用户名: 密码: 验证码:
三维模型语义检索相关问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着三维模型数据的不断增加及其应用领域的不断扩大,三维模型语义检索作为更智能化的检索方式,越来越受到人们的关注。三维模型语义检索是在三维模型语义知识提取、标注的基础上,在检索过程中利用语义知识查找模型的方式。语义检索方式对三维模型的检索和重用起到关键作用。针对基于语义检索方式的知识数据库的建立、知识提取、语义度量等关键问题,在建立三维模型本体知识网的基础上,围绕基于语义的三维模型检索展开研究,具体内容如下:
     1.针对检索中的三维模型几何特征提取问题,提出了相对角度直方图特征,并在该特征的基础上提出了基于相对角度直方图聚类的三维模型检索方法。该方法简单、有效,且满足旋转、平移、缩放不变性,具有较强的鲁棒性。在实验中该算法平均准确率可达85%以上,与其它统计特征提取方法进行比较而言,有效提高了三维模型的检索效率。
     2.针对三维模型检索中的无监督自动分类问题,根据实际采样到的三维模型数据所在的低维流形在局部是线性的、且每个采样点可以用它的近邻点线性表示的思想,最终将非线性问题线性化。在无监督的鉴别映射方法和局部保持映射方法的基础上,提出了一种基于半监督正交局部保持映射的三维模型分类算法。该算法利用大规模三维模型的流形结构,将观测数据映射为低维数据,提高三维模型的正确识别率。实验结果表明该算法能够有效地解决大规模三维模型的无监督分类问题。
     3.针对三维模型检索中有监督自动分类问题,基于隐马尔科夫模型的图像分类基础上,提出了一种基于二维隐马尔科夫模型的三维模型自动分类方法。该方法根据有监督机器学习原理,通过对少量已知样本进行学习,构建二维隐马尔科夫模型,以实现对未知样本的自动分类。实验表明该方法能够有效解决三维模型细分类问题。
     4.针对三维模型语义网构建问题,定义了基于三维模型应用本体的语义网,并在此基础上定义了三维模型应用本体描述方法和分层的语义网快速搜索策略。根据三维模型知识数据库的层级结构,在WordNet基础上进行扩展,采用树形拓扑结构构建了三维模型本体语义网。实验结果表明,该方法更符合三维模型数据库的组织结构,在三维模型语义检索中提高了检索速度和准确性。
     5.针对三维模型语义相关性度量问题,提出了基于三维模型本体属性的快速语义度量方法。该方法从人类认知学的角度,利用深度函数和广度函数度量三维模型的相关性。实验结果表明,该方法克服了传统语义度量计算中复杂度高,在三维模型检索中反馈结果不理想的问题;返回的结果相关性更高,更符合人的普遍认知。基于上述理论基础,设计和实现了三维模型语义检索系统。该系统具有良好的可扩展性,为深入开展基于语义的检索研究奠定基础。
With rapid increases in3D models and continuous expansion, the semantic-based3D model retrieval as one of intelligent search methods attracts more and more attentions. Semantic-based retrieval is a model-searching way by using semantic knowledge based on knowledge extraction and semantic relatedness measure. Semantic-based retrieval plays a key role in3D model retrieval and reuse. As for the key problems of the semantic knowledge database creation, knowledge extraction, semantic metrics, based on the establishment of three-dimensional model, the semantic retrieval methods are studied as follows:
     1. Centering on the problem of how to extract geometric information feature of3D model, a feature extracting method is proposed based on the statistical characteristic--relative Angle histogram. The method satisfies invariance of the rotation, translation, scaling and has strong robustness. Comparing with other classical statistical feature extraction methods, this method has high retrieval recall and precision rates, and the average accuracy rate is over85%, which greatly improves the efficiency of three-dimensional model retrieval. The experimental results show that the proposed method is effective and feasible for semantic retrieval.
     2. Aiming at the problem of automatic classification of the three dimensionality (3D) models, according to the fact that the actual obtained data is always local linear in a low-dimensional manifold and each sample point can be represented with its neighbors, based on the UDP and LPP algorithms, a SSOLPP method is proposed and is applied to the3D-model-automatic-classification. The method makes use of the manifold structure of the large and high dimensionality data. The original data are projected to a low-dimensionality subspace by using the proposed method. In the low-dimensionality subspace, the within-class data are near to each other and the between-class data are far from each other. The experimental results on a real database show the effectiveness and feasibleness of the proposed method.
     3. Aiming at the problem of supervised automatic classification, a kind of automatic classification method is proposed by using two-dimensional Hidden Markov Models. In the method, two-dimensional Hidden Markov Models are constructed by prior knowledge based on the machine learning theory. The experimental performance provide evidences that the proposed method can effectively improve the classification efficiency and accuracy of3D models repository.
     4. Aiming at the problem of build semantic web, the3D model ontology is defined and a layered semantic web search strategy is described. The ontology semantic web is constructed by using the hierarchical structure of knowledge database and based on WordNet extensions. The experimental results show that the method is more in line with the organizational structure of a3D model database and improves the recall ratio and precision of semantic retrieval and retrieval speed.
     5. Facing with the problem of semantic relatedness measurement for3D model ontology, a quick semantic-measurement method is proposed based on the features of the3D model. The method makes use of the human cognitive approach and the depth and breadth function to determine the relevance of the model. The experimental results show the propoed method has higher correlation with3D models and thus more consistent with general human perception. Based on the above analysis, a three-dimensional model of the semantic retrieval system and semantic search platform are designed and implemented. The platform has good scalability, which carry out the basis for the study of semantic retrieval.
引文
[1]胡国飞.三维数字表面去噪光顺技术研究[D].杭州:浙江大学,2005
    [2]董锦菊.逆向工程中数据测量和点云预处理研究[D].西安:西安理工大学,2007
    [3]Gross M., Pfister H., Zwieker M., et al. Point-Based Computer Graphics[R]. Eurographics Association Computer Graphics, 2004,24(4):22-23
    [4]李乐庆.基于点云的模型重建与绘制研究[D].西安:西北大学,2009
    [5]3D model search engine, http://shape.cs.princeton.edu
    [6]http://www.dbs.informatik.uni-muenchen.de/Forschung/Similarity/Demo/protein
    [7]http://merkurOl.inf.uni-konstanz.de/CCCC/intro.html
    [8]Suzuki M., Kato T., Otsu N. A similarity retrieval of 3d polygonal models using rotation invariant shape descriptors[C]. Proceedings of IEEE International Conference on System,Man, and Cybernetics, Nashville, Tennessee,2000,2946-2952
    [9]Kazhdan M., Chazelle B., Dobkin D., et al. Areflective symmetry desripyor[C]. Proceedings of European Conferenceon Computer Vision.2002:642-656
    [10]Cyr C., Kimia B.3d object recognition using shape similarity based aspect graph[C]. Proceedings of IEEE International Conference on Computer Vision, Vabcouver, 2001:254-261
    [11]Vranic D.V., Saupe D., Richter J. Tools for 3D-object retrieval:Karhunen-Loeve transform and spherical harmonics [A]. In:Proceedings of the IEEE 2001 Workshop Mulimedia Signal Processing.2001:293-298
    [12]Vranic D.V., Saupe D.3D model retrieval[A]. In:Proceedings of Spring Conference on Computer Graphics 2000.2000:89-93
    [13]杨育彬,林珲,朱庆.基于内容的三维模型检索综述[J].计算机学报,2004:27(10):1297-1310
    [14]美国国家癌症研究NCI DIS 3D模型库[EB/OL].[2008-12-1] http://dtp.nci.nih.gov/docs/3d_database/dis3d.html
    [15]美国MDL信息系统有限公司化学品模型库.[EB/OL].[2008-12-1] http://www.mdl.com/solutions/videos/#discoverygate
    [16]Paquet E., Rioux M. A content-based search engine for VRML daabases[C]. In Proceedings of Computer Vision and Pattern Recognition.1998:541-546
    [17]Elad M., Tal A., Ar S. Content based retrieval of VRML Objects-an iterative and interactive approach[C]. In The 6th Eurographics Workshop in Multimedia, Manchester. 2001
    [18]Thomas F., Patrick M., Michael K., et al. A search engine for 3D models[C]. ACM Transactions on Graphics, 2003,22(1)
    [19]Vranic D. V., Sque D., Richter J. Tools for 3D-object retrieval: Karhunen-loeve transform and spherical harmonics[C]. In IEEE 2001 Workshop on Multimedia Signal Processing, 2001:293-298
    [20]Ohbuchi R., Otagiri T., Ibato M., et al. Shape similarity search of three-dimensional models using parameterized statistics[C]. In Proceedings of Pacific Graphics, 2002: 265-274
    [21]Tang Jinhui, Zha Zheng Jun, Tao Dacheng, et al. Semantic-Gap-Oriented Active Learning for Multilabel Image Annotation[J]. Image Processing, IEEE, 2012,21(4): 2354
    [22]Suzuki K., Nagao M. Image retrieval using sketched image on multimedia networks: new criteria for designing new type of TV sets[J]. Consumer Electronics. 2000, 46(1):227-236
    [23]Bart E., Ullman S. Single-example learning of novel classes using representation by similarity[C]. In BMVC, 2005
    [24]Li Feifei, Fergus R., Perona P. One-shot learning of object categories[J]. PAMI, 2006,28(4):594-611
    [25]Fink M. Object classification from a single example utilizing class relevance pseudo-metrics[C]. In NIPS, 2004
    [26]Barnard K., Duygulu P., Forsyth D. A., et al. Matching words and pictures[J]. Machine Learning Research, 2003,3:1107-1135
    [27]Osada R., Funkhouser T., Chazelle B., et al. shape distributions[J]. ACM Tansactionson and Graphics, 2002,21 (4):807-832
    [28]Bart E., Ullman S. Cross-generalization: Learning novel classes from a single example by feature replacement[C]. InvCVPR, 2005
    [29]Wang H., Jiang X., Chia L.T., et al. Ontology enhanced web image retrieval:aided by wikipedia & spreading activation the-ory[C]. In MIR, 2008
    [30]Zweig A., Weinshall D. Exploiting object hierarchy: Combining models from different category levels[C]. In ICCV, 2007
    [31]McNab R. J., Smith L. A., Witten Ian H., et al.Towards theDigital Music Library: Tune Retrieval from Acoustic Input[C]. In Proceedings of the ACM Digital Libraries,1996:11-18
    [32]Pfeiffer S., Fischer S., Effelsberg W. Automatic Audio Content Analysis[C]. In Proceedings of the Fourth ACM International Multimedia Conference, 1996:21-30
    [33]Foote J. T. Content-Based Retrieval of Music and Audio[J]. Multimedia Storage and Archiving Systems Ⅱ, Proceedings of SPIE, 1997,3229:138-147
    [34]Hawley M. The Personal Orchestra, or Audio Data Compression by 10000:1[J]. Computing Systems, 1990,3(2):289-329
    [35]Ghias A., Logan H., Chamberlin D., et al. Query by Humming: Musical Information Retrieval in an Audio Database[C]. In Proceedings of Third ACM International Conference on Multimedia, 1995,231-236
    [36]McNab R. J., Smith L. A., Bainbridge D., et al. The New Zealand Digital Library MELody index[Z]. D-Lib Magazine, 1997. Http://www.dlib.org/dlib/may97/ meldex/05witten.html
    [37]Wu S., Manber U. Fast Text Searching Allowing Errors[C]. Communications of ACM, 1992,83-91
    [38]Chen B. J., Jang J., Roger S. Query by Singing[C]. In Proceedings of the 11st Conference on Computer Vision, Graphics, and Image Processing, Taiwan, 1998, 529-536
    [39]Bates M. J. The design of brwosing and berrypicking techniques for the online search interface. MCB UP Ltd.1977,13:407-424
    [40]Bates M. J. Where should the person stop and the information search inter-face start? [J]. Information Processing and Management,26(5):575-591
    [41]Belkin N. J. Anomalous states of knowledge as a basis for information retrieval[J]. Canadian Journal of Information Science,5,133-143
    [42]Belkin N. J., Cool C. The concept of information seeking strategies and its use in the design of information retrieval systems[R]. AAAI Spring Symposium on Case-Based Reasoning and Information Retireval, Stanford,CA, March 1993
    [43]Belkin N.J., Cool C., Stein A., et al. Scripts for information seeking strategies[C]. the AAAI Spring Symposium on Case-Based Rea-soning and Information Retireval, Stanford, CA, March 1993
    [44]Belkin N. J., Marchetti P.G Determining the functionality and features of an intelligent interface to an information retrieval system[C]. Proceedings of the 13th International Conference on Research and Development in Information Retrieval. Brussels. Universitaires de Bruxelles,151-177
    [45]Belkin N.J., Marchetti P.G., Cool C. BRAQUE: Design of an interface to support user interaction in information retrieval[J]. Information Processing and Management,29(3):325-344
    [46]Belkin, N.J., Oddy R.N., Brooks H. M. ASK for information retrieval:Parts 1 & 2[J]. Journal of Documentation,38,2/3:61-71,145-164
    [47]Belkin N. J., Seeger T., Wersig G. Distributed expert problem treatment as a model for information system analysis and design[J]. Journal of Information Science, 5(5): 152-167
    [48]Belkin N. J, et al. Taking account of user tasks, goals and behavior for the design of online public access catalogs[C]. In: Proceedings of the 53rd ASIS Annual Meeting. Medford N J, Learned Information Inc,69-79
    [49]Daniels P. J. The user modelling function of an intelligent interface for doc-ument retrieval systems [D]. Ph.D. Thesis, Department of Information Science, The City University, London, UK
    [50]Bustos B., Keim D., Saupe D., et al. Content-based 3D object retrieval[J]. IEEE Computer Graphics and Applications,2007, 27(4):22-27
    [51]Havemann S., Fellner D. Seven research challenges of generalized 3D documents[J]. IEEE Computer Graphics and Applications,2007,27(3):70-76
    [52]Zheng Qin, Ji Jia, Jun Qin. Content based 3D model retrieval:A survey[C]. Content-Based Multimedia Indexing, 2008. CBMI 2008. International Workshop on, 249-256
    [53]Pratt M. Extension of ISO 10303:The Step Standard, for the Exchange of Procedural Shape Models[C]. Proc. Int'l Conf Shape Modeling and Applications (SMI), 2004, pp. 317-326
    [54]Wei Wei, Jinjie Lin, Jiabin Ruan, et al. A novel user interface design for 3D model retrieval[C]. Information and Automation, 2008. ICIA 2008. International Conference on, 1845-1850
    [55]Gal R., Cohen-Or D.. Salient Geometric Features for Partial Shape Matching and Similarity[J]. ACM Trans. Graphics,2006,25(1):130-150
    [56]Bustos B. Content-Based 3D Object Retrieval[J]. IEEE Computer Graphics & Applications,2007,27(4):22-27
    [57]Kato T.Database architecture for content-based image retrieval[C]. Proc. SPIE of Image Storage and Retrieval Systems,1992,1662:112-123
    [58]Flickner M., Sawhmey H., Niblack W., et al. Query by image and video content: The QBIC system[J]. IEEE Journal on Computer, 1995,28(9):23-32
    [59]Gevers T., Smeulders A. Combining color and shape invariant features for image retrieval[J]. IEEE Trans. on Image Processing,2000,9(1):102-119
    [60]Smith J., Chang S. F. Visual SEEK: A fully automated content-based image query system[C]. ACM International Conference on Multimedia, 1997
    [61]Vailaya A., Figueiredo M. A. T., Jain A. K., et al. Image classification for Content-based Indexing[J]. IEEE Trans. on Image Processing, 2001,10(1):117-130
    [62]Li J., Wang J. Z. Real-Time Computerized Annotation of Pictures [J]. IEEE Trans, on Pattern Analysis and Machine Intelligence, 2008,30(6):985-1002
    [63]Iqbal Q., Aggarwal J. K. Retrieval by classification of images containing large manmade objects using perceptual grouping[J]. Pattern Recognition Journal, 2002,35(7):1463-1479
    [64]Carneiro G, Chan A. B., Moreno P. J., et al. Supervised Learning of Semantic Classes for Image Annotation and Retrieval[J]. IEEE Trans. on Patten Analysis and Machine Intelligence, 2007,29(3)
    [65]Boutell M. R. Probabilistic Modeling of Semantic Scene Classification[R]. URCS Technical Report, May 2005
    [66]Zhou Z. H., Zhang M.L. Multi-Instance Multi-Label Learning with Application to Scene Classification[J]. Advances in Neural Information Processing Systems,2007, 19:1609-1616
    [67]Vogel J., Schiele B. Semantic Modeling of Natural Scenes for Content-Based Image Retrieval[J]. International Journal of Computer Vision, 2007,72(2):133-157
    [68]Rabinovich A., Vedaldi A., Galleguillos C., et al. Objects in Context[C]. International Conference on Computer Vision, 2007,1-8
    [69]Strat T, Fischler M.. Context-based Vision: Recognizing Objects Using Information from both 2-d and 3-d Imagery [J]. Pattern Analysis and Machine Vision, 1991,13(10):1050-1065
    [70]Torralba A. Contextual Priming for Object Detection[J]. International Journal of Computer Vision, 2003,53(2):153-167
    [71]潘祥,张三元,叶修楨.三维模型语义检索研究进展[J].计算机学报,2009,32(6):1069-1073
    [72]Vandeborre J., Couillet V., Daoudi M. A practical approach for 3D model indexing by combining local and global invariants[C]. In Proceedings of the 1st International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT'02), 2002
    [73]Osada R., Funkhouser T., Chazelle B. shape distributions[J]. ACM Tansactionson GraPhies, 2002,21(4):807
    [74]Ohbuchi R., Otagiri T., Ibato M., et al. Shape similarity search of three-dimensional models using parameterized statistics[C].10th Pacific Conference on Computer Graphics and Applications, Proceedings,2002:265-274
    [75]Kastenmuller A.M.G., Kriegel H.P., et al. 3D shape histograms for similarity search and classification in spatial databases[J]. Advances in Spatial Databases, 1999, 1651:207-226
    [76]Suzuki M.T., Kato T., Otsu N. A similarity retrieval of 3D polygonal models using rotation invariant shape descriptors[C]. Smc 2000 Conference Proceedings: 2000 IEEE International Conference on Systems, Man & Cybernetics, 2000,1(5): 2946-2952
    [77]Mokhtarian F., Abbasi S., Kittler J. Robust and efficient shape indexing through curvature scale space[C]. In Proceedings of British Machine Vision Conference, 1996:53-62
    [78]Tangelder J.W.H., Veltkamp R.C. Polyhedral model retrieval using weighted point sets[C].SMI 2003:Shape Modeling International 2003, Proceedings, 2003:119-129.
    [79]Zhang C., Chen T.H. Efficient feature extraction for 2D/3D objects in mesh representation[C].2001 International Conference on Image Processing,2001,3: 935-938
    [80]Novotni M., Klein R A geometric approach to 3D objectcomparison[C]. International Conference on Shape Modeling and Applications, Proceeding, 2001:167-175
    [81]Vranic DV., Saupe D. A Feature Vector Approach for Retrieval of 3D Objects in the Context of MPEG-7[C]. In International Conference on Augmented Virtual Environments and Three-Dimensional Imageing, Mykonos, Greece, May 2001,37-40
    [82]Thomas F.H., Patrick M., Michael K., et al. A search engine for 3D models [J], ACM Transactions on Graph2 ices',2003,22(1):83-105
    [83]Michael K., Thomas F. Harmonic3D shape matching [A]. In:Computer Graphics Proceedings Annua Conference Series, ACMSIGGRAPH Technical Sketch, San Autonio, Texas, 2002
    [84]Vranic DV, Saupe D. Description of 3D 2shape using a complex function on the sphere [A]. In: Proceedings of the IEEE Inter2 national Conference on Multi media and Expo (ICME2002), Lausanne, Switzerland, 2002,177-180
    [85]Chen D.Y., Tian P., Shen Y.T., et al. On visual similarity based 3D model retrieval[C]. Computer Graphics Forum,2003,22(3):223-232
    [86]Horn B.K.P. Extended Gaussian Images[C]. Proceedings of the IEEE, 1984,72(12):1671-1686
    [87]Ankerst M., Kastenmuller G., Kriegel H.P., et al.3D Shape Histograms for Similarity Search and Classicifiation in Spatial Databases[C]. Proc. of 6th Inter-national Symposium on Advances in Spatial Databases(SSD), Hong Kong, China, 1999,207-228
    [88]Chen D.Y., Ouhyoung M. A 3D Object Retrieval System Based on Multi-Resolution Reeb Graph[C]. Proc.of Computer Graphics Workshop, 16, Tainan, Taiwan,2002
    [89]Jeannin S., Cieplinski L., Ohm J. R. et al. MPEG-7 Visual part of eXperimentation Model Ver-sion 7.0, ISO/IEC JTC1/SC29/WG11/N3521, Beijing,China, 2000
    [90]Elad M., Tal A., S. Ar. Content Based Retrieval of VRML Objects-An Iterative and Interactive Ap-proach[C]. Proc. of 6th Eurographics Workshop on Mul-timedia, 97-108, Manchester UK, Sept. 2001
    [91]Assfalg J., Bertini M., Bimbo A.D., et al. Content-Based Retrieval of 3D Objects Using Spin Image Signatures[J]. Browse Journals & Magazines,2007, 9 (3)
    [92]Assfalg J., DelBimbo A., Pala P. Curvature maps for 3D CBR[C]. Proc. Int. Conf. Multimedia and Expo (ICME'03), Baltimore, MD, 2003
    [93]Berchtold S., Kriegel H. P. S3:Similarity search in CAD database systems[C]. in Proc. the ACM SIGMOD Int. Conf. Management of Data, Tucson, AZ, May 1997, 564-567
    [94]Bezdek J. C., Keller J., Krishnapuram R., et al. Fuzzy Models and Algorithms for Pattern Recognition and Image Processing[M]. Boston, MA: Kluwer, 1999
    [95]Del Bimbo A. a Perspective view on Visual Information Retrieval System[C]. Content-Based Access of Image and Video Libraries, 1998. Proceedings. Santa Barbara,1999:108-109
    [96]Mukherjea S, Chost J. Automatically determining semantics for world wide Web multimedia information retrieval[J]. Journal of Visual Languages and Computing, 1999,10(6):585-606
    [97]Min P., Kazhdan M., Funkhouser T. A. A comparison of text and shape matching for retrieval of online 3D models[C]. Proceedings of the European Conference on Digital Libraries. Bath, UK,2004:209-220
    [98]El-Mehalawi M., Allen M. R. A database system of mechanical components based on geometric and topological similarity. Part Ⅰ: Representation[J]. Computer-Aided Design, 2003,35(1):83-94
    [99]Peabody M., Regli W. C. Clustering techniques for databases of CAD models [Ph.D. dissertation]. Drexel University, Philadelphia, 2000
    [100]Cicirello V., Regli W. C. Machining feature-based comparisons of mechanical parts[C]. Proceedings of the International Conference on Shape Modeling and Applications. Genova, Italy, 2001:176-185
    [101]王玉,马浩军,何玮.机械3维CAD模型的聚类和检索[J].计算机集成制造系统,2006,12(6):924-928
    [102]刘金山,廖文和,张素敏.基于零件特征关注度的夹具实例相似性检索方法[J].计算机辅助设计与图形学学报,2007,19(10):1303-1307
    [103]Liu D. Z., Razdan A. Knowledge-based search engine for specific 3D models[R].Knowledge-Based Search Engine for Specific 3D Models. 2004,3314: 530-537
    [104]Zhou X. H., Qiu Y. J., Hua G. R. A feasible approach to the integration of CAD and CAPP[J]. Computer-Aided Design, 2007, 39(4):324-348
    [105]Deshmukh A. S., Banerjee A. G, Gupta S. K. Content-based assembly search: A step towards assembly reuse[J]. Computer Aided Design, 2008,40(2):244-261
    [106]Attene M., Biasotti S., Mortara M., Patane G, et al. Computational methods for understanding 3D shapes[J]. Computers & Graphics, 2006,30(3):323-333
    [107]刘忠伟,章毓晋.利用局部累加直方图进行彩色图象检索[J].中国图象图形学报,1998,3(1):533-537
    [108]Attneave F. Dimensions of Similarity [J]. Americal Journal of Psychology, 1950 (1)63:516-556
    [109]Sundar H., Silver D., Gagvani S., et al.Skeleton based shape matching and retrieval[C]. Shape Modelling Intational(SMI), Seoul,2003,130-139
    [110]Gagvani N. Parameter controlled volume thinning [J].Graphical Models and Image Processing.1999, 61(3):149-164
    [111]Amenta N., Choi S, Kolluri R K. The power crust, union of balls and the medial axis transform[J]. Computational Geometry: Theory and Applications, 2001,19(2/3):127-153
    [112]Amenta N., Choi S., Kolluri R K. The power crust[A]. In: Proceedings of the 6th ACM Symposium on Solid Modeling, Ann Arbor, Michigan, 2001,249-260
    [113]Funkhouser T., Kazhdan M., Shilane P. Modeling by example. ACM Transactions on Graphics, 2004,23(3):652-663
    [114]Razdan A., Rowe J., Tocheri M., et al. Adding semantics to 3D digital libraries//Proceedings of the International Conference on Asian Digital Libraries. Singapore, 2002,419-420
    [115]Albertoni R., Papaleo L., Robbiano F., et al. Towards a conceptualization for shape acquisition and processing[C]. Proceedings of the International Symposium on Shapes and Semantics. Matsushima, Japan, 2006,85-90
    [116]Amresh A., Farin G., Razdan A. Adaptive Subdivision Schemes for Triangular Meshes[M]. Hierarchical and Geometric Methods in Scientific Visualization. edited by Farin G., Hagen H, Hamann B, Springer-Verlag,2002
    [117]Brooks S., Suchey J.M. Skeletal age determination based on the os pubis: a comparison of the Acsadi-Nemeskeri and Suchey-Brooks methods. Human Evolution 1990,5 (3):227-238
    [118]Farin G Curves and Surfaces for CAGD[M]. Morgan-Kaufmann, 2001
    [119]Farin G History of Curves and Surfaces in CAGD[C]. In: Handbook of CAGD, Farin G, Kim MS, Hoschek J (eds), Elsevier, 2002
    [120]Hsiao DK. Federated databases and systems:Part-one-a tutorial on their data sharing[J]. VLDB Journal, 1992,1:127-179
    [121]Kurita T., Kato T. Learning of personal visual impression for image database systems[C]. Proceedings of the International Conference on Document Analysis and Recognition.Tsukuba, Japan, 1993,547-552
    [122]Salton G. Automatic Text Processing The Transformation, Analysis, and Retrieval of Information by Computer[M]. Boston: Addison-Wesley, 1989
    [123]Rui Y., Huang T S., Ortega M. Relevance feedback:A power tool for interactive content-based image retrieval [J]. IEEE Transactions on Circuits and Video Technology, 1999,8(5):644-655
    [124]Zhou X S., Huang T S. Relevance feedback in image retrieval:A comprehensive review[J]. Multimedia System, 2003,8(6):536-544
    [125]Elad M., Tal A., Ar S. Content based retrieval of vrml objects)An iterative and interactive approach[C]. Proceedings of the 6th Eurographics Workshop on Multimedia. Manchester, UK, 2001:107-118
    [126]Leifiman G., Meir R., Tal A. Semantic-oriented 3D shape retrieval using relevance feedback[J]. The Visual Computer, 2005,21(8):865-875.
    [127]Novotni M., Park G. J., Wessel R. Evaluation of kernel based methods for relevance feedback in 3D shape retrieval[C]. Proceedings of the Workshop on Content-based Multimedia Indexing. 2005
    [128]Leng B., Qin Z., Li L Q. Support vector machine active learning for 3D model retrieval. Journal of Zhejiang University Science A, 2007,8(12):1953-1961
    [129]刘晓明,尹建伟,冯志林等.基于适应加权非对称AdaBoost HMM的三维模型分类算法[J].浙江大学学报,2006,40(8):1300-1305
    [130]Barutcuoglu Z., Decoro C. Hierarchical shape classification using Bayesian aggregation[C]. Proceedings of the International Conference on Shape Modeling and Applications. Matsushima, Japan, 2006:44-50
    [131]Suzuki M., Kato T., Tsukune H. 3D object retrieval based on subjective measures[C]. Proceedings of the International Conference on Database and Expert Systems Applications. Vienna, Austria, 1998:850-855
    [132]Ibato M., Otagiri T., Ohbuchi R. Shape similarity search of three dimensional models based on subjective measures[C]. Information Processing Society of Japan: Technical Report 2002-CG-106,2002
    [133]Hou S., Lou K., Ramani K. Svm-based semantic clustering and retrieval of a 3D model database[J]. Journal of Computer Aided Design and Application, 2005,2(1): 155-164
    [134]Goodall S., Lewis P H, Martinez K. Towards automatic classification of 3-D museum artifacts using ontological concepts[C]. Proceedings of the International Conference on Image and Video Retrieval, Singapore,2005,435-444.
    [135]Ohbuchi R., Kobayashi J. Unsupervised learning from a corpus for shape-based 3D model retrieval[C]. Proceedings of the ACM International Workshop on Multimedia Information Retrieval. Santa Barbara, CA, USA, 2006,163-172
    [136]Ohbuchi R., Kobayashi J. Manifold learning of a corpus for 3D model retrieval[C]. Proceedings of the Pacific Graphics.Taiwan, China,2006:117-126
    [137]Kobayashi J., Yamamoto A., Shimizu T., et al. A data-base-adaptive distance measure for 3D model retrieval[C]. Proceedings of the SHREC CAD Model Track. Lyon,2007,12-14
    [138]Zhou X.S., Huang T. S. Unifying keywords and visual contents in image retrieval[J]. IEEE Multimedia, 2002,9(2):23-33
    [139]Barutcuoglu Z., ESchapire R., Troyanskaya Olga G Hierarchical multi-label prediction of gene function[J]. Bioinformatics, 2006,22(7):830-836
    [140]Bishop Christopher M. Neural Networks for Pattern Recognition[M]. Oxford University Press, 1995
    [141]CBurges C.J. Atutorial on support vector machines for pattern recognition[J]. Data Mining and Knowledge Discovery, 1998,2(2):121-167
    [142]Funkhouser T., Min P., Kazhdan M., et al. A search engine for 3D models[J]. ACM Transactions on Graphics(TOG),2003,83-105
    [143]Kazhdan M., Funkhouser T., Rusinkiewicz S. Rotationinvari-ant spherical harmonic representation of 3D shape descriptors[C]. In Symposiumon Geometry Processing, 2003167-175
    [144]Kazhdan M. Shape Representations and Algorithms for 3D Model Retrieval[M]. PhDthesis, Princeton University, 2004
    [145]Ohbuchi R., Kobayashi J. Unsupervised Learning from a Corpus for Shape-Based 3D Model Retrieval[C]. ACM MIR 2006, Santa Barbara, CA, U.S.A.,2006
    [146]Atmosukarto I., Leow W.K., Huang Z. Feature Combination and Relevance Feedback for 3D Model Retrieval[C]. Proc. MMM,2005,334-339
    [147]Belkin M., Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation[J]. Neural Computation, 2003,1373-1396
    [148]He X.F, Ma W.Y., Zhang H.J. Learning an Image Manifold for Retrieval[C]. Proc. ACM Multimedia, 2004,17-23
    [149]Baziz M., Boughanem M., Aussenac-Gilles N., et al. Semantic cores for representing documents in IR[A].MSAC.05:Proceedings of the 2005 ACM symposium on Applied computing [C]. NewYork: ACM,2005:1011-1017
    [150]Rada R., Mili H., Bichnell E., et al. Development and application of a metric on semantic nets[J]. IEEE Transactions on Systems, 1989,19(1):17-30
    [151]Banek M, Vrdoljak B, Tjoa A M. Using Ontologies for Measuring Semantic Similarity in Data Warehouse Schema Matching Process[A]. MConTEL 2007:Proceedings of the 9th International Conferenceon Telecommunications [C].Washington DC:IEEE, 2007:227-234
    [152]Liu X., Zhou Y., Zheng R. Measuring Semantic Similarity in Wordnet[A]. Proceedings of the Sixth International Conference on Machine Learning and Cybernetics[C]. Washington DC:IEEE, 2007:3431-3435
    [153]Yang D, Powers D M. Measuring semantic similarity in the taxonomy of WordNet[A]. Proceedings of the Twenty-Eighth Australasian Conference on Computer Science [C]. Darling hurst, Australia, Australia:Australian Computer Society, 2005:315-322
    [154]RABINER L. R. A Tutorial on Hidden Markov Models andSelected Applications in Speech Recognition[C]. Proceedings of the IEEE. 1989,77(2)
    [155]Li J., Najmi A., Gray R. M. Image Classification by a Two-Dimensional Hidden Markov Model[J]. IEEE Transactions on Signal Processing, 2000,48(2)
    [156]Yu F.Y., Ye H. Automatic Semantic Annotation of Images using Spatial Hidden Markov Model[C]. Multimedia and Expo,2006 IEEE International Conference. 2006:305-308
    [157]Bicego M., Castellani U., Murino V. A Hidden Markov Model approach for appearance-based 3D object recognition[R]. Pattern Recognition Letters 26 (2005), 2588-2599
    [158]He Y, Kundu A. 2D shape classification using Hidden Markov Model [J]. IEEE Trans. Pattern Anal. Mach. Intell.13(11),1172-1184
    [159]Panuccio A., Bicego M., Murino V. A Hidden Markov Model-based approach to sequential data clustering[J]. In:Caelli, Structural, Syntactic and Statistical Pattern Recognition LNCS 2396. Springer, 2002:734-742
    [160]M. Bicego et al. Pattern Recognition Letters,2005,2588-2599
    [161]Roweis S.T., Saul L.K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000,290(5500):2323-2326
    [162]Saul L. K., Roweis S.T. Think Globally, Fit Locally: Unsupervised Learning of Low Dimensional Manifolds[J]. Journal of Machine Learning Research, 2003,4:119-155
    [163]Belkin M., Niyogi P. Laplacianeigenmaps for dimensionality reduction and data representation[J]. Neural Computation, 2003,15(6):1373-1396
    [164]Donoho D.L., Grimes C. Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data[C]. In:Proceedings of the National Academy of Sciences of the United States of America, 2003,100(10):5591-5596
    [165]Zhang Z., Zha H. Principal manifolds and nonlinear dimensionality reduction by local tangent space alignment[J]. SIAM Journal on Scientific Computing,2005, 26(1):313-338
    [166]Tenenbaum J.B., Silva V. De, Langford J.C. A global geometric framework for nonlinear dimensionality reduction[J]. science, 2000,290(5500):2319-2323
    [167]Shaw B., Jebara T. Minimum volume embedding[C]. In Proceedings of the Eleventh International Conference on Artificial Intelligence and Statistics, 2007
    [168]Weinberger K.Q., SauL.K. An introduction to nonlinear dimensionality reduction by maximum variance unfolding[C]. In: American Association for Artificial Intelligence, 2006
    [169]Shaw B., Jebara T. Structure preserving embedding[C]. In Proceedings of International Conference on Machine Learning, 2009
    [170]Lin T., Zha H.B. Riemannian manifold learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008,30(5):796-809
    [171]Lawrence N. D. The gaussian process latent variable model [R]. Technical Report CS-06-03, The University of Sheffield, Department of Computer Science, 2006
    [172]Coifinan R.R., Lafon S., Lee A. B..Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps[C]. In: Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(21):7426-7431
    [173]Yang J., Zhang D., Yang J. Y, et al. Globally Maximizing, Locally Minimizing: Unsupervised Discriminant Projection with Application to Face and Palm[J]. Biometrics, IEEE Trans Pattern Analysis and Machine Intelligence 2007, 29(4):650-664
    [174]He X. F., Niyogi P. Locality preserving projections[C]. Proceedings of the Conference on Advances in Neural Information Processing Systems, 2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700