用户名: 密码: 验证码:
弓形虫疫苗候选抗原IMP1生物学特性及其免疫原性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
弓形虫是一种专性细胞内寄生繁殖的机会性致病病原体,可以感染包括人在内的几乎所有的温血动物,严重威胁人类及动物健康。正常人感染弓形虫后,大多数不表现出明显的临床症状,呈隐性感染状态,但对婴儿或机体免疫力低下或免疫抑制时(AIDS、骨髓移植、器官移植等)可表现出严重的临床症状,甚至可以引起死亡。妊娠期母畜感染该病,常可引起流产,死产,木乃伊胎以及其它一些严重的临床症状,造成严重的经济损失。目前,对于弓形虫病的防治仍以预防为主,无特效药物。因此,研发切实有效的疫苗是防治的关键。IMP1蛋白是2011年刚发现的蛋白,被认为在弓形虫病疫苗开发方面具有重要潜力。本研究通过分子生物学、基因工程学、免疫生物学等方法对弓形虫IMP1的表达特性及免疫原性进行研究,探讨IMP1及其相关蛋白的功能,为弓形虫病防控提供新的思路与方法。
     1.浙江省动物弓形虫病血清流行病学调查
     为了解浙江省动物弓形虫病的流行现状,更好地为弓形虫病的防治提供科学的依据,本项目组成员采集了来自浙江省十一地市的813份猪血清、70份奶牛血清、151份山羊血清、213份犬血清及60份猫血清样品,进行了弓形虫病的血清流行病学调查。结果表明,猪的感染率最高,平均血清阳性率高达53.4%,其次为犬16.0%,猫13.3%及山羊2.7%。在对70份奶牛的血清进行检测时,未有阳性样品检出。对采样背景较为详细的猪、犬、猫样品的试验数据进行统计学分析,结果显示,该病的血清阳性率随动物的年龄增长而显著性升高。弓形虫血清阳性率与饲养环境、动物品种等相关。本试验首次对浙江省猪、奶牛、山羊、犬、猫弓形虫血清阳性率进行较为详细的调查,调查结果显示浙江省动物特别是猪的弓形虫感染较为严重,鉴于目前尚无有效的疫苗用于该病的治疗,因此制定合理的方案控制该病的传播在浙江省动物弓形虫的防控方面具有重要意义。
     2.基于SAG1基因弓形虫荧光定量PCR检测方法的建立
     荧光定量PCR因其高效敏感的特性在各种病原的检测中得到广泛应用,然而其检测效果与所选择的目的基因密切相关。本研究根据GenBank上公布的弓形虫RH株SAG1(又称P30)基因(X14080)保守区域序列设计特异性引物,采用SYBR(?) green I荧光染料法建立弓形虫的荧光定量PCR检测体系。与传统的PCR方法相比,该方法表现出更高的敏感性,最低可以检测到一个弓形虫速殖子。对人工感染小鼠的不同组织进行检测,1天后各样品即可被检出(血液25%、脾脏50%、肺脏50%)。本方法特异性好,与新孢子虫、大肠杆菌、牛巴贝斯虫、布氏锥虫、隐孢子虫、犬弓首蛔虫DNA均无交叉反应。用建立的方法对临床181份猪血进行检测,有11份样品检测结果为阳性,比普通PCR的9份表现出更高的敏感性。研究结果表明,基于SAG1基因建立了一种可靠的弓形虫SYBR(?) green I荧光定量PCR检测方法,该方法的建立可为弓形虫病理学、免疫学及治疗方面的研究提供重要的技术支持。
     3.弓形虫IMP1的表达特性研究
     弓形虫IMP1是一个新发现的蛋白,在鸡球虫、犬新孢子虫中都有高度保守的同源序列,本研究通过基因克隆技术用弓形虫RH株为模板成功获得了弓形虫IMP1序列,将所扩增基因与GenBank上公布的弓形虫ME49株(XM_002370108;2e-36)的序列进行相似性分析比较,分别在114(A-G)与342(T-C)处各有一个突变,序列相似性为99.8%,但对编码氨基酸无影响。对所获得的序列进行原核表达、纯化,制备了兔源多克隆抗体。通过间接免疫荧光技术进一步对速殖子不同时期该蛋白的表达特性进行研究。研究结果发现在游离、吸附于细胞表面、入侵中、入侵后及纳虫空泡中的速殖子IMP1均有表达,均被定位于虫体表面,且在有些虫体的顶端表达更为强烈。该研究为进一步阐明IMP1的功能奠定了基础。
     4.弓形虫二价重组亚单位疫苗rSAG1-IMP1的免疫原性研究
     利用分子生物学技术分别构建BL21-pET30a-IMP1及BL21-pET30a-SAG1-IMP1原核表达系统,IPTG诱导重组蛋白的表达。用纯化后的重组蛋白免疫ICR小鼠,探讨弓形虫重组蛋白γSAG1-IMP1的免疫效果。按照每只小鼠100μg融合蛋白的剂量进行首免,2周后按照每只小鼠50μg融合蛋白的剂量进行二免,二免后两周再加强免疫一次。分别于免疫前和首免后每2周小鼠眼眶采血分离血清进行抗体检测,持续至三免后4周;三免后2周取脾脏,进行淋巴细胞增殖试验和细胞因子检测;三免后两周用新鲜传代的弓形虫按500个速殖子/只的剂量攻毒,评价其免疫保护效果。结果表明各重组蛋白均能显著提高机体对融合蛋白的免疫应答水平和淋巴细胞的增殖水平(P<0.05):蛋白免疫组首免后4周抗体水平开始显著上升,首免后6周即可达到较高水平。其中二价亚单位疫苗rSAG1-IMP1的抗体水平要显著高于单价亚单位疫苗rIMP1和SAG1(P<0.05)。免疫后机体IgG1、IgG2a、IL-4、INF-γ水平均有所上升,但IgG1、IL-4更为明显。攻虫试验表明各蛋白免疫组均能显著延长小鼠的存活时间,弓形虫重组二价亚单位疫苗rSAG1-IMP1较单价亚单位疫苗具有更好的免疫效果。
     5.减毒沙门氏菌为载体传递弓形虫IMP1基因的免疫原性研究
     研究利用分子生物学技术构建了携带有弓形虫IMP1基因的减毒沙门氏菌活载体核酸疫苗ZJ111/pcDNA3.1-IMP1、ZJ111/pcDNA3.1-SAG1-IMP1。将构建的活载体核酸疫苗与空载减毒沙门氏菌ZJ111/pcDNA3.1免疫ICR小鼠,分别通过抗体水平检测、抗体亚类检测、淋巴细胞增殖试验、细胞因子检测以及攻虫试验等,探讨减毒沙门氏菌活载体核酸疫苗ZJ111/pcDNA3.1-IMP1、 ZJ111/pcDNA3.1-SAG1-IMP1的免疫效果。结果表明:减毒沙门氏菌活载体核酸疫苗ZJ111/pcDNA3.1-IMP1、ZJ111/pcDNA3.1-SAG1-IMP1具有良好的免疫原性,可以诱导小鼠产生较强的体液及细胞免疫应答,显著提高机体INF-γ的分泌及IgG2a水平(P<0.05),对小鼠抵抗弓形虫感染具有一定的免疫保护效果,可显著延长小鼠的存活时间(P<0.05)。而且二价核酸疫苗ZJ111/pcDNA3.1-SAG1-IMP1的免疫保护效果要显著的好于单价核酸疫苗ZJ111/pcDNA3.1-IMP1。
     综上,本研究基于SAG1基因建立了一种可靠的弓形虫SYBR(?)green I荧光定量PCR检测方法,首次对浙江省猪、奶牛、山羊、犬、猫弓形虫血清阳性率进行较为详细的调查,通过制备IMP1多克隆抗体,应用间接免疫荧光技术对弓形虫速殖子感染不同阶段的IMP1蛋白的表达特性进行了研究,构建了弓形虫二价重组亚单位疫苗rSAG1-IMP1及减毒沙门氏菌活载体核酸疫苗ZJ111/pcDNA3.1-IMP1、ZJ111/pcDNA3.1-SAG1-IMP1并通过体液免疫和细胞免疫水平及小鼠攻虫试验等分析弓形虫IMP1蛋白作为疫苗的可能性及其前景,研究结果为进一步开发弓形虫病疫苗奠定了良好的基础。
Toxoplasma gondii (T. gondii), an opportunistic intracellular protozoan parasite, can infect almost all worm blood animals including humans and exists as a serious threat to public health. In humans, whilst infections often remain asymptomatic in immunocompetent individuals they can lead to mild or severe sequelae in congenitally infected infants, and can cause life-threatening encephalitis in immunocompromised patients (AIDS, bone marrow and organ transplant patients, etc.). In animals, T. gondii infection is a prominent cause of spontaneous abortion, stillbirth, or severe disease and associated economic losses. At present, there is still no effective medicine for Toxoplasmosis and the only method is still prevention. Therefore, vaccine development plays an important role in the disease prevention. IMP1is a newly discovered protein in2011and considered with great importance in the toxoplasmosis vaccine development. In this study, we used the method of molecular biology, gene engineering, immunobiology to do the further research on the distribution and immunogenicity of IMP1, attempting to know better about the function of IMP1and related proteins, so as to provide a novel strategy for Toxoplasmosis prevention.
     1. Seroprevalence of Toxoplasma gondii infection in animals in Zhejiang province
     Inorder to assess the seroprevalence of T. gondii infection in animals in Zhejiang province, a survey was carried out via enzyme linked immunosorbent assay (ELISA) using serum (813of pigs,131of cattle,151of goats213of dogs and60of cats) collected from11regions of Zhejiang province. Anti-Toxoplasma antibodies were found in53.4%for pigs,16.0%for dogs,13.3%for cats and2.7%(4/151) for goats. No cattle were found seropositive for T. gondii infection. For pigs and cats, results were statistically analyzed by chi-square (χ2) test. We found that seroprevalence in pigs increased progressively with age. Differences were observed in feeding environment, animals'species and so on. This is the first detailed study on seroprevalence of T. gondii infection in pigs, cattle, goats, pigs and cats in Zhejiang province. The result revealed that there was a high seroprevalence of T. gondii infection in animals especially pigs in the province of Zhejiang. Since there in no effective vaccine against this parasite, prevention of zoonotic transmission must be considered in Zhejiang province.
     2. Establish of a real-time PCR assay based on the single-copy SAG1gene for the detection of Toxoplasma gondii
     Real-time PCR-based detection of Toxoplasma gondii is very sensitive and convenient for diagnosing toxoplasmosis. However, the performance of the PCR assays could be influenced by the target gene chosen. Here we evaluate a real-time PCR assay using double-stranded DNA dyes (SYBR(?) Green I assay) with a new set of primers targeting the SAG1gene (X14080) for the fast and specific detection of T. gondii. The assay showed higher sensitivity than conventional PCR protocols using T. gondii DNA as template. The detection limit of the developed real-time PCR assay was in the order of1tachyzoite. The assay was also assessed by experimentally infected mice and showed positive results for blood (25%), spleen (50%) and lung (50%) as early as1dpi. The specificity of the assay was confirmed by using DNA from Neospora caninum, Escherichia coli, Babesia bovis, Tiypanosoma brucei, Cryptosporidium parvum, and Toxocara canis. Assay applicability was successfully tested in blood samples collected from slaughtered pigs. These results indicate that, based on SYBR(?) green I, the quantitative SAG1assay may also be useful in the study of the pathogenicity, immunoprophylaxis, and treatment of T. gondii.
     3. The subcellular localization of Toxoplasma IMP1
     IMP1is a newly discovered protein and has highly conserved homologues in Eimeria spp. and Neospora caninum. We got the IMP1gene by PCR using the genomic DNA of RH strain. Sequence analysis showed that the gene we cloned was99.8%identical to the published data of ME49strain (XM_002370108;2c-36).There arc two mutations, A changed to G in114and T changed to C in342, but they has no effect on the protein expression. The IMP1was expressed in E.coli and anti-IMP1antibody was collected from immunized rabbit. The subcellular localization of IMP1was carried out by indirect immunofluorescence technique, and was anchored on the membrane of the parasite in all the stage (free, absorbing, invading, after invading or in the PV), though some showed strong fluorescence signal on apical. This study is the foundation for deep research of the function of IMP1.
     4. The immunogenicity of recombinant sub-unit vaccine rSAG1-IMP1of T. gondii
     To evaluate the immunomodulatory potentials of the recombinant sub-unit vaccine rSAG1-IMP1, the BL21-pET30a-IMP1and BL21-pET30a-SAG1-IMP1Prokaryotic expression system were constructed. ICR mice were immunized subcutaneously with PBS,100μg rSAG1,100μg rIMP1,100μg rSAG1-IMP1on day1and immunized subcutaneously with PBS,50μg rSAGl,50μg rIMP1,50μg rSAG1-IMP1on week2and week4after first immune. After immunization, the immune response was evaluated by lymphoproliferative assay, antibody level detection and cytokine measurements. The mice were challenged with500tachyzoites (RH strain) and the survival times of mice were recorded. The results showed that all the recombinant sub-unit vaccines could elicite a high level of specific immune response against T. gondii, and the multiple antigens recombinant sub-unit vaccine rSAGl-IMP1could elicite a higher immune response. Our data demonstrate that the recombinant sub-unit vaccine rSAG1-IMP1can elicit a strong humoral and cellular response, and can effectively help immunized mice against T. gondii infection.
     5. The immunogenicity of T. gondii IMP1gene carried by attenuated Salmonella typhimurium
     To evaluate the immunomodulatory potentials of IMP1gene carried by attenuated Salmonella typhimurium, the ZJ111/pcDNA3.1-IMP1and ZJ111/pcDNA3.1-SAG1-IMP1DNA vaccine were constructed and immunized to ICR mice. After immunization, we evaluated the immune response by antibody measurements, lymphoproliferative assay, cytokine test and challenge assay in mice. The results showed that DNA vaccine delivered in attenuated Salmonella typhimurium, ZJ111/pcDNA3.1-IMP1、 ZJ111/pcDNA3.1-SAGl-IMPl could elicit a strong humoral and cellular response as well as provide effective protection against T. gondii infection in immunized mice. The multiple antigens vaccine ZJ111/pcDNA3.1-SAG1-IMP1could elicite a higher immune response than ZJ111/pcDNA3.1-IMP1.
     In summary, Based on the single-copy SAG1gene, a real-time PCR assay was established for the detection of Toxoplasma gondii, the seroprevalence of T. gondii infection in pigs, cattle, goats, pigs and cats in Zhejiang province was carried out via enzyme linked immunosorbent assay (ELISA) using serum collected from11regions of Zhejiang province, The subcellular localization of IMP1was carried out by indirect immunofluorescence technique, The recombinant sub-unit vaccine rSAG1-IMP1and DNA vaccine ZJ111/pcDNA3.1-IMP1、ZJ111/pcDNA3.1-SAGMMP1against T. gondii were constructed. The possibility and the prospect of IMP1as the potent vaccine was evaluated by humoral and cellular response as well as effective protection against T. gondii infection in immunized mice, hoping to provide a new way for prevent Toxoplasmosis.
引文
曹向英,朱骏,沈林辉,彭笑蓉,张慧英,孙文梅.上海市松江区家畜弓形虫病的流行病学调查.上海畜牧兽医通讯.2006,(1):46-47.
    黄利权,李慧,何士根,毛红瑞.浙江地区犬猫猪弓形虫病的流行病学调查.中国兽医杂志2011,47(6):39-41.
    米晓云,巴音查汗,李文超.新疆猪、牛、羊弓形虫病的血清学调查.中国兽医寄生虫病.2007,15(2):22-24.
    潘萌,蒋浩琴,周芸,郑捷.弗氏佐剂与氢氧化铝佐剂对诱导小鼠获得性免疫应答作用的比较.现代免疫学.2006,26(2):98-101.
    任忠奎,王敏,赵虹霓,郭琦,刘岩松.辽宁省盖州市绒山羊弓形虫病的血清学调查.中国动物检疫.2010,27(2):63.
    朱织云,占松华,余有富,周元宝.规模猪场弓形虫病调查.中国动物检疫.2010,27(2):63.2000,17(9):30.
    Alexander, D.L., Mital, J., Ward, G.E., Bradley, P., Boothroyd, J.C.,2005. Identification of the moving junction complex of Toxoplasma gondii:a collaboration between distinct secretory organelles. PLoS pathogens 1, e17.
    Alfonso, Y., Fraga, J., Jimenez, N., Fonseca, C., Dorta-Contreras, A.J., Cox, R., Capo, V., Bandera, F., Pomier, O., Ginorio, D.,2009. Detection of Toxoplasma gondii in cerebrospinal fluid from AIDS patients by nested PCR and rapid identification of type I allele at Bl gene by RFLP analysis. Experimental parasitology 122,203-207.
    Aliberti, J., Valenzuela, J.G., Carruthers, V.B., Hieny, S., Andersen, J., Charest, H., Reis e Sousa, C., Fairlamb, A., Ribeiro, J.M., Sher, A.,2003. Molecular mimicry of a CCR5 binding-domain in the microbial activation of dendritic cells. Nature immunology 4,485-490.
    Bai, Y., He, S., Zhao, G., Chen, L., Shi, N., Zhou, H., Cong, H., Zhao, Q., Zhu, X.Q.,2012. Toxoplasma gondii:bioinformatics analysis, cloning and expression of a novel protein TgIMP1. Experimental parasitology 132,458-464.
    Barkhuff, W.D., Gilk, S.D., Whitmarsh, R., Tilley, L.D., Hunter, C, Ward, G.E.,2011. Targeted disruption of TgPhILl in Toxoplasma gondii results in altered parasite morphology and fitness. PloS one 6, e23977.
    Bartoszcze, M., Krupa, K., Roszkowski, J.,1991. ELISA for assessing Toxoplasma gondii antibodies in pigs. Zentralblatt fur Veterinarmedizin. Reihe B. Journal of veterinary medicine. Series B 38, 263-264.
    Besteiro, S., Michelin, A., Poncet, J., Dubremetz, J.F., Lebrun, M.,2009. Export of a Toxoplasma gondii rhoptry neck protein complex at the host cell membrane to form the moving junction during invasion. PLoS pathogens 5, el000309.
    Bhopale, G.M.,2003. Development of a vaccine for toxoplasmosis:current status. Microbes and infection/Institut Pasteur 5,457-462.
    Blake, D.P., Billington, K.J., Copestake, S.L., Oakes, R.D., Quail, M.A., Wan, K.L., Shirley, M.W., Smith, A.L.,2011. Genetic mapping identifies novel highly protective antigens for an apicomplexan parasite. PLoS pathogens 7, el001279.
    Blumenschein, T.M., Friedrich, N., Childs, R.A., Saouros, S., Carpenter, E.P., Campanero-Rhodes, M.A., Simpson, P., Chai, W., Koutroukides, T., Blackman, M.J., Feizi, T., Soldati-Favre, D., Matthews, S.,2007. Atomic resolution insight into host cell recognition by Toxoplasma gondii. The EMBO journal 26,2808-2820.
    Boothroyd, J.C., Hehl, A., Knoll, L.J., Manger, I.D.,1998. The surface of Toxoplasma:more and less. International journal for parasitology 28,3-9.
    Bourguin, I., Moser, M., Buzoni-Gatel, D., Tielemans, F., Bout, D., Urbain, J., Leo, O.,1998. Murine dendritic cells pulsed in vitro with Toxoplasma gondii antigens induce protective immunity in vivo. Infection and immunity 66,4867-4874.
    Brenier-Pinchart, M.P., Morand-Bui, V, Fricker-Hidalgo, H., Equy, V., Marlu, R., Pelloux, H.,2007. Adapting a conventional PCR assay for Toxoplasma gondii detection to real-time quantitative PCR including a competitive internal control. Parasite 14,149-154.
    Brossier, F., David Sibley, L.,2005. Toxoplasma gondii:microneme protein MIC2. The international journal of biochemistry & cell biology 37,2266-2272.
    Buchbinder, S., Blatz, R., Rodloff, A.C.,2003. Comparison of real-time PCR detection methods for B1 and P30 genes of Toxoplasma gondii. Diagnostic microbiology and infectious disease 45, 269-271.
    Buguliskis, J.S., Brossier, F., Shuman, J., Sibley, L.D.,2010. Rhomboid 4 (ROM4) affects the processing of surface adhesins and facilitates host cell invasion by Toxoplasma gondii. PLoS pathogens 6, el000858.
    Bulow, R., Boothroyd, J.C.,1991. Protection of mice from fatal Toxoplasma gondii infection by immunization with p30 antigen in liposomes. J Immunol 147,3496-3500.
    Burg, J.L., Grover, C.M., Pouletty, P., Boothroyd, J.C.,1989. Direct and sensitive detection of a pathogenic protozoan, Toxoplasma gondii, by polymerase chain reaction. Journal of clinical microbiology 27,1787-1792.
    Butcher, B.A., Greene, R.I., Henry, S.C., Annecharico, K.L., Weinberg, J.B., Denkers, E.Y., Sher, A., Taylor, G.A.,2005. p47 GTPases regulate Toxoplasma gondii survival in activated macrophages. Infection and immunity 73,3278-3286.
    Buxton, D.,1993. Toxoplasmosis:the first commercial vaccine. Parasitol Today 9,335-337.
    Calderaro, A., Piccolo, G., Gorrini, C., Peruzzi, S., Zerbini, L., Bommezzadri, S., Dettori, G., Chezzi, C., 2006. Comparison between two real-time PCR assays and a nested-PCR for the detection of Toxoplasma gondii. Acta bio-medica:Atenei Parmensis 77,75-80.
    Cavailles, P., Sergent, V., Bisanz, C., Papapietro, O., Colacios, C., Mas, M., Subra, J.F., Lagrange, D., Calise, M., Appolinaire, S., Faraut, T., Druet, P., Saoudi, A., Bessieres, M.H., Pipy, B., Cesbron-Delauw, M.F., Fournie, G.J.,2006. The rat Toxol locus directs toxoplasmosis outcome and controls parasite proliferation and spreading by macrophage-dependent mechanisms. Proceedings of the National Academy of Sciences of the United States of America 103,744-749.
    Cerede, O., Dubremetz, J.F., Soete, M., Deslee, D., Vial, H., Bout, D., Lebrun, M.,2005. Synergistic role of micronemal proteins in Toxoplasma gondii virulence. The Journal of experimental medicine 201,453-463.
    Charron, A.J., Sibley, L.D.,2004. Molecular partitioning during host cell penetration by Toxoplasma gondii. Traffic 5,855-867.
    Ching, X.T., Lau, Y.L., Fong, M.Y., Nissapatorn, V.,2013. Evaluation of Toxoplasma gondii-recombinant dense granular protein (GRA2) for serodiagnosis by western blot. Parasitology research 112,1229-1236.
    Coppens, I., Dunn, J.D., Romano, J.D., Pypaert, M., Zhang, H., Boothroyd, J.C., Joiner, K.A.,2006. Toxoplasma gondii sequesters lysosomes from mammalian hosts in the vacuolar space. Cell 125,261-274.
    Costa, J.M., Bretagne, S.,2012. Variation of B1 gene and AF146527 repeat element copy numbers according to Toxoplasma gondii strains assessed using real-time quantitative PCR. Journal of clinical microbiology 50,1452-1454.
    Cui, X., Lei, T., Yang, D., Hao, P., Li, B., Liu, Q.,2012. Toxoplasma gondii immune mapped protein-1 (TgIMP1) is a novel vaccine candidate against toxoplasmosis. Vaccine 30,2282-2287.
    Dabritz, H.A., Miller, M.A., Gardner, I.A., Packham, A.E., Atwill, E.R., Conrad, P.A.,2008. Risk factors for Toxoplasma gondii infection in wild rodents from central coastal California and a review of T. gondii prevalence in rodents. The Journal of parasitology 94,675-683.
    Darde, M.L., Villena, I., Pinon, J.M., Beguinot, I.,1998. Severe toxoplasmosis caused by a Toxoplasma gondii strain with a new isoenzyme type acquired in French Guyana. Journal of clinical microbiology 36,324.
    Dautu, G., Munyaka, B., Carmen, G., Zhang, G., Omata, Y., Xuenan, X., Igarashi, M.,2007. Toxoplasma gondii:DNA vaccination with genes encoding antigens MIC2, M2AP, AMA1 and BAG1 and evaluation of their immunogenic potential. Experimental parasitology 116, 273-282.
    Debierre-Grockiego, F., Azzouz, N., Schmidt, J., Dubremetz, J.F., Geyer, H., Geyer, R., Weingart, R., Schmidt, R.R., Schwarz, R.T.,2003. Roles of glycosylphosphatidylinositols of Toxoplasma gondii. Induction of tumor necrosis factor-alpha production in macrophages. The Journal of biological chemistry 278,32987-32993.
    Debierre-Grockiego, F, Campos, M.A., Azzouz, N., Schmidt, J., Bieker, U., Resende, M.G., Mansur, D.S., Weingart, R., Schmidt, R.R., Golenbock, D.T., Gazzinelli, R.T., Schwarz, R.T.,2007. Activation of TLR2 and TLR4 by glycosylphosphatidylinositols derived from Toxoplasma gondii. J Immunol 179,1129-1137.
    Delorme-Walker, V., Abrivard, M., Lagal, V., Anderson, K., Perazzi, A., Gonzalez, V., Page, C., Chauvet, J., Ochoa, W., Volkmann, N., Hanein, D., Tardieux, I.,2012. Toxofilin upregulates the host cortical actin cytoskeleton dynamics, facilitating Toxoplasma invasion. Journal of cell science 125,4333-4342.
    Derouin, F., Garin, Y.J.,1991. Toxoplasma gondii:blood and tissue kinetics during acute and chronic infections in mice. Experimental parasitology 73,460-468.
    Djurkovic-Djakovic, O., Djokic, V, Vujanic, M., Zivkovic, T., Bobic, B., Nikolic, A., Slavic, K., Klun, I., Ivovic, V,2012. Kinetics of parasite burdens in blood and tissues during murine toxoplasmosis. Experimental parasitology 131,372-376.
    Du, A., Wang, S.,2005. Efficacy of a DNA vaccine delivered in attenuated Salmonella typhimurium against Eimeria tenella infection in chickens. International journal for parasitology 35, 777-785.
    Dubey, J.P.,1988. Long-term persistence of Toxoplasma gondii in tissues of pigs inoculated with T gondii oocysts and effect of freezing on viability of tissue cysts in pork. American journal of veterinary research 49,910-913.
    Dubey, J.P.,2009. Toxoplasmosis in pigs--the last 20 years. Veterinary parasitology 164,89-103.
    Dubey, J.P., Ferreira, L.R., Martins, J., Jones, J.L.,2011a. Sporulation and survival of Toxoplasma gondii oocysts in different types of commercial cat litter. The Journal of parasitology 97, 751-754.
    Dubey, J.P., Frenkel, J.K.,1972. Cyst-induced toxoplasmosis in cats. The Journal of protozoology 19, 155-177.
    Dubey, J.P., Gamble, H.R., Hill, D., Sreekumar, C., Romand, S., Thuilliez, P.,2002. High prevalence of viable Toxoplasma gondii infection in market weight pigs from a farm in Massachusetts. The Journal of parasitology 88,1234-1238.
    Dubey, J.P., Jones, J.L.,2008. Toxoplasma gondii infection in humans and animals in the United States. International journal for parasitology 38,1257-1278.
    Dubey, J.P., Kotula, A.W., Sharar, A., Andrews, C.D., Lindsay, D.S.,1990. Effect of high temperature on infectivity of Toxoplasma gondii tissue cysts in pork. The Journal of parasitology 76, 201-204.
    Dubey, J.P., Rajendran, C., Ferreira, L.R., Martins, J., Kwok, O.C., Hill, D.E., Villena, I., Zhou, H., Su, C., Jones, J.L.,2011b. High prevalence and genotypes of Toxoplasma gondii isolated from goats, from a retail meat store, destined for human consumption in the USA. International journal for parasitology 41,827-833.
    Dubey, J.P., Romand, S., Hilali, M., Kwok, O.C., Thulliez, P.,1998. Seroprevalence of antibodies to Neospora caninum and Toxoplasma gondii in water buffaloes (Bubalus bubalis) from Egypt. International journal for parasitology 28,527-529.
    Dubey, J.P., Thulliez, P.,1993. Persistence of tissue cysts in edible tissues of cattle fed Toxoplasma gondii oocysts. American journal of veterinary research 54,270-273.
    Dubremetz, J.F., Lebrun, M.,2012. Virulence factors of Toxoplasma gondii. Microbes and infection/ Institut Pasteur 14,1403-1410.
    Dumetre, A., Darde, M.L.,2003. How to detect Toxoplasma gondii oocysts in environmental samples? FEMS microbiology reviews 27,651-661.
    Dziadek, B., Gatkowska, J., Grzybowski, M., Dziadek, J., Dzitko, K., Dlugonska, H.,2012. Toxoplasma gondii:the vaccine potential of three trivalent antigen-cocktails composed of recombinant ROP2, ROP4, GRA4 and SAG1 proteins against chronic toxoplasmosis in BALB/c mice. Experimental parasitology 131,133-138.
    Dzierszinski, F., Mortuaire, M., Cesbron-Delauw, M.F., Tomavo, S.,2000. Targeted disruption of the glycosylphosphatidylinositol-anchored surface antigen SAG3 gene in Toxoplasma gondii decreases host cell adhesion and drastically reduces virulence in mice. Molecular microbiology 37,574-582.
    El Hajj, H., Papoin, J., Cerede, O., Garcia-Reguct, N., Soete, M., Dubremetz, J.F., Lebrun, M.,2008. Molecular signals in the trafficking of Toxoplasma gondii protein MIC3 to the micronemes. Eukaryotic cell 7,1019-1028.
    Elbez-Rubinstein, A., Ajzenberg, D., Darde, M.L., Cohen, R., Dumetre, A., Yera, H., Gondon, E., Janaud, J.C., Thulliez, P.,2009. Congenital toxoplasmosis and reinfection during pregnancy: case report, strain characterization, experimental model of reinfection, and review. The Journal of infectious diseases 199,280-285.
    Elmore, S.A., Jones, J.L., Conrad, P.A., Patton, S., Lindsay, D.S., Dubey, J.P.,2010. Toxoplasma gondii: epidemiology, feline clinical aspects, and prevention. Trends in parasitology 26,190-196.
    Fang, R., Feng, H., Hu, M., Khan, M.K., Wang, L., Zhou, Y., Zhao, J.,2012. Evaluation of immune responses induced by SAG1 and MIC3 vaccine cocktails against Toxoplasma gondii. Veterinary parasitology 187,140-146.
    Fentress, S.J., Behnke, M.S., Dunay, I.R., Mashayekhi, M., Rommereim, L.M., Fox, B.A., Bzik, D.J., Taylor, G.A., Turk, B.E., Lichti, C.F., Townsend, R.R., Qiu, W., Hui, R., Beatty, W.L., Sibley, L.D.,2010. Phosphorylation of immunity-related GTPases by a Toxoplasma gondii-secreted kinase promotes macrophage survival and virulence. Cell host & microbe 8,484-495.
    Freyre, A., Choromanski, L., Fishback, J.L., Popiel, I.,1993. Immunization of cats with tissue cysts, bradyzoites, and tachyzoites of the T-263 strain of Toxoplasma gondii. The Journal of parasitology 79,716-719.
    Freyre, A., Falcon, J., Mendez, J., Gastell, T, Venzal, J.M.,2007. Toxoplasma gondii:cross-immunity against the enteric cycle. Experimental parasitology 115,48-52.
    Ghaffarifar, F, Jorjani, O., Sharifi, Z., Dalimi, A., Hassan, Z.M., Tabatabaie, F., Khoshzaban, F., Hezarjaribi, H.Z.,2013. Enhancement of immune response induced by DNA vaccine cocktail expressing complete LACK and TSA genes against Leishmania major. APMIS:acta pathologica, microbiologica, et immunologica Scandinavica 121,290-298.
    Gilbert, L.A., Ravindran, S., Turetzky, J.M., Boothroyd, J.C., Bradley, P.J.,2007. Toxoplasma gondii targets a protein phosphatase 2C to the nuclei of infected host cells. Eukaryotic cell 6,73-83.
    Gopal, R., Birdsell, D., Monroy, F.P.,2011. Regulation of chemokine responses in intestinal epithelial cells by stress and Toxoplasma gondii infection. Parasite immunology 33,12-24.
    Guiton, R., Zagani, R., Dimier-Poisson, I.,2009. Major role for CD8 T cells in the protection against Toxoplasma gondii following dendritic cell vaccination. Parasite immunology 31,631-640.
    Halos, L., Thebault, A., Aubert, D., Thomas, M., Perret, C., Geers, R., Alliot, A., Escotte-Binet, S., Ajzenberg, D., Darde, M.L., Durand, B., Boireau, P., Villena, I.,2010. An innovative survey underlining the significant level of contamination by Toxoplasma gondii of ovine meat consumed in France. International journal for parasitology 40,193-200.
    Hashemi-Fesharki, R.,1996. Seroprevalence of Toxoplasma gondii in cattle, sheep and goats in Iran. Veterinary parasitology 61,1-3.
    Heaslip, A.T., Dzierszinski, F., Stein, B., Hu, K.,2010. TgMORN1 is a key organizer for the basal complex of Toxoplasma gondii. PLoS pathogens 6, e1000754.
    Hill, D.E., Benedetto, S.M., Coss, C., McCrary, J.L., Fournet, V.M., Dubey, J.P.,2006. Effects of time and temperature on the viability of Toxoplasma gondii tissue cysts in enhanced pork loin. Journal of food protection 69,1961-1965.
    Hiszczynska-Sawicka, E., Brillowska-Dabrowska, A., Dabrowski, S., Pietkiewicz, H., Myjak, P., Kur, J.,2003. High yield expression and single-step purification of Toxoplasma gondii SAG1, GRA1, and GRA7 antigens in Escherichia coli. Protein expression and purification 27, 150-157.
    Homan, W.L., Vercammen, M., De Braekeleer, J., Verschueren, H.,2000. Identification of a 200-to 300-fold repetitive 529 bp DNA fragment in Toxoplasma gondii, and its use for diagnostic and quantitative PCR. International journal for parasitology 30,69-75.
    Hu, G, Cabrera, A., Kono, M., Mok, S., Chaal, B.K., Haase, S., Engelberg, K., Cheemadan, S., Spielmann, T., Preiser, P.R., Gilberger, T.W., Bozdech, Z.,2010. Transcriptional profiling of growth perturbations of the human malaria parasite Plasmodium falciparum. Nature biotechnology 28,91-98.
    Huang, C.Q., Lin, Y.Y., Dai, A.L., Li, X.H., Yang, X.Y., Yuan, Z.G., Zhu, X.Q.,2010a. Seroprevalence of Toxoplasma gondii infection in breeding sows in Western Fujian Province, China. Tropical animal health and production 42,115-118.
    Huang, J.M., Sali, M., Leckenby, M.W., Radford, D.S., Huynh, H.A., Delogu, G., Cranenburgh, R.M., Cutting, S.M.,2010b. Oral delivery of a DNA vaccine against tuberculosis using operator-repressor titration in a Salmonella enterica vector. Vaccine 28,7523-7528.
    Huong, L.T., Dubey, J.P.,2007. Seroprevalence of Toxoplasma gondii in pigs from Vietnam. The Journal of parasitology 93,951-952.
    Huong, L.T., Ljungstrom, B.L., Uggla, A., Bjorkman, C.,1998. Prevalence of antibodies to Neospora caninum and Toxoplasma gondii in cattle and water buffaloes in southern Vietnam. Veterinary parasitology 75,53-57.
    Huynh, M.H., Carruthers, V.B.,2006. Toxoplasma MIC2 is a major determinant of invasion and virulence. PLoS pathogens 2, e84.
    Huynh, M.H., Rabenau, K.E., Harper, J.M., Beatty, W.L., Sibley, L.D., Carruthers, V.B.,2003. Rapid invasion of host cells by Toxoplasma requires secretion of the MIC2-M2AP adhesive protein complex. The EMBO journal 22,2082-2090.
    Innes, E.A., Panton, W.R., Sanderson, A., Thomson, K.M., Wastling, J.M., Maley, S., Buxton, D., 1995a. Induction of CD4+ and CD8+ T cell responses in efferent lymph responding to Toxoplasma gondii infection:analysis of phenotype and function. Parasite immunology 17, 151-160.
    Innes, E.A., Panton, W.R., Thomson, K.M., Maley, S., Buxton, D.,1995b. Kinetics of interferon gamma production in vivo during infection with the S48 vaccine strain of Toxoplasma gondii. Journal of comparative pathology 113,89-94.
    Innes, E.A., Vermeulen, A.N.,2006. Vaccination as a control strategy against the coccidial parasites Eimeria, Toxoplasma and Neospora. Parasitology 133 Suppl, S145-168.
    Ismael, A.B., Sekkai, D., Collin, C., Bout, D., Mevelec, M.N.,2003. The MIC3 gene of Toxoplasma gondii is a novel potent vaccine candidate against toxoplasmosis. Infection and immunity 71, 6222-6228.
    Israelski, D.M., Remington, J.S.,1993. Toxoplasmosis in the non-AIDS immunocompromised host. Current clinical topics in infectious diseases 13,322-356.
    Jackson, M.H., Hutchison, W.M.,1989. The prevalence and source of Toxoplasma infection in the environment. Advances in parasitology 28,55-105.
    Jones, J.L., Dubey, J.P.,2010. Waterborne toxoplasmosis--recent developments. Experimental parasitology 124,10-25.
    Kafsack, B.F., Pena, J.D., Coppens, I., Ravindran, S., Boothroyd, J.C., Carruthers, V.B.,2009. Rapid membrane disruption by a perforin-like protein facilitates parasite exit from host cells. Science 323,530-533.
    Kato, M., Claveria, F.G., Maki, Y., Tanaka, T., Suzuki, N., Nagasawa, H.,2005. Toxoplasma gondii antigens GRA1 (p24) and SAG1 (p30):a comparison of their stimulatory influence on T-cell activation and cytokine expression in in vitro cultures. Pathobiology:journal of immunopathology, molecular and cellular biology 72,160-164.
    Kessler, H., Herm-Gotz, A., Hegge, S., Rauch, M., Soldati-Favre, D., Frischknecht, F., Meissner, M., 2008. Microneme protein 8--a new essential invasion factor in Toxoplasma gondii. Journal of cell science 121,947-956.
    Kim, K., Weiss, L.M.,2008. Toxoplasma:the next 100years. Microbes and infection/Institut Pasteur 10,978-984.
    Kim, S.K., Karasov, A., Boothroyd, J.C.,2007. Bradyzoite-specific surface antigen SRS9 plays a role in maintaining Toxoplasma gondii persistence in the brain and in host control of parasite replication in the intestine. Infection and immunity 75,1626-1634.
    Kompalic-Cristo, A., Frotta, C., Suarez-Mutis, M., Fernandes, O., Britto, C.,2007. Evaluation of a real-time PCR assay based on the repetitive B1 gene for the detection of Toxoplasma gondii in human peripheral blood. Parasitology research 101,619-625.
    Kompalic-Cristo, A., Nogueira, S.A., Guedes, A.L., Frota, C., Gonzalez, L.F., Brandao, A., Amendoeira, M.R., Britto, C., Fernandes, O.,2004. Lack of technical specificity in the molecular diagnosis of toxoplasmosis. Transactions of the Royal Society of Tropical Medicine and Hygiene 98, 92-95.
    Lagal, V., Binder, E.M., Huynh, M.H., Kafsack, B.F., Harris, P.K., Diez, R., Chen, D., Cole, R.N., Carruthers, V.B., Kim, K.,2010. Toxoplasma gondii protease TgSUBl is required for cell surface processing of micronemal adhesive complexes and efficient adhesion of tachyzoites. Cellular microbiology 12,1792-1808.
    Lau, Y.L., Fong, M.Y., Idris, M.M., Ching, X.T.,2012. Cloning and expression of Toxoplasma gondii dense granule antigen 2 (GRA2) gene by Pichia pastoris. The Southeast Asian journal of tropical medicine and public health 43,10-16.
    Lebrun, M., Michelin, A., El Hajj, H., Poncet, J., Bradley, P.J., Vial, H., Dubremetz, J.F.,2005. The rhoptry neck protein RON4 re-localizes at the moving junction during Toxoplasma gondii invasion. Cellular microbiology 7,1823-1833.
    Lee, Y.H., Shin, D.W., Lee, J.H., Nam, H.W., Ahn, M.H.,2007. Vaccination against murine toxoplasmosis using recombinant Toxoplasma gondii SAG3 antigen alone or in combination with Quil A. Yonsei medical journal 48,396-404.
    Li, H.L., Yan, C., Li, J., Ai, L., Zhou, D.H., Yuan, Z.G., Lin, R.Q., Zhao, G.H., Zhu, X.Q.,2010. Seroprevalence of Toxoplasma gondii in bred cynomolgus monkeys (Macaca fascicularis) in China. The Journal of parasitology 96,807-808.
    Lin, M.H., Chen, T.C., Kuo, T.T., Tseng, C.C., Tseng, C.P.,2000. Real-time PCR for quantitative detection of Toxoplasma gondii. Journal of clinical microbiology 38,4121-4125.
    Lin, Z., Zhang, Y., Zhang, H., Zhou, Y., Cao, J., Zhou, J.,2012. Comparison of loop-mediated isothermal amplification (LAMP) and real-time PCR method targeting a 529-bp repeat element for diagnosis of toxoplasmosis. Veterinary parasitology 185,296-300.
    Liu, J., Cai, J.Z., Zhang, W., Liu, Q., Chen, D., Han, J.P., Liu, Q.R.,2008. Seroepidemiology of Neospora caninum and Toxoplasma gondii infection in yaks (Bos grunniens) in Qinghai, China. Veterinary parasitology 152,330-332.
    Lopes, A.P., Dubey, J.P., Neto, F., Rodrigues, A., Martins, T., Rodrigues, M., Cardoso, L.,2013. Seroprevalence of Toxoplasma gondii infection in cattle, sheep, goats and pigs from the North of Portugal for human consumption. Veterinary parasitology 193,266-269.
    Lourenco, E.V., Bernardes, E.S., Silva, N.M., Mineo, J.R., Panunto-Castelo, A., Roque-Barreira, M.C., 2006. Immunization with MIC1 and MIC4 induces protective immunity against Toxoplasma gondii. Microbes and infection/Institut Pasteur 8,1244-1251.
    Luft, B.J., Remington, J.S.,1992. Toxoplasmic encephalitis in AIDS. Clinical infectious diseases:an official publication of the Infectious Diseases Society of America 15,211-222.
    Lunden, A., Parmley, S.F., Bengtsson, K.L., Araujo, F.G.,1997. Use of a recombinant antigen, SAG2, expressed as a glutathione-S-transferase fusion protein to immunize mice against Toxoplasma gondii. Parasitology research 83,6-9.
    Mai, K., Sharman, P.A., Walker, R.A., Katrib, M., De Souza, D., McConville, M.J., Wallach, M.G., Belli, S.I., Ferguson, D.J., Smith, N.C.,2009. Oocyst wall formation and composition in coccidian parasites. Memorias do Instituto Oswaldo Cruz 104,281-289.
    Martens, S., Parvanova, I., Zerrahn, J., Griffiths, G., Schell, G., Reichmann, G., Howard, J.C.,2005. Disruption of Toxoplasma gondii parasitophorous vacuoles by the mouse p47-resistance GTPases. PLoS pathogens 1, e24.
    Masih, S., Arora, S.K., Vasishta, R.K.,2011. Efficacy of Leishmania donovani ribosomal P1 gene as DNA vaccine in experimental visceral leishmaniasis. Experimental parasitology 129,55-64.
    Matsuo, K., Husin, D.,1996. A survey of Toxoplasma gondii antibodies in goats and cattle in Lampung province, Indonesia. The Southeast Asian journal of tropical medicine and public health 27, 554-555.
    Meng, M., He, S., Zhao, G., Bai, Y., Zhou, H., Cong, H., Lu, G., Zhao, Q., Zhu, X.Q.,2012. Evaluation of protective immune responses induced by DNA vaccines encoding Toxoplasma gondii surface antigen 1 (SAG1) and 14-3-3 protein in BALB/c mice. Parasites & vectors 5,273.
    Mercier, C., Rauscher, B., Lecordier, L., Deslee, D., Dubremetz, J.F., Cesbron-Delauw, M.F.,2001. Lack of expression of the dense granule protein GRA5 does not affect the development of Toxoplasma tachyzoites. Molecular and biochemical parasitology 116,247-251.
    Min, J., Qu, D., Li, C., Song, X., Zhao, Q., Li, X.A., Yang, Y., Liu, Q., He, S., Zhou, H.,2012. Enhancement of protective immune responses induced by Toxoplasma gondii dense granule antigen 7 (GRA7) against toxoplasmosis in mice using a prime-boost vaccination strategy. Vaccine 30,5631-5636.
    Miranda, K.. Pace, D.A., Cintron, R., Rodrigues, J.C., Fang, J., Smith, A., Rohloff, P., Coelho, E., de Haas, F., de Souza, W., Coppens, I., Sibley, L.D., Moreno, S.N.,2010. Characterization of a novel organelle in Toxoplasma gondii with similar composition and function to the plant vacuole. Molecular microbiology 76,1358-1375.
    Mishima, M., Xuan, X., Shioda, A., Omata, Y., Fujisaki, K., Nagasawa, H., Mikami, T.,2001. Modified protection against Toxoplasma gondii lethal infection and brain cyst formation by vaccination with SAG2 and SRS1. The Journal of veterinary medical science/the Japanese Society of Veterinary Science 63,433-438.
    Montoya, J.G., Liesenfeld, O.,2004. Toxoplasmosis. Lancet 363,1965-1976.
    Mordue, D.G., Desai, N., Dustin, M., Sibley, L.D.,1999. Invasion by Toxoplasma gondii establishes a moving junction that selectively excludes host cell plasma membrane proteins on the basis of their membrane anchoring. The Journal of experimental medicine 190,1783-1792.
    Morisaki, J.H., Heuser, J.E., Sibley, L.D.,1995. Invasion of Toxoplasma gondii occurs by active penetration of the host cell. Journal of cell science 108 (Pt 6),2457-2464.
    Nagy, B., Lazar, L., Nagy, G., Ban, Z., Papp, Z.,2007. [Detection of Toxoplasma gondii in amniotic fluid using quantitative real-time PCR method]. Orvosi hetilap 148,935-938.
    Nicolle C, M.L.,1908. Sur une infection a'corps de Leishman (ou organismes voisins) du gondi. C. R. Hebd. Seances Acad. Sci.147,4.
    Nie, H., Fang, R., Xiong, B.Q., Wang, L.X., Hu, M., Zhou, Y.Q., Zhao, J.L.,2011. Immunogenicity and protective efficacy of two recombinant pseudorabies viruses expressing Toxoplasma gondii SAG1 and MIC3 proteins. Veterinary parasitology 181,215-221.
    Niedelman, W., Gold, D.A., Rosowski, E.E., Sprokholt, J.K., Lim, D., Farid Arenas, A., Melo, M.B., Spooner, E., Yaffe, M.B., Saeij, J.P.,2012. The rhoptry proteins ROP18 and ROP5 mediate Toxoplasma gondii evasion of the murine, but not the human, interferon-gamma response. PLoS pathogens 8, e1002784.
    O'Connell, E., Wilkins, M.F., Te Punga, W.A.,1988. Toxoplasmosis in sheep. II. The ability of a live vaccine to prevent lamb losses after an intravenous challenge with Toxoplasma gondii. New Zealand veterinary journal 36,1-4.
    Omata, Y., Aihara, Y., Kanda, M., Saito, A., Igarashi, I., Suzuki, N.,1996. Toxoplasma gondii: experimental infection in cats vaccinated with 60Co-irradiated tachyzoites. Veterinary parasitology 65,173-183.
    Opitz, C., Soldati, D.,2002.'The glideosome':a dynamic complex powering gliding motion and host cell invasion by Toxoplasma gondii. Molecular microbiology 45,597-604.
    Opsteegh, M., Teunis, P., Zuchner, L., Koets, A., Langelaar, M., van der Giessen, J.,2011. Low predictive value of seroprevalence of Toxoplasma gondii in cattle for detection of parasite DNA. International journal for parasitology 41,343-354.
    Pappas, G., Roussos, N., Falagas, M.E.,2009. Toxoplasmosis snapshots:global status of Toxoplasma gondii seroprevalence and implications for pregnancy and congenital toxoplasmosis. International journal for parasitology 39,1385-1394.
    Parussini, F., Tang, Q., Moin, S.M., Mital, J., Urban, S., Ward, G.E.,2012. Intramembrane proteolysis of Toxoplasma apical membrane antigen 1 facilitates host-cell invasion but is dispensable for replication. Proceedings of the National Academy of Sciences of the United States of America 109,7463-7468.
    Peixoto, L., Chen, F., Harb, O.S., Davis, P.H., Beiting, D.P., Brownback, C.S., Ouloguem, D., Roos, D.S.,2010. Integrative genomic approaches highlight a family of parasite-specific kinases that regulate host responses. Cell host & microbe 8,208-218.
    Petersen, E., Nielsen, H.V., Christiansen, L., Spenter, J.,1998. Immunization with E. coli produced recombinant T. gondii SAG1 with alum as adjuvant protect mice against lethal infection with Toxoplasma gondii. Vaccine 16,1283-1289.
    Pfaff, A.W., Abou-Bacar, A., Letscher-Bru, V, Villard, O., Senegas, A., Mousli, M., Candolfi, E.,2007. Cellular and molecular physiopathology of congenital toxoplasmosis:the dual role of IFN-gamma. Parasitology 134,1895-1902.
    Pita Gondim, L.F., Barbosa, H.V., Jr., Ribeiro Filho, C.H., Saeki, H.,1999. Serological survey of antibodies to Toxoplasma gondii in goats, sheep, cattle and water buffaloes in Bahia State, Brazil. Veterinary parasitology 82,273-276.
    Plattner, F., Yarovinsky, F, Romero, S., Didry, D., Carlier, M.F., Sher, A., Soldati-Favre, D.,2008. Toxoplasma profilin is essential for host cell invasion and TLR11-dependent induction of an interleukin-12 response. Cell host & microbe 3,77-87.
    Qu, D., Wang, S., Cai, W., Du, A.,2008. Protective effect of a DNA vaccine delivered in attenuated Salmonella typhimurium against Toxoplasma gondii infection in mice. Vaccine 26, 4541-4548.
    Qu, D., Yu, H., Wang, S., Cai, W., Du, A.,2009. Induction of protective immunity by multiantigenic DNA vaccine delivered in attenuated Salmonella typhimurium against Toxoplasma gondii infection in mice. Veterinary parasitology 166,220-227.
    Quan, J.H., Chu, J.Q., Ismail, H.A., Zhou, W., Jo, E.K., Cha, G.H., Lee, Y.H.,2012. Induction of protective immune responses by a multiantigenic DNA vaccine encoding GRA7 and ROP1 of Toxoplasma gondii. Clinical and vaccine immunology:CVI 19,666-674.
    Rachinel, N., Buzoni-Gatel, D., Dutta, C, Mennechet, F.J., Luangsay, S., Minns, L.A., Grigg, M.E., Tomavo, S., Boothroyd, J.C., Kasper, L.H.,2004. The induction of acute ileitis by a single microbial antigen of Toxoplasma gondii. J Immunol 173,2725-2735.
    Ravindran, S., Boothroyd, J.C.,2008. Secretion of proteins into host cells by Apicomplexan parasites. Traffic 9,647-656.
    Reiss, M., Viebig, N., Brecht, S., Fourmaux, M.N., Soete, M., Di Cristina, M, Dubremetz, J.F., Soldati, D.,2001. Identification and characterization of an escorter for two secretory adhesins in Toxoplasma gondii. The Journal of cell biology 152,563-578.
    Riemann, H.P., Meyer, M.E., Theis, J.H., Kelso, G., Behymer, D.E.,1975. Toxoplasmosis in an infant fed unpasteurized goat milk. The Journal of pediatrics 87,573-576.
    Robert-Gangneux, F., Darde, M.L.,2012. Epidemiology of and diagnostic strategies for toxoplasmosis. Clinical microbiology reviews 25,264-296.
    Rome, M.E., Beck, J.R., Turetzky, J.M., Webster, P., Bradley, P.J.,2008 Intervacuolar transport and unique topology of GRA14, a novel dense granule protein in Toxoplasma gondii. Infection and immunity 76,4865-4875.
    Rosowski, E.E., Lu, D., Julien, L., Rodda, L., Gaiser, R.A., Jensen, K.D., Sacij, J.P.,2011. Strain-specific activation of the NF-kappaB pathway by GRA15, a novel Toxoplasma gondii dense granule protein. The Journal of experimental medicine 208,195-212.
    Sacks, J.J., Roberto, R.R., Brooks, N.F.,1982. Toxoplasmosis infection associated with raw goat's milk. JAMA:the journal of the American Medical Association 248,1728-1732.
    Saeij, J.P., Arrizabalaga, G., Boothroyd, J.C.,2008. A cluster of four surface antigen genes specifically expressed in bradyzoites, SAG2CDXY, plays an important role in Toxoplasma gondii persistence. Infection and immunity 76,2402-2410.
    Santos, J.M., Ferguson, D.J., Blackman, M.J., Soldati-Favre, D.,2011. Intramembrane cleavage of AMA1 triggers Toxoplasma to switch from an invasive to a replicative mode. Science 331, 473-477.
    Savva, D., Morris, J.C., Johnson, J.D., Holliman, R.E.,1990. Polymerase chain reaction for detection of Toxoplasma gondii. Journal of medical microbiology 32,25-31.
    Sedegah, M., Rogers, W.O., Belmonte, M., Belmonte, A., Banania, G., Patterson, N.B., Rusalov, D., Ferrari, M., Richie, T.L., Doolan, D.L.,2010. Vaxfectin enhances both antibody and in vitro T cell responses to each component of a 5-gene Plasmodium falciparum plasmid DNA vaccine mixture administered at low doses. Vaccine 28,3055-3065.
    Seng, S., Makala, L.H., Maki, Y., Choi, Y., Yokoyama, M., Suzuki, N., Toyoda, Y., Nagasawa, H.,2002. Unresponsiveness to surface antigen 1 modifies cytokine profiles in acute Toxoplasma gondii infection. Pathobiology:journal of immunopathology, molecular and cellular biology 70, 237-246.
    Sharif, M., Gholami, S., Ziaei, H., Daryani, A., Laktarashi, B., Ziapour, S.P., Rafiei, A., Vahedi, M., 2007. Seroprevalence of Toxoplasma gondii in cattle, sheep and goats slaughtered for food in Mazandaran province, Iran, during 2005. Vet J 174,422-424.
    Sibley, L.D.,2003. Toxoplasma gondii:perfecting an intracellular life style. Traffic 4,581-586.
    Stormoen, M., Tharaldsen, J., Hopp, P.,2012. Seroprevalence of Toxoplasma gondii infection in Norwegian dairy goats. Acta veterinaria Scandinavica 54,75.
    Straub, K.W., Cheng, S.J., Sohn, C.S., Bradley, P.J.,2009. Novel components of the Apicomplexan moving junction reveal conserved and coccidia-restricted elements. Cellular microbiology 11, 590-603.
    Straub, K.W., Peng, E.D., Hajagos, B.E., Tyler, J.S., Bradley, P.J.,2011. The moving junction protein RON8 facilitates firm attachment and host cell invasion in Toxoplasma gondii. PLoS pathogens 7, e1002007.
    Su, C, Khan, A., Zhou, P., Majumdar, D., Ajzenberg, D., Darde, M.L., Zhu, X.Q., Ajioka, J.W., Rosenthal, B.M., Dubey, J.P., Sibley, L.D.,2012. Globally diverse Toxoplasma gondii isolates comprise six major clades originating from a small number of distinct ancestral lineages. Proceedings of the National Academy of Sciences of the United States of America 109, 5844-5849.
    Tenter, A.M., Heckeroth, A.R., Weiss, L.M.,2000. Toxoplasma gondii:from animals to humans. International journal for parasitology 30,1217-1258.
    Thiruvengadam, G, Init, I., Fong, M.Y., Lau, Y.L.,2011. Optimization of the expression of surface antigen SAG1/2 of Toxoplasma gondii in the yeast Pichia pastoris. Tropical biomedicine 28, 506-513.
    Travier, L., Mondragon, R., Dubremetz, J.F., Musset, K., Mondragon, M., Gonzalez, S., Cesbron-Delauw, M.F., Mercier, C.,2008. Functional domains of the Toxoplasma GRA2 protein in the formation of the membranous nanotubular network of the parasitophorous vacuole. International journal for parasitology 38,757-773.
    Virreira Winter, S., Niedelman, W., Jensen, K.D., Rosowski, E.E., Julien, L., Spooner, E., Caradonna, K., Burleigh, B.A., Saeij, J.P., Ploegh, H.L., Frickel, E.M.,2011. Determinants of GBP recruitment to Toxoplasma gondii vacuoles and the parasitic factors that control it. PloS one 6, e24434.
    Wahab, T., Edvinsson, B., Palm, D., Lindh, J.,2010. Comparison of the AF146527 and B1 repeated elements, two real-time PCR targets used for detection of Toxoplasma gondii. Journal of clinical microbiology 48,591-592.
    Wang, P.Y., Yuan, Z.G., Petersen, E., Li, J., Zhang, X.X., Li, X.Z., Li, H.X., Lv, Z.C., Cheng, T., Ren, D., Yang, G.L., Lin, R.Q., Zhu, X.Q.,2012. Protective efficacy of a Toxoplasma gondii rhoptry protein 13 plasmid DNA vaccine in mice. Clinical and vaccine immunology:CVI 19, 1916-1920.
    Wu, X.N., Lin, J., Lin, X., Chen, J., Chen, Z.L., Lin, J.Y.,2012. Multicomponent DNA vaccine-encoding Toxoplasma gondii GRA1 and SAG1 primes:anti-Toxoplasma immune response in mice. Parasitology research 111,2001-2009.
    Yamamoto, M., Standley, D.M., Takashima, S., Saiga, H., Okuyama, M., Kayama, H., Kubo, E., Ito, H., Takaura, M., Matsuda, T., Soldati-Favre, D., Takeda, K.,2009. A single polymorphic amino acid on Toxoplasma gondii kinase ROP16 determines the direct and strain-specific activation of Stat3. The Journal of experimental medicine 206,2747-2760.
    Yan, H., Tao, Y, Chen, H., Li, G, Gong, W., Jiao, H., Tian, F., Ji, M.,2012. Application and expression of Toxoplasma gondii surface antigen 2 (SAG2) and rhoptry protein 2 (ROP2) from recombinant Escherichia coli strain. Transactions of the Royal Society of Tropical Medicine and Hygiene 106,356-362.
    Yi, J.B., Wang, X.H., Mai, Z.G., Zhang, G., Li, L.Y., Lin, F.,2012. [Expression, purification and antigenicity of P35 gene of Toxoplasma gondii]. Zhongguo xue xi chong bing fang zhi za zhi = Chinese journal of schistosomiasis control 24,178-182.
    Yin, G, Qin, M., Liu, X., Suo, J., Suo, X.,2013. Expression of Toxoplasma gondii dense granule protein7 (GRA7) in Eimeria tenella. Parasitology research 112,2105-2109.
    Yu, H.J., Zhang, Z., Liu, Z., Qu, D.F., Zhang, D.F., Zhang, H.L., Zhou, Q.J., Du, A.F.,2011. Seroprevalence of Toxoplasma gondii infection in pigs, in Zhejiang Province, China. The Journal of parasitology 97,748-749.
    Yu, J., Xia, Z., Liu, Q., Liu, J., Ding, J., Zhang, W.,2007. Seroepidemiology of Neospora caninum and Toxoplasma gondii in cattle and water buffaloes (Bubalus bubalis) in the People's Republic of China. Veterinary parasitology 143,79-85.
    Yuan, Z.G., Zhang, X.X., Lin, R.Q., Petersen, E., He, S., Yu, M., He, X.H., Zhou, D.H., He, Y., Li, H.X., Liao, M., Zhu, X.Q.,2011. Protective effect against toxoplasmosis in mice induced by DNA immunization with gene encoding Toxoplasma gondii ROP18. Vaccine 29,6614-6619.
    Zhang, H., Zhou, D.H., Chen, Y.Z., Lin, R.Q., Yuan, Z.G., Song, H.Q., Li, S.J., Zhu, X.Q.,2010. Antibodies to Toxoplasma gondii in stray and household dogs in Guangzhou, China. The Journal of parasitology 96,671-672.
    Zhao, J., Deng, S., Liang, J., Cao, Y., Liu, J., Du, F., Shang, H., Cui, L., Luo, E.,2013. Immunogenicity, protective efficacy and safety of a recombinant DNA vaccine encoding truncated Plasmodium yoelii sporozoite asparagine-rich protein 1 (PySAP1). Human vaccines & immunotherapeutics 9.
    Zhou, D.H., Liang, R., Yin, C.C., Zhao, F.R., Yuan, Z.G., Lin, R.Q., Song, H.Q., Zhu, X.Q.,2010. Seroprevalence of Toxoplasma gondii in pigs from southern China. The Journal of parasitology 96,673-674.
    Zhou, H., Gu, Q., Zhao, Q., Zhang, J., Cong, H., Li, Y., He, S.,2007. Toxoplasma gondii:expression and characterization of a recombinant protein containing SAG1 and GRA2 in Pichia pastoris. Parasitology research 100,829-835.
    Zou, F.C., Sun, X.T., Xie, Y.J., Li, B., Zhao, G.H., Duan, G., Zhu, X.Q.,2009. Seroprevalence of Toxoplasma gondii in pigs in southwestern China. Parasitology international 58,306-307.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700