临床药理学与治疗学,2005,10(9):992-995.
    [19]BY Kang, SW Chung, SH Kim, et al. Involvement of nuclear factor kappa B in the inhibition of interleukin 12 production from mouse macrophages by Baicalin, a flavonoid in Scutellaria baicalensis[J]. Planta Med,2003,69(8):687.
    [20]俞燕,杨于嘉,毛定安,等.黄芩甙对大鼠感染性脑水肿NF K B活性的影响[J].中国当代儿科杂志,2000,2(6):386.
    [21]Jia YJ, Yang YJ, Song JH, et al. Role of NF-κB in baicalininduced differentiation of rat bone marrow stromal cells into neurons[J]. Chin J Contemp Pediatr,2003,5(1):1-4
    [22]刘萍,王菊英,许复郁,等.黄芩苷对局灶性脑缺血再灌注损伤大鼠海马神经细胞凋亡的影响[J].中国药理学与毒理学杂志,2005,19(6):412-418.
    [23]刘萍,李倩,刘兆平,等.黄芩苷对脑缺血再灌注伤大鼠神经细胞凋亡及相关 基因表达的影响[J].国新药与临床杂志,2007,26(2):109-112.
    [24]汪丽娅,张占军,王忠,等.黄芩苷对脑缺血大鼠的治疗作用及对caspase-3的影响[J].天津中医药,2006,23(2):143-145.
    [25]欧阳昌汉,吴基良.黄芩苷对大鼠短暂性脑缺血再灌注继发性损伤的保护作用[J].中国药理学与毒理学杂志,2006,20(4):208-214.
    [26]Clark RS, Kochanek PM, Watkins SC, et al. Caspase-3 mediated neuronal death after traumatic brain injury in rats[J]. Journal of Neurochemistry,2000,74(2):740-753.
    [27]Cursio R, Gugenheim J, Ricci JE, et al. A caspase inhibitor fuLly protects rats against lethal normothermic liver ischemia by inhibition of liver apoptosis[J]. The FASEB Journal,1999,13(2): 253-261.
    [28]Daemen MA, de Vries B, van't Veer C, et al. Apoptosis and chemokine induction after renal ischemia-reperfusion[J]. Transplantation, 2001,71(7):1007-1011.
    [29]Daemen MA, van't Veer C, Denecker G, et al. Inhibition of apoptosis induced by ischemia-reperfusion prevents inflammation[J]. J Clin Invest,1999,104 (5):541-549.
    [30]Guo R, Wang Y, Minto AW, et al. Acute renal failure in endotoxemia is dependent on caspase activation[J]. J Am Soc Nephrol,2004,15(12): 3093-3102.
    [31]Wu X, Guo R, Wang Q, Cunningham PN. TNF induces caspase-dependent inflammation in renal endothelial cells through a Rho-and myosin light chain kinase-dependent mechanism. American Journal of Physiology-Renal Physiology,2009,297(2):F316-326.
    [32]Garrido AG, Poli de Figueiredo LF, Rocha e Silva M. Experimental models of sepsis and septic shock:an overview [J]. Acta Cir Bras, 2004,19(2):82-88.
    [33]Sheehan M, Wong HR, Hake PW, et al. Parthenolide improves systemic hemodynamics and decreases tissue leukosequestration in rats with polymicrobial sepsis[J]. Crit Care Med,2003,31(9):2263-2270.
    [34]Liaw WJ, Chen TH, Lai ZZ, et al. Effects of a membrane-permeable radical scavenger, tempol, on intraperitoneal sepsis-induced organ injury in rats [J]. Shock,2005,23(1):88-96.
    [35]Wheeler DS, Lahni PM, Hake PW, et al. The green tea polyphenol epigallocatechin-3-gallate improves systemic hemodynamics and survival in rodent models of polymicrobial sepsis[J]. Shock,2007,28 (3):353-359.
    [36]Russell JA, Singer J, Bernard GR et al. Changing pattern of organ dysfunction in early human sepsis is related co mortality[J]. Crit. CareMed,2000,28(10):3405-3411.
    [37]Angus, DC, Linde-Zwirble WT, Jeffrey L, et al. Epidemiology of severe sepsis in the United States:analysis of incidence, outcome, and associated costs of care [J]. Crit. Care Med,2001,29(7):1303-1310.
    [38]Marcin, OS, Mannino, DM, Eaton, S, et al. The epidemiology of sepsis in the United States from 1979 through 2000[J]. N. Engl J. Med,2003, 348(1):1546-1554.
    [39]Marshall JC. Inflammation, coagulopathy, and the pathogenesis of multiple organ dysfunction syndrome [J]. Crit Care Med,2001,29(Suppl 7):S99-106.
    [40]Tsiotou AG, Sakorafas GH, Anagnostopoulos G, et al. Septic shock: current pathogenetic concepts from a clinical perspective [J]. Med Sci Monit,2005,11(3):RA76-85.
    [41]Riedemann NC, Guo RF, Ward PA. Novel strategies for the treatment of sepsis [J]. Nat Med,2003,9(5):517-524.
    [42]Rittirsch D, Hoesel LM, Ward PA. The disconnect between animal models of sepsis and human sepsis[J]. J Leukoc Biol,2007,81(1):137-143.
    [43]Buras, JA, Holzmann, B, and Sitkovsky, M. Animal models of sepsis: setting the stage[J]. Nat Rep Drug Discov,2005,4(10):854-865.
    [44]Deitch EA. Rodent models of intra-abdominal infection [J]. Shock,2005, 24 (Suppl 1):19-23.
    [45]Dear JW, Kobayashi H, Jo SK, et al. Dendrimer-enhanced MRI as a diagnostic and prognostic biomarker of sepsisinduced acute renal failure in aged mice[J]. Kidney Int,2005,67(6):2159-2167.
    [46]张或,任延波,蒋丽.脓毒症早期大鼠肾脏细胞凋亡及炎症细胞因子的变化.中国危重病急救医学,2006,18(2):89—91
    [47]Chenow GM, Burdick E, Honour M, et al. Acute kidney injury mortality, length of stay, and costs in hospitalized patients. J Am Soc Nephrol, 2005,16(11):3365-3370
    [48]Pelte CH, Chawla LS. Novel therapeutic targets for prevention and therapy of sepsis associated acute kidney injury[J]. Curr Drug Targets,2009,10 (12):1205-1211.
    [49]Opal SM, Scannon PJ, Vincent JL, et al. Relationship between plasma levels of lipopolysaccharide(LPS) and LPS-binding protein in patients with severe sepsis and septic shock [J]. J Infect Dis,1999, 180(5):1584-1589.
    [50]Marshall JC. Lipopolysaccharide:An endotoxin or an exogenous hormone?[J]. Clin Infect Dis,2005,41 (Suppl 7):S470-480.
    [51]de Haas CJ, van Leeuwen HJ, Verhoef J, et al. Analysis of lipopolysaccharide (LPS)-binding characteristics of serum components using gel filtration of FITC-labeled LPS[J]. J Immunol Methods,2000,242(1-2):79-89.
    [52]Triantafilou M, Triantafilou, K. Lipopolysaccharide recognition: CD14, TLRs and the LPS-activation cluster[J]. Trends Immunol,2002, 23 (6):301-304.
    [53]Chowdhury P, Sacks SH, Sheerin NS. Toll-like receptors TLR2 and TLR4 initiate the innate immune response of the renal tubular epithelium to bacterial products[J]. Clin Exp Immunol,2006,145(2):346-356.
    [54]Lopez-Bojorquez LN, Dehesa AZ, Reyes-Teran G. Molecular mechanisms involved in the pathogenesis of septic shock [J]. Arch Med Res,2004, 35(6):465-479.
    [55]Dear JW, Yasuda H, Hu X, et al. Sepsis-induced organ failure is mediated by different pathways in the kidney and liver:Acute renal failure is dependent on MyD88 but not renal cell apoptosis[j]. Kidney Int,2006,69(5):832-836.
    [56]Cohen J. The immunopathogenesis of sepsis [J]. Nature,2002,420(6817): 885-891.
    [57]BAUD L, OUDINET JP, BENS M, et al. Production of tumor necrosis factor by rat mesangial cells in response to bacterial lipopolysaccharide [J]. Kidney Int,1989,35(5):1111-1118.
    [58]Albert S. Baldwin, Jr. The NF κ B and I κ B protenins:new discoveries and insights[J]. Annu Rev immunol,1996,14(1):649-681.
    [59]Gaestel M, Kotlyarov A, Kracht M. Targeting innate immunity protein kinase signalling in inflammation[J]. Nat Rev Drug Discov,2009,8 (6):480-499.
    [60]Vallabhapurapu S, Karin M. Regulation and function of NF-kappaB transcription factors in the immune system[J]. Annu Rev Immunol,2009, 27 (1):693-733.
    [61]Hocherl K, Schmidt C, Kurt B, et al. Inhibition of NF-kappaB ameliorates sepsis-induced downregulation of aquaporin-2/V2 receptor expression and acute renal failure in vivo [J]. Am J Physiol Renal Physiol,2010,298(1):F196-204.
    [62]Ichimura T, Asseldonk EJ, Humphreys BD, et al. Kidney injury molecule-1 is a phosphatidylserine receptor that confers a phagocytic phenotype on epithelial cells [J]. Clinical Investigation,2008, 118(5):1657-1668.
    [63]张或,任延波,蒋丽.脓毒症早期大鼠肾脏细胞凋亡及炎症细胞因子的变化[J].中国危重病急救医学,2006,18(2):89—91.
    [64]Saikumar P, Venkatachalam MA. Role of apoptosis in hypoxic/ischemic damage in the kidney[J]. Semin Nephrol,2003,23(6):512-521.
    [65]Kaushal GP. BasnARlan AG, Shah SV. Apoptotic pathways in ischemic acute renal failure[J]. Kidney Int,2004,66(2):500-506.
    [66]Clark RS, Kochanek PM, Watkins SC, et al. Caspase-3 mediated neuronal death after traumatic brain injury in rats[J]. J Neurochem,2000, 74(2):740-753.
    [67]Cursio R, Gugenheim J, Ricci JE, et al. A caspase inhibitor fully protects rats against lethal normothermic liver ischemia by inhibition of liver apoptosis [J]. FASEB J,1999,13(2):253-261.
    [68]Daemen MA, van't Veer C, Denecker G, et al. Inhibition of apoptosis induced by ischemia-reperfusion prevents inflammation[J]. J Clin Invest,1999,104(5):541-549.
    [69]Ghosh S, May MJ, Kopp EB. NF-kappaB and Rel proteins:evolutionarily conserved mediators of immune responses [J]. Annu Rev Immunol,1998, 16(1):225-260.
    [70]Schrier RW, Wang W. Acute renal failure and sepsis[J]. N Engl J Med, 2004,351(22):2347-2349.
    [1]Kent Doi, Asada Leelahavanichkul, Peter Yuen, et al. Animal models of sepsis and sepsis-induced kidney injury[J]. Journal of Clinical Investigation,2009,119(10):2868-1879.
    [2]Bellomo R. Septic acute kidney injury:new concepts[J]. Nephron. Experimental Nephrology,2008,109(4):95-100.
    [3]张或,任延波,蒋丽.脓毒症早期大鼠肾脏细胞凋亡及炎症细胞因子的变化[J].中国危重病急救医学,2006,18(2):89-91
    [4]Chenow GM, Burdick E, Honour M, et al. Acute kidney injury mortality, length of stay, and costs in hospitalized patients [J]. J Am Soc Nephrol, 2005,16(11):3365-3370
    [5]Pelte CH, Chawla LS. Novel therapeutic targets for prevention and therapy of sepsis associated acute kidney injury[J]. Curr Drug Targets,2009,10(12):1205-1211.
    [6]Wan L, Bagshaw SM, Langenberg C, et al. Pathophysiology of septic acute kidney injury:What do we really know?[J] Crit Care Med,2008, 36(4).-S198-203.
    [7]Opal SM, Scannon PJ, Vincent JL, et al. Relationship between plasma levels of lipopolysaccharide(LPS) and LPS-binding protein in patients with severe sepsis and septic shock [J]. J Infect Dis,1999, 180(5):1584-1589.
    [8]Marshall JC. Lipopolysaccharide:An end toxin or an exogenous hormone?[J]. Clin Infect Dis,2005,41(Supplement 7):S470-480.
    [9]de Haas CJ, van Leeuwen HJ, Verhoef J, et al. Analysis of lipopolysaccharide (LPS)-binding characteristics of serum components using gel filtration of FITC-labeled LPS[J]. J Immunol Methods,2000,242(1-2):79-89.
    [10]Triantafilou M, Triantafilou, K. Lipopolysaccharide recognition: CD14,TLRs and the LPS-activation cluster [J]. Trends Immunol,2002,23 (6):301-304.
    [11]Chowdhury P, Sacks SH, Sheerin NS. Toll-like receptors TLR2 and TLR4 initiate the innate immune response of the renal tubular epithelium to bacterial products[J]. Clin Exp Immunol,2006,145(2):346-356.
    [12]L6pez-Bojorquez LN, Dehesa AZ, Reyes-Teran G. Molecular mechanisms involved in the pathogenesis of septic shock[J]. Arch Med Res,2004, 35(6):465-479.
    [13]Dear JW, Yasuda H, Hu X, et al. Sepsis-induced organ failure is mediated by different pathways in the kidney and liver:Acute renal failure is dependent on MyD88 but not renal cell apoptosis[J]. Kidney Int,2006,69(5):832-836.
    [14]Cohen J. The immunopathogenesis of sepsis [J]. Nature,2002,420(6817): 885-891.
    [15]BAUD L, OUDINET JP, BENS M, et al. Production of tumor necrosis factor by rat mesangial cells in response to bacterial lipopolysaccharide [J]. Kidney Int,1989,35(5):1111-1118.
    [16]Ortiz A, Egido J. Is there a role for specific anti-TNF strategies in glomerular diseases?[J]. Nephrology Dialysis Transplantation, 1995,10(3):309-311.
    [17]Ernandez T, Mayadas TN. Immunoregulatory role of TNF-α in inflammatory kidney disease[J]. Kidney International,2009,76(3): 262-276.
    [18]Gresser I, Woodrow D, Moss J. Toxic effects of recombinant tumor necrosis factor in suckling mice:comparisons with interferon α/β American Journal of Pathology[J]. PMC free article,1987, 128(1):13-18.
    [19]Ortiz A, Lorz C, Gonzalez-Cuadrado S, et al. Cytokines and Fas regulate apoptosis in murine renal interstitial fibroblasts[J]. Journal of the American Society of Nephrology,1997,8 (12):1845-1854.
    [20]Misseri R, Meldrum DR, Dinarello CA, et al. TNF-α mediates obstruction-induced renal tubular cell apoptosis and proapoptotic signaling[J]. American Journal of Physiology,2005,288(2): F406-411.
    [21]Donnahoo KK, Shames BD, Harken AH, et al. The role of tumor necrosis factor in renal ischemia-reperfusion injury[J]. Journal of Urology, 1999,162(1):196-203.
    [22]Navarro JF, Mora-Fernandez C. The role of TNF-α in diabetic nephropathy:pathogenic and therapeutic implications[J]. Cytokine and Growth Factor Reviews,2006,17(6):441-450.
    [23]Khan SB, Cook HT, Bhangal G, et al. Antibody blockade of TNF-α reduces inflammation and scarring in experimental crescentic glomerulonephritis[J]. Kidney International,2005,67(5):1812-1820.
    [24]Egido J, Gomez-Chiarri M, Ortiz A, et al. Role of tumor necrosis factor-α in the pathogenesis of glomerular diseases[J]. Kidney International, Supplement,1993, (39):59-64.
    [25]Ramesh G, Brian Reeves W. TNF-α mediates chemokine and cytokine expression and renal injury in cisplatin nephrotoxicity[J]. The Journal of Clinical Investigation,2002,110(6):835-842.
    [26]Daemen MARC, van de Ven MWCM, Heineman E, et al. Involvement of endogenous interleukin-10 and tumor necrosis factor-α in renal ischemia-reperfusion injury[J]. Transplantation,1999,67(6): 792-800.
    [27]Al-Lamki RS, Wang J, Vandenabeele P, et al. TNFR1- and TNFR2-mediated signaling pathways in human kidney are cell type-specific and differentially contribute to renal injury[J]. The FASEB Journal, 2005,19(12):1637-645.
    [28]Tsuruya K, Ninomiya T, Tokumoto M, et al. Direct involvement of the receptor-mediated apoptotic pathways in cisplatin-induced renal tubular cell death[J]. Kidney International,2003,63(1):72-82.
    [29]Ramesh G, Reeves WB. TNFR2-mediated apoptosis and necrosis in cisplatin-induced acute renal failure[J]. American Journal of Physiology,2003,285(4):F610-618.
    [30]Guo G, Morrissey J, McCracken R, et al. Role of TNFR1 and TNFR2 receptors in tubulointerstitial fibrosis of obstructive nephropathy[J]. American Journal of Physiology,1999,277(5): F766-F772.
    [31]Hayden MS, Ghosh S. Signaling to NF-kappaB[J]. Genes Dev,2004,18: 2195-2224.
    [32]Wu X, Guo R, Wang Q, Cunningham PN. TNF induces caspase-dependent inflammation in renal endothelial cells through a Rho-and myosin light chain kinase-dependent mechanism[J]. American Journal of Physiology-Renal Physiology,2009,297(2):F316-326.
    [33]Gando S. Disseminated intravascular coagulation in trauma patients[J]. Semin Thromb Hemost,2001,27(6):512-521.
    [34]Saikumar P, Venkatachalam MA. Role of apoptosis in hypoxic/ischemic damage in the kidney[J]. Semin Nephrol,2003,23(6):512-521
    [35]Hubert Hug:Apoptose:Die Selbstvernichtung der Zelle als Uberlebensschutz[J]. Biologie in unserer Zeit,2000,30(3),128-135.
    [36]Stefan Grimm:Die Apoptose:Programmierter Zelltod. Chemie in unserer Zeit,2003,37(3),172-178.
    [37]Fritz Hoffeler:Die Maschinerie der Apoptose:Chronik eines angek Undigten Todes. Biologie in unserer Zeit,2004,34(1),16-23.
    [38]Rongqing Guo, Ying Wang, Andrew W, et al. Acute Renal Failure in Endotoxemia is Dependent on Caspase Activation [J]. J Am Soc Nephrol, 2004,15(12):3093-3102
    [39]Titheradge MA. Nitric oxide in septic shock [J]. Biochim Biophys Acta, 1999,1411(2-3):437-455.
    [40]Schrier RW, Wang W. Acute renal failure and sepsis[J]. N Engl J Med, 2004,351 (22):159-169.
    [41]Knotek M, Rogachev B, Wang W, Ecder T, Melnikov V, Gengaro PE, et al. Endotoxemic renal failure in mice:Role of tumor necrosis factor independent of inducible nitric oxide synthase[J]. Kidney Int,2001, 59(6):2243-2249.
    [42]Chawla LS, Seneff MG, Nelson DR, et al. Elevated plasma concentrations of IL-6 and elevated APACHE Ⅱ score predict acute kidney injury in patients with severe sepsis[J]. Clin J Am Soc Nephrol,2007, 2(1):22-30.
    [43]Aksoy Y, Yapanoglu T, Aksou H, et al. The effect of dehydro-epiandrosterone on renal ischemia-reperfusion-induccd oxidative stress in rebbits[J]. Urol Res,2004,32(2):193-196.
    [44]莉华,邬丽莎,赵春玲,兔肾缺血再灌注损伤时TNF-α、IL-6和bFGF的变化及当归的影响.中国病理生理杂志,2002,18(9):1119-1121

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700