用户名: 密码: 验证码:
1.55μm激光线性调频扫描成像的仿真与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光雷达是目前解决高精度感知周围环境三维图像信息最有效的技术手段之一。激光雷达作为一种有源深度信息传感器,是传统雷达技术与现代激光技术相结合的产物。它具有一系列独特的优点:具有极高的角分辨率、极高的距离分辨率和极高的速度分辨率,测速范围广,能获得目标的多种图像,抗干扰能力强等。本论文采用线性调频技术获取目标距离信息,同时利用X-Y二维检流计式扫描振镜得到目标的二维平面信息,最终结合这两种技术获取目标的三维图像。LFMCW技术由于具有大的时宽带宽积,既能获得高的距离分辨率,又能获得远作用距离和高的速度分辨率,可解决普通雷达存在的远作用距离和高距离分辨率之间的矛盾。本文主要研究线性调频信号的差拍-傅里叶变换测距测速算法,并通过仿真和实验验证该算法的可行性。
     首先设计了1.55μm LFMCW扫描成像激光雷达的系统结构,分析了线性调频信号的时域及频域特性,对线性调频发射信号及目标回波信号进行了软件仿真,并讨论了信号的时宽带宽与激光雷达作用距离和距离分辨率及速度分辨率之间的关系。
     其次介绍了线性调频信号的脉冲压缩原理,并利用MATLAB软件仿真了目标回波信号的正交解调及匹配滤波的过程,详细介绍了通过MATLAB软件设计模拟滤波器的方法,并探讨了加窗技术对脉冲压缩信号的影响。以对称三角波信号为例,研究了线性调频信号差拍-傅里叶变换测距测速算法,对差拍时域信号进行了详细的分析,最后对不同距离、速度的目标进行了仿真实验,得出结论:对称三角波线性调频信号能够很好的解决目标距离速度耦合问题。
     最后在实验方面进行了线性调频测距实验,研究了差拍信号频率与测量距离、信号调制带宽以及调制周期之间的关系。在分别改变调制周期及调制带宽的情况下进行了4组测量实验,通过示波器观察拍频信号,分析了两种实验方案的实验结果,讨论了实验值与理论值之间存在偏差的原因,验证了线性调频信号差拍-傅里叶变换测距算法的可行性。
Laser radar is one of the most effective technologies to process high precision information of 3D image. As an active depth information sensor, laser radar is combined by traditional radar and modern laser techniques. It has a series of special advantages, high angle resolution, high range resolution and high speed resolution, widely limits of speed measurement, muti-objective imaging, strong capability of anti-jamming, etc. In this paper the information of distance is obtained by LFM technology, at the same time the two-dimension plan information of the target is obtained by galvanometric scanner, then the three-dimension information is obtained by these two technologies. The technology of LFMCW has large product of timewidth and bandwidth, as a result high range resolution and high speed resolution in remote can be obtained. So the conflict between distance and range resolution in common radar is solved. In this paper the research is concentrated on speed and distance measurement heterodyning-FFT algorithm of LFM signal. And the feasibility is confirmed by simulation and experiment.
     Firstly, the structure of system of 1.55μm LFMCW laser radar is devised. At the same time, the properties of time domain and frequency domain of LFM signal is analyzed, then transmitting signal and target echo signal of LFM are simulated by soft-ware, and the relationship of timewidth, bandwidth of signal and the measured distance, range resolution and speed resolution are discussed.
     Secondly, the pulse compression principle of FLM signal is analyzed. And the processes of quadrature demodulation and matched filtering to the echo signal are simulated by MATLAB. The method of designing analog filter by MATLAB is introduced, and the effect by window technique to compressed pulse signal is analyzed. Take symmetrical triangular wave signal as a example, speed and distance measurement heterodyning-FFT algorithm of LFM signal is introduced, the heterodyning signal in time dominate is researched, then the experiment in different conditions which including different speed and different distance is done. At last the conclusion is got that symmetrical triangular wave can couple the speed and distance well.
     In the LFMCW distance measurement experiment, the relation of frequency of heterodyning signal between distance, bandwidth of modulating signal and modulation period is discussed. In condition of different bandwidths of modulating signal and different modulation period, we get four sets of data, and the heterodyning signal can be seen by oscillograph.The reasons of the deviation between theory and practical results are researched, the correctness of speed and distance measurement heterodyning-FFT algorithm of LFM signal is proved.
引文
[1]韩绍坤.激光成像雷达技术及发展趋势[J].光学技术, 2006, 32:494-496.
    [2] Hassaun J B. NIST advocates development of next-generation LADAR [J]. Laser Focus World, 2004, 40(9): 13-15.
    [3] Gregory R Osche, Donald S Young. Imaging laser radar in the near far infrared [J]. Proceeding of IEEE, 1996, 84(2): 103-124.
    [4]宦克为,郑峰,石晓光等.基于调频连续波原理的三维成像激光雷达系统[J].长春理工大学学报, 2008,31(4): 61-64.
    [5] HarneyR C. Military applications of infrared coherent radar[J]. SPIE, 1981, 3000: 1-1.
    [6]于苗苗.激光成像雷达目标探测技术研究[D].长春:长春理工大学学文论文, 2009: 24-25.
    [7] Monson T C, Grantham J W, Chlidress S W. Characterization of scannerless ladar [J]. Proceedings of SPIE, 1999, 3707: 409-420.
    [8] Marino R, Stephens T, Hatch R, et al A Compact 3D Imaging Laser Radar System Using Geiger-mode APD Arrays: System and Measurements[J]. Proc. SPIE, 2003,5086: 1-15.
    [9] Brian F A, Andrew H L, Douglas JY, et al. Geiger-Mode Avalanche Photodiodes for Three-Dimensional Imaging[J]. Lincoln Laboratory Journa, 2002, 13(2): 335-350.
    [10] Jhnson S, Gatt P. Analysis of Geiger-Mode APD Laser Radars[J]. Proc.SPIE, 2003, 5086: 359-368.
    [11] Jack M, Asbrock J, Anderson C, et al. Advances in Linear and Area HgCdTe APD Arrays for Eyesafe LADAR Sensors[J]. Proc. SPIE, 2001, 4454: 198-211.
    [12] AlbotaM A, Aull B F. Three-dimensional Imaging Laser Radars with Geiger-mode Avalanche Photodiode Arrays [J]. Lincoln Laboratory Journal 2002, 3(2):129-205.
    [13] Knight F K. Three-dimensional Imaging Using a Single Laser Pulse [J]. SPIE 1989, 1103: 174-189.
    [14] Douglas W R, Hand-held Imaging Laser Radar [J], SPIE 1997, 3065: 30-40.
    [15] Anil K. Optics for Beam Scanning [J].Lasers &Optronics, October, 1993, 19:211-217
    [16] Stann B, William C R, Zoltan G S. Scannerless Ladar Architecture Employing Focal Plane Detector Arrays and FM-CW Ranging Theory[J]. U.S.Pat. 1999, 5: 851-877.
    [17] Stann B, Ahmed A, William R, Robinson D. Line imaging ladar using a laser diode transmitter and FM/cw radar principle for submunition applications[J]. Proc. SPIE, 2000, 4035: 277-786.
    [18]马超杰,吴丹,新体制军用激光雷达成像技术[J].航空兵器, 2007, 4: 25~29.
    [19]李琦,迟欣,王骐.基于盖革模式APD阵列的单脉冲3D激光雷达原理和技术[J].激光与红外, 2006, 36(12): 1116~1119.
    [20] Maurice J H, Michael D J, James F A, et al. 3-Dflash ladar at Raytheon[J]. SPIE, 2001, 4377: 84-97.
    [21] Stann B, Ahmed A, Scott F, et al. Research progress on scannerless ladar system using a laser diode transmitter and FM/cw radar principles[J]. Proceedings of SPIE, 2001, 4377: 12-22.
    [22] Habbit R D, Nellums R O, Niese A D, et al. Utilization of flash LADAR for cooperative and uncooperative rendezvous and capture[J].Proceedings of SPIE, 2003, 5088: 146—157.
    [23] GELBART A, REDMAN B C, LIGHT R S, et al. Flash lidar based on multiple-slit streak tube imaging lidar[J]. Proceedings of SPIE, 2002, 4723: 9-18.
    [24] Gleckler A D, et al. Multiple-Slit Streak Tube Imaging Lidar(MSSTIL) Applications[J]. Proceedings of SPIE, 2000, 4035: 266-272.
    [25] Gelbart A, Redman B C, Light R S, et al. Flash lidar based on multiple-slit streak tube imaging lidar[J]. Proceedings of SPIE, 2002, 4723: 9-18.
    [26] Redman B C, Griffis A J, Schibley E B. Streak Tube Imaging Lidar (stil) for 3-D Imaging of Terrestria Targets[J]. Proc. SPIE , 2000.211:189-212.
    [27] Deni Bonnier, Vincent Larochelle. A range-gated active imaging system for search and rescue and surveillance operations[J]. Proc. SPIE, 1996, 2744: 134-145.
    [28] Thomas E, Frank H, Robert A. Range Gated Imaging Experiments Using Gated Intensifiers [J]. Proc. SPIE, 1999, 3642: 142-148.
    [29]徐效文,郭劲,于前洋.距离选通激光成像系统发展现状[J].仪器仪表学报, 2003, 24(4): 616~618.
    [30]李晓峰,徐军,罗积军等.非扫描激光主动成像制导技术研究[J].光学技术,2008, 34: 175-178.
    [31] Anthes J P, Garcia P, Piercs J T. Non-Scanned Ladar Imaging and Applications [J]. SPIE Vol. 1993, 1936:11-22.
    [32] ChristiansenR S. Design of an Autopilot for Small Unmanned Aerial Vehicles[D].Status Report on NIST BAA, 2004.
    [33] Yoshikado S, Aruga T. Short-range verification experiment of a trial one-dimensional synthetic aperture infrared laser radar operated in the 10μm band[J]. Applied Optics, 2000, 39(9): 1421-1425.
    [34] Thomas J Karr. Synthetic aperture ladar for planetary sensing [J]. Proceedings of SPIE, 2003, 5151: 44-52.
    [35]廖进昆. 3-D成像激光雷达信号处理系统的研究[D].成都:电子科技大学学位论文, 2010: 2-7.
    [36]彭雪峰.二维振镜式扫描系统及其在SLS中的应用[D].武汉:华中科技大学学位论文, 2005: 10-11.
    [37]叶乔.高速振镜理论研究及实现[D].武汉:华中科技大学学位论文,2004: 4-5.
    [38]白廷柱,金伟其.光电成像原理与技术[M].北京:北京理工大学出版社, 2006: 484-486.
    [39] William C S, Maris J, Nick D. Performance Analysis of Next-Generation LADAR for Manufacturing, Construction, and Mobility[R]. NIST Report, NISTIR 7117 National Institute of Standards and Technology, 2004.
    [40]杨帆. LFMCW雷达信号处理算法研究及实现[D].西安:西安电子科技大学学位论文, 2007: 6-7, 11-15.
    [41] Simpson M L, KRichards R, PHutchinson D. Wide-Band Coherent Receive Development for Enhanced Surveillance [J]. IRIS Specialty Meeting on Active Systems Albuquerque, NM. March 4-6, 1998.
    [42]蒋兰兰.高分辨率LFCW雷达信号处理算法研究[D].南京:南京理工大学学位论文, 2007: 4~5.
    [43]张海洋,赵长明,杨苏辉等.线性调频连续波激光雷达信号处理研究[J].兵工学报, 2010, 31(2): 17-20.
    [44]翟厚明.线性调频连续波雷达导引头信号处理系统研究[D].南京:南京理工大学学位论文, 2005: 3-4.
    [45]李召飞.线性调频连续波雷达的信号处理研究[D].南京:南京理工大学学位论文, 2008: 4-5
    [46]李石. LFMCW雷达信号处理软硬件设计[D].西安:西安电子科技大学学位论文, 2010: 7-11.
    [47] STANN B, ABOU-AUF A,RUFF W, et al. Line imaging ladar using a laser-diode transmitter and FM/cw radar principles for submunition applications [J]. Proceeding of SPIE, 2000, 4035: 192-203.
    [48] Bassem R. Mahafza. Radar Systems Analysis and Design Using MATLAB[M]. American: Taylor & Francis Group LLC,2005: 1-8, 170-183, 214-234.
    [49]陈凯. LFMCW雷达信号处理软件设计[D].西安:西安电子科技大学学位论文, 2009: 10-13.
    [50] Zejak A J, Simic I S, Zrnic B M. Chirp radar ambiguity function shaping [J].EUROCON, Trends in Communications, International Conference on, 2001, 2(4-7): 325-328.
    [51] Levanon N, Mozeson E. Radar signals [M]. Hoboken, New Jersey: John Wiley & Sons Inc, 2004: 209-211.
    [52] Sinsky A I, Wang C P. Standardization of the definition of the radar ambiguity function [J]. TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 1974, 10(4): 532-533.
    [53]周新刚,赵惠昌,刘静.对称三角调频脉冲压缩信号模糊函数[J].探测与控制学报, 2009, 31(12): 22-26.
    [54]杨建宇,凌太兵,贺峻. LFMCW雷达运动目标检测与距离速度去耦合[J].电子与信息学报, 2004, 26(2): 169-173.
    [55] Stove A G. Linear FMCW radar techniques[J]. IEE Proc.-F: Radar and Signal Processing, 1992, 139(5): 340-343.
    [56]王良,马彦恒,何强等. LFMCW信号距离-速度耦合特性分析[J].科学技术与工程, 2009, 9(14): 4171-4174.
    [57]张容权,杨建宇,熊金涛.对称三角线性调频连续波信号模糊函数分析[J].电子学报, 2004, 32(3): 353-356.
    [58] Nathanson F E, Reilly J P, Marvin N. Cohen Radar Design Principles(Second Edition)[M]. New York: McGraw-Hill Inc, 1991: 143-156
    [59] Oelze M L. Bandwidth and resolution enhancement through pulse compression [J]. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2007, 54(4): 768-781.
    [60]王宝祥.信号与系统[M].哈尔滨:哈尔滨工业大学出版社, 2005: 76-80.
    [61] Muoz-Ferraras J, Perez-Martinez F, Burgos-Garica, M. Helicopter Classification with s High Resolution LFMCW Radar [J]. Aerospace and Electronic Systems, 2009, 45(4): 1373-1384.
    [62] Tujaka S. On frequency stability of transmitter in LFMCW MTD radar [J]. Microwaves and Radar, 1998, 12(3): 776-780.
    [63]赵继广,张智铨,邓陈. FM/cw激光雷达系统设计与实验研究[J].装备指挥技术学院学报, 2009, 20(3): 61-64.
    [64] STANN B, RUFF W C,SZTANKAY Z G. Intensity modulated diode laser radar using frequency modulation/continuous wave ranging techniques [J]. Proceeding of SPIE, Optical Engineering, 1996, 35(11): 3270-3278.
    [65]周刚,傅佑麟,徐振方. LFMCW数字化测距测速分辨力与精度分析[J].微计算机信息(测控自动化), 2006, 22(8): 313-314.
    [66]江洁.三角波线性调频连续波雷达测距仪[D].南京:南京理工大学学位论文,2009: 7-11.
    [67]张德丰. MATLAB数字信号处理[M].北京:电子工业出版社: 2010: 150-177, 338-350
    [68]承德宝.雷达原理[M].北京:国防工业出版社, 2008: 156-170.
    [69]文必洋,侯杰昌,吴世才.脉冲压缩雷达距离旁瓣的消除[J].电波科学学报, 1998, 13(4): 423-427.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700