用户名: 密码: 验证码:
山西森林生态系统碳密度分配格局及碳储量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于人类大量使用化石能源资源等原因,导致了全球气候逐渐变暖,极大的威胁着人类生存,气候变化已经成为全世界各国共同面对的严峻挑战。而森林被称为陆地最大的“碳储库”和最经济的“吸碳器”,对全球碳循环起着重要的调节和控制作用,因此森林碳循环也成为全球气候变化研究的热点。估计区域森林生态系统碳储量也是森林生态系统碳循环研究的热点之一。
     本文以山西省森林生态系统为研究对象,基于自建异速生长方程,研究了不同起源、不同龄组林分生态系统各组成部分(乔木层、灌木层、草本层、枯落物层、土壤层)及各器官的碳含量、生物量、碳密度和分配格局,估算并分析了山西森林生态系统的碳储量及其动态变化。主要研究结果如下:
     (1)山杨和辽东栎各器官生物量拟合的最优模型形式均为CAR (Constant Allometric Ratio)型,而油松和侧柏各器官生物量拟合最优模型形式则均为VAR(Variable Allometric Ratio)型,研究基于树木胸径(DBH)的山杨、油松、侧柏和辽东栎各器官单变量模型可解释量均达到或超过了90%。山杨的地下生物量占21%,地上生物量占79%,油松地下生物量占19.18%,地上生物量占80.82%,侧柏地下生物量占28.37%,地上生物量占71.63%,辽东栎地下生物量占30.09%,地上生物量占69.91%。
     (2)山西省森林无论是起源还是龄组,各器官碳含量、林分平均碳含量均有差异,针叶树种(林分)和阔叶树种(林分)差异明显,针叶树种(林分)碳含量普遍高于阔叶树种(林分),人工林普遍高于天然林。针叶林林分平均碳含量为475.61g/kg,阔叶林林分平均碳含量为468.72g/kg,小于50.00%,大于45.00%,山杨林、油松林、侧柏林、辽东栎林、落叶松林、刺槐林和白桦林平均碳含量分别为460.47g/kg、476.08g/kg.477.03g/kg.472.08g/kg.446.66g/kg.464.85g/kg和501.33g/kg,林分总体平均碳含量为472.17g/kg。
     (3)山西森林乔木层平均生物量和碳密度分别为81981.62kg/hm2和38849.91kg/hm2。乔木干的生物量和碳密度均最大,分别占整个乔木层的41.51%-58.64%和41.37%-58.79%,乔木层碳分配比例干>根>枝>叶,地上部分占乔木层碳密度的77.57%;灌木层、草本层和枯落物层的碳密度平均分别占生态系统碳密度的0.09%、0.11%、1.54%,合计占生态系统的1.74%,灌木层碳主要分配在枝上,草本层叶和枝的碳则平均分配;土壤层(0-100cm)平均碳密度为96229.96kg/hm2,平均占到生态系统的70.00%,土壤碳主要集中在0-50cm以上的土体中。山西森林生态系统生物量和碳密度平均分为91981.10kg/hm2和137472.14kg/hm2。
     (4)山西省4次森林资源连续清查森林生态系统总碳储量呈线性增长规律,分别为197.13Tg(1995年)、218.15Tg(2000年)、238.73Tg(2005年)、253.66Tg(2010年),平均每年固碳3.77Tg,年均增长率为1.61%。天然林总碳储量189.92Tg,平均每年固碳2.69Tg,人工林总碳储量63.74Tg,平均每年固碳1.08Tg。辽东栎和油松生态系统合计碳储量平均占山西总碳储量的54.78%,是山西省森林生态系统固碳的主力军,天然辽东栎林、油松林和白桦林生态系统合计碳储量平均占天然林总碳储量的79.69%,人工油松林和山杨林生态系统合计碳储量平均占人工林总碳储量的69.99%。
     (5)山西省森林生态系统乔木层、灌木层、草本层、枯落物层和土壤层碳储量分别为90.38Tg、0.24Tg、0.21Tg、5.80Tg和157.02Tg,天然林乔木层、灌木层、草本层、枯落物层和土壤层碳储量分别为68.86Tg、0.21Tg、0.15Tg、5.182Tg和115.52Tg,人工林乔木层、灌木层、草本层、枯落物层和土壤层碳储量分别为21.52Tg.0.03Tg、0.07Tg、0.61Tg和41.50Tg。土壤层是生态系统固碳的主要层次,其次是乔木层,枯落物层、灌木层和草本层合计碳储量虽所占的比例虽较小,但如果忽略,将造成碳储量估算的不精确。
     (6)山西森林生态系统碳储量主要以近熟林(81.71Tg)、中龄林(78.38Tg)和幼龄林(53.54Tg)为主,三者合计占山西森林生态系统总碳储量的84.23%;山西省天然林生态系统碳储量主要以近熟林(68.18Tg)和中龄林(58.45Tg)为主,两者碳储量合计占天然林生态系统总碳储量的66.67%;人工林生态系统碳储量主要以中龄林(19.94Tg)和幼龄林(19.25Tg)为主,两者碳储量合计占人工林生态系统总碳储量的61.48%。
     (7)预计到2015年,山西省森林生态系统总碳储量为274.47Tg,其中乔木层98.09Tg,灌木层0.262Tg,草本层0.222Tg,枯落物层6.287Tg,土壤层169.60Tg。
     随天然林保护工程的开展,山西省天然林得到充分的保护,天然森林生长健康和自然演替更新良好,同时近年来山西省加大人工林种植面积,加之对人工林进行抚育更新,人工林生长与演替良好。总体上山西森林在全国森林碳储量中扮演着重要的角色并发挥了重要的碳汇功能。
Due to the fossil energy resources were widely used in various industries, which led to a gradual warming of the global climate and threat to the human survival, the climate change has become the common challenges faced by the countries of the world. The forest is known as the largest "carbon reservoir" and the most economical "carbon sinks", which plays an important role in adjustment and control to the global carbon cycle, so the forest carbon cycle has become a central issue of the global climate change researches. The estimation of regional forest ecosystem carbon stock has been one of the hotspots of the forest ecosystem carbon cycle researches.
     The present study is primarily focused on the forest ecosystems in Shanxi Procince, China. In this paper, the carbon content, biomass, carbon density and distribution pattern of the various layers (including arbor layer, shrub layer, grass layer, litter layer, soil layer) and the various organs were estimated and measured in the different origins and different age groups of the forest ecosystems, and the carbon pool of the forest ecosystem in Shanxi was calculated. In addition, the dynamics of carbon stock of the forest ecosystem in Shanxi was analyzed. The results were mainly concluded as follows:
     Firstly, the best fitting model form of biomass of Populus davidiana and Quercus wutaishanica was CAR(Constant Allometric Ratio) type, and Pinus tabulaeformis Carr and Platycladus orientalis (L.) Franco in the form od best fitting model were VAR(Variable Allometric Ratio) type. The model's explanation of various organs of the four species reached or exceeded90%that based on DBH(diameter at breast height). The aboveground biomass of Populus davidiana, Pinus tabulaeformis Carr, Platycladus orientalis (L.) and Quercus wutaishanica accounted for79%,80.82%, 71.63%and69.91%of the total biomass respectively.
     Secondly, the carbon contents among the carious organs or the different forests were difference whether the origins or the age groups of forests. The carbon contents of the coniferous species (stands) were generally higher than the broadleaf species (stands), and which of the artificial forests generally higher than the natural forests. The average carbon content of coniferous forests was475.61g/kg and that of the broadleaf forests was468.72g/kg. The average carbon contents of Populus davidiana, Pinus tabulaeformis Carr, Platycladus orientalis (L.), Quercus liaotungensis, Larix principis-rupprechtii, Robinia pseudoacacia L., Betula platyphylla Suk and the forest stands were460.47g/kg,476.08g/kg,477.03g/kg,472.08g/kg,446.66g/kg,464.85g/kg,501.33g/kg and472.17g/kg respectively.
     Thirdly, the average biomass and carbon density of arbor layer of forest in Shanxi were81981.62kg/hm2and38849.91kg/hm2. The biomass and carbon density of tree trunk accounting for41.51%-58.64%and41.37%-58.79%of the tree layer respectively. The proportional allocation of the carbon of tree layer showed stem> root> branch> leaf, and the aboveground carbon accounted for77.57%of the arbor layer. The mean carbon densities of shrub layer, herb layer and litter layer accounted for0.09%,0.11%,1.54%of total of the forest ecosystem respectively. The carbons of the shrub mainly distributed in the branches, and the leaves and branches of the herb layer of carbon is evenly distributed. The average carbon density of the soil layer (0-100cm) was96229.96kg/hm2, which accounted for70.00%of forest ecosystems and was mainly concentrated in the0-50cm depth. The average biomass and carbon density of the forest ecosystem in Shanxi were91981.10kg/hm2and137472.14kg/hm2.
     Fourthly, the total carbon storage of the forest ecosystem showed linear growth law based on four forest continuous inventory data in Shanxi, which were197.13Tg(1995a),218.15Tg(2000a),238.73Tg(2005a),253.66Tg(2010a) and the average annual carbon sequestration3.77Tg with an average annual growth rate of1.61percent. The carbon storage of natural forest was189.92Tg that the average annual carbon sequestration2.69Tg, and which of artificial forests was63.74Tg that the average annual carbon sequestration1.08Tg. The ecosystem carbon storage of Quercus liaotungensis Koidz and Pinus tabulaeformis Carr accounted for54.78%of the forest ecosystems in Shanxi, which was the mainly forests in carbon sequestration. The carbon stocks of natural Quercus liaotungensis Koidz, natural Pinus tabulaeformis Carr and natural Betula platyphylla Suk accounted for79.69%of the natural forest ecosystems. The carbon stocks of artificial Pinus tabulaeformis Carr and artificial Populus davidiana accounted for69.99%of the artificial forest ecosystems.
     Fifth, the carbon stocks of tree layer, shrub layer, herb layer, litter layer and soil layer of the forest ecosystem were90.38Tg,0.24Tg,0.21Tg,5.80Tg and157.02Tg respectively, which of the natural forest ecosystem were68.86Tg,0.21Tg,0.15Tg,5.182Tg and115.52Tg respectively and the artificial forest ecosystem were21.52Tg,0.03Tg,0.07Tg,0.61Tg and41.50Tg respectively. The soil layer is the main layer of ecosystem carbon sequestration, followed by the arbor layer, litter layer, shrub layer and grass layer. If ignored the carbon stocks of litter layer, shrub layer and grass layer, the estimate of carbon stocks was imprecise.
     Sixth, the carbon storage of the forest ecosystem was distributed in near-mature forest(81.71Tg), middle-aged forest (78.38Tg) and young forest (53.54Tg) which accounted for84.23%of total carbon stocks of the forest ecosystem in Shanxi. The carbon storage of the natural forest ecosystem was distributed in near-mature forest(68.18Tg) and middle-aged forest (58.45Tg) which accounted for66.67%of total carbon stocks of the natural forest ecosystem in Shanxi. The carbon storage of the artificial forest ecosystem was distributed in near-mature forest(19.94Tg) and middle-aged forest (19.25Tg) which accounted for61.48%of total carbon stocks of the artificial forest ecosystem in Shanxi.
     Seventh, the total carbon stock of the forest ecosystem will reach274.47Tg in2015year, and the carbon stocks of the tree layr, shrub layer, grass layer, litter layer, soil layer will reach98.09Tg,0.262Tg,0.222Tg,6.287Tg,169.60Tg respectively.
     With the commencement of natural forest protection project in Shanxi, the natural forest was fully protected, growing better and natural succession updates. In recent years, with the plantation acreage had increasing and combined with tending treatments, the artificial forests was growing better and succession updates in Shanxi. Overall, the forests of Shanxi played an important role of carbon sink in China.
引文
1.蔡丽莎.云南省森林植被碳储量及动态变化研究[D].昆明:西南林学院,2009.
    2. 曹军,张镱锂,刘燕华.近20年海南岛森林生态系统碳储量变化[J].地理研究,2002,21(5):551-560.
    3. 曹明奎,于贵瑞,刘纪元,等.陆地生态系统碳循环的多尺度试验观测和跨尺度机理模拟[J].中国科学D辑:地球科学,2004,34(82):1-14.
    4. 曹晓阳.山西中南部主要造林树种固碳能力研究[D].北京:北京林业大学,2013.
    5. 柴宝峰,张金屯,邱扬,等.晋西华北落叶松人工林生物量和生产力的研究[J].河南科学,1999,17(专辑):68-71.
    6. 常宗强,冯起,司建华,等.祁连山不同植被类型土壤碳贮量和碳通量[J].生态学杂志,2008,27(5):681-688.
    7. 陈泮勤,黄耀,于贵瑞.地球系统碳循环[M].北京:科学出版社,2004.
    8. 陈庆强,沈承德,易惟熙.土壤碳循环研究进展[J].地球科学进展,1998,13(6):555-563.
    9. 陈遐林,马钦彦,康峰峰,等.山西太岳山典型灌木林生物量及生产力研究[J].林业科学研究,2002,15(3):304-309.
    10.程堂仁,冯菁,马钦彦,等.甘肃小陇山森林植被碳库及其分配特征[M].生态学报,2008,28(1):33-44.
    11.董恒宇,云锦凤,王国钟.碳汇概要[M].北京:科学出版社,2012,p359.
    12.段晓云.阳泉地区不同树种碳汇能力的比较[J].绿色科技,2010.11:94-95.
    13.方精云,陈安平.中国森林植被碳库的动态变化及其意义[J].植物学报,2001,43(9):967-973.
    14.方精云,郭兆迪,朴世龙,等.1981-2000年中国陆地植被碳汇的估算[J].中国科学D辑:地球科学,2007,37(6):804-812.
    15.方精云,刘国华,徐嵩龄.中国陆地生态系统的碳库[M].北京:中国科学技术出版社,1996.
    16.方精云,朴世龙,赵淑清.C02失汇与北半球中高纬度陆地生态系统的碳汇.植物生态学报.2001,25(5):594-602.
    17.方精云.北半球中高纬度的森林碳库可能远小于目前的估算[J].植物生态学报,2000,24(5):635-638.
    18.方晰,田大伦,项文化.杉木人工林凋落物量及其分解过程中碳的释放率[J].中南林学院学报,2005,25(6):2-16.
    19.方晰,田大伦,项文化.速生阶段杉木人工林碳素密度、储量和分布[J].林业科学,2002,38(3):14-19.
    20.方晰,田大伦,项文化,等.不同密度湿地松人工林中碳的积累与分配[J].浙江林学院学报,2003,20(4):374-379.
    21.方一平,曾安全.杨树生长模型的选择[J].生物数学学报,1995,10(3):217-221.
    22.方运霆,莫江明,彭少麟,等.森林演替在南亚热带森林生态系统碳吸存中的作用[J].生态学报,2003,23(9):1685-1694.
    23.方运霆,莫江明.鼎湖山马尾松林生态系统碳素分配和贮量的研究[J].广西植物,2002,22(4):305-320.
    24.冯建成.山西省森林植被的碳贮量研究[J].山西林业科技,2010,39(1):16-18.
    25.冯力著.回归分析方法原理及SPSS实际操作[M].中国金融出版社,2004.
    26.冯瑞芳,杨万勤,张健.人工林经营与全球变化减缓[J].生态学报,2006,26(11):3870-3877.
    27.冯宗炜,陈楚莹,张家武.湖南会同地区马尾松林生物量的测定[J].林业科学,1982,18(2):127-134.
    28.付尧,孙玉军.植物有机碳测定研究进展[J].世界林业研究,2013,26(1):24-30.
    29.甘海华.广东土壤有机碳储量及空间分布特征[J].应用生态学报,2003,14(9):1499-1502.
    30.高浩,潘学标,符瑜.气候变化对内蒙古中部草原气候生产潜力的影响[J].中国农业气象,2009,(3):277-282.
    31.高志强,刘纪远.1980-2000中国LUCC对气候变化的响应[J].地理学报,2006,61(8):865-872.
    32.光增云.河南省森林碳储量及动态变化研究[J].林业资源管理,2006,4:56-60.
    33.郭跃东,郭晋平.山西三道川林场主要森林生态系统生物量和生产力研究[J].山西农业大学学报(自然科学版),2009,29(3):233-237.
    34.国家林业局.国家森林资源连续清查技术规定[S].2004.
    35.国家林业局.森林土壤分析方法(中华人民共和国林业行业标准)[S].北京:中国标准出版社,1999.
    36.胡会峰,刘国华.森林管理在全球CO2减排中的作用[J].应用生态学报,2006,17(4):709-714.
    37.黄昌勇.土壤学[M].北京:中国农业出版社,2000.
    38.黄从德,张健,杨万勤,等.四川省森林植被碳储量的空间分异特征[J].生态学报,2009,29(9):5115-5121.
    39.黄从德.四川森林生态系统碳储量及其空间分异特征[D].雅安:四川农业大学,2008.
    40.黄金平.森林资源管理的价值定位与法律制度完善[D].重庆:重庆大学,2007.
    41.姜萍,叶吉,吴钢.长白山阔叶红松林大样地木本植物组成及主要树种的生物量[J].北京林业大学学报,2005,27(S2):112-115.
    42.蒋延玲,周广胜.兴安落叶松林碳平衡和全球变化影响研究[J].应用生态学报,2001,12(4):481-484.
    43.焦秀梅,项文化,田大伦.湖南省森林植被的碳贮量及其地理分布规律[J].中南林学院学报,2005,25(1):4-8.
    44.焦燕,胡海清.黑龙江省森林植被碳储量及其动态变化[J].应用生态学报,2005,16(12):2248-2252.
    45.解宪丽,孙波,周慧珍,等.不同植被下中国土壤有机碳的储量与影响因子[J].土壤学报,2004,41(5):687-699.
    46.金峰,杨浩,蔡祖聪,等.土壤有机碳密度及储量的统计研究[J].土壤学报,2001,38:522-528.
    47.金钟跃,贾炜玮,刘微.落叶松人工林生物量模型研究[J].植物研究,2010,30(6):747-752.
    48.巨文珍,农胜奇,森林生物量研究进展[J],西南林业大学学报,2011,31(2):78-83.
    49.康蕙宁,马钦彦,袁嘉祖.中国森林C汇功能基本估计[J].应用生态学报,1996,7(3):230-234.
    50.李春萍,李刚,肖春旺.异速生长关系在陆地生态系统生物量估测中的应用[J].世界科技研究与发展,2007,29(2):51-57.
    51.李海涛,王姗娜,高鲁鹏.赣中亚热带森林植被碳储量[J].生态学报,2007,27(2):692-704.
    52.李洪建,严俊霞,李君剑,等.黄土高原东部山区两种灌木群落的土壤碳通量研究[J].环境科学学报.2010.30(9):1895-1904.
    53.李健,舒晓波,陈水森.基于Landsat-TM数据鄱阳湖湿地植被生物量遥感监测模型的建立[J].广州大学学报(自然科学版),2005,(4):32-38.
    54.李江.中国主要森林群落林下土壤有机碳储量格局及其影响因子的研究[D].雅安:四川农业大学,2008.
    55.李克让,陶波,王绍强,等.土地利用变化和温室气体净排放与陆地生态系统碳循环[M].北京:气象出版社,2002.
    56.李克让,王绍强,曹明奎.中国植被和土壤碳贮量[J].中国科学(D辑),2003,33(1):72-80.
    57.李亮.云南省1992-2007年森林植被碳储量动态变化及其碳汇潜力分析[D].昆明:云南财经大学,2012.
    58.李文华,邓坤枚,李飞.长白山主要生态系统生物量生产量的研究[J].森林生态系统研究(试刊),1981:34-50.
    59.李文华,罗天祥.中国云冷杉林生物量生产力格局及数学模型[J].生态学报,1997,17(5):511-518.
    60.李秀华.福建省森林碳储量的区域分异研究[D].福州:福建师范大学,2010.
    61.李燕燕,樊后保,孙新.马尾松纯林及其混交林生物量的空间结构[J].福建林学院学报,2005,25(3):215-220.
    62.李意德,曾庆波,吴仲民,等.尖峰岭热带山地雨林群落生产和二氧化碳同化净增长的初步研究[J].植物生态学报,1992,16(4):293-300.
    63.李跃林,胡成志,张云等.几种人工林土壤碳储量研究[J].福建林业科技,2004,31(4):4-7.
    64.联合国粮农组织.2010年世界森林状况(中文版)[M].罗马,2011,p179.
    65.梁建萍,韩有志,张云龙,等.油松人工林根系生物量的研究[J].河南科学,1999,6:77-79.
    66.林开敏,洪伟,俞新妥,等.杉木人工林林下植物生物量的动态特征和预测模型[J].林业科学,2001,37(1):99-105.
    67.林心雄.中国土壤有机质状况及其管理[A]//沈善敏主编.中国土壤肥力.北京:中国农业出版社,1998:111-153.
    68.蔺琛,马钦彦,韩海荣,等.山西太岳山辽东栎的光合特性[J].生态学报,2002,22(9):1399-1406.
    69.刘凤娇,孙玉军.林下植被生物量研究进展[J].世界林业研究,2011,24(2):53-58.
    70.刘国华,傅伯杰,方精云.中国森林碳动态及其对全球碳平衡的贡献[J].生态学报,2000,20(5):733-740.
    71.刘红辉.资源遥感一从区域调查到全球变化研究[J].资源科学,2000,22(3):34-38.
    72.刘华,雷瑞德.我国森林生态系统碳储量和碳平衡的研究方法及进展[J].西北植物学报,2005,5(4):835-843.
    73.刘琪璟.嵌套式回归建立树木生物量模型[J].植物生态学报,2009,33(2):331-337.
    74.刘迎春,王秋凤,于贵瑞,等.黄土丘陵区两种主要退耕还林树种生态系统碳储量和固碳潜力[J].生态学报,2011,31(15):4277-4286.
    75.卢景龙,梁守伦,刘菊.山西省森林植被生物量和碳储量估算研究[J].中国农学通报,2012,28(31):51-56.
    76.吕超群,孙书存.陆地生态系统碳密度格局研究概述[J].植物生态学报,2004,28(5):692-703.
    77.吕勇,唐代生.林木材积与生物量的相关性探讨[J].中南林业调查规划,1997,16(2):13-15.
    78.罗天祥,赵仕洞.中国杉木林生物生产力格局及其数学模型[J].植物生态学报,1997,21(5):403-415.
    79.罗云建.华北落叶松人工林生物量碳计量参数研究[D].北京:中国林业科学研究院,2007.
    80.马俊青,李高阳,田丽.河南省主要造林树种含碳率比较研究[J].河南农业科学,2012,41(9):131-132.
    81.马明东,李强,罗承德,等.卧龙亚高山主要森林植被类型土壤碳汇研究[J].水土保持学报,2009,23(2):127-131.
    82.马琪,刘康,张慧.陕西省森林植被碳储量及其空间分布.资源科学,2012,34(9):1781-1789.
    83.马钦彦,陈遐林,王娟,等.华北主要森林类型建群种的含碳率分析[J].北京林业大学学报,2002,24(5):96-100.
    84.马钦彦.中国油松生物量的研究[J].北京林业大学学报,1989,11(4):1-10.
    85.马炜,孙玉军,郭孝玉,等.不同林龄长白落叶松人工林碳储量[J].生态学报,2010,30(17):4569-4667.
    86.马炜,孙玉军.我国的森林生物量研究[J].世界林业研究,2009,22(5):71-76.
    87.马泽清,刘琪璟,徐雯佳,等.江西千烟洲人工林生态系统的碳蓄积特征[J].林业科学,2007,43(11):1-7.
    88.潘根兴.中国土壤有机碳、无机碳库量研究[J].科技通报,1999,15(5):330-332.
    89.潘攀,李荣伟,覃志刚,等.杜仲人工林生物量和生产力研究[J].长江流域资源与环境,2000,9(1):71-77.
    90.潘维俦,李利村,高正衡.2个不同地域类型杉木林的生物产量和营养元素分布[J].湖南林业科技,1980,(4):1-10.
    91.潘维侍,田大伦.森林生态系统第一性生产量的测定技术与方法[J].湖南林业科学,1981,2:1-12.
    92.彭少麟,刘强.森林凋落物动态及其对全球变暖的响应[J].生态学报,2002,22(9):1534-1544.
    93.彭孝飞,王百田,迟璐,等.油松林木地上部分生物量研究[J].广东农业科学,2012,1:42-45.
    94.朴世龙,方精云,郭庆华.1982-1999年我国植被净第一性生产力及其时空变化[J].北京大学学报(自然科学版),2001,37(4):563-569.
    95.戚佩珊.非线性回归分析中衡量拟合曲线优劣的依据[J].安徽农师院学报,1990,1:31-33.
    96.齐光,王庆礼,王新闯,等.大兴安岭林区兴安落叶松人工林土壤有机碳贮量[J].应用生态学报,2013,24(1):10-16.
    97.邱扬,张金屯,柴宝峰,等.晋西油松人工林地上部分生物量与生产力的研究[J].河南科学,1999,17(专辑):72-79.
    98.任军辉,刘建军,刘斌,等.宁夏贺兰山天然油松林碳储量和碳密度[J].东北林业大学学报,2011,39(50):108-110.
    99.任三瑛.山西省乔木林分碳储量统计分析[J].山西林业科技,2011,40(3):35-38.
    100.桑卫国,苏宏新,陈灵芝.东灵山暖温带落叶阔叶林生物量和能量密度研究[J].植物生态学报,2002,26(增刊):88-92.
    101.邵月红,潘剑君.浅谈土壤有机碳密度及储量的估算方法[J].土壤通报,2006,37(5):1007-1011.
    102.沈文清,刘允芬,马钦彦,等.千烟洲人工针叶林碳素分布、碳贮量及碳汇功能研究[J].林业实用技术,2006(1):5-8.
    103.史广松.山西太岳山针阔叶混交林土壤呼吸速率研究[D].北京:北京林业大学.2009.6.
    104.宋满珍,刘琪璟,吴自荣,等.江西省森林土壤有机碳储量研究[J].南京林业大学学报(自然科学版),2010,34(2):6-10.
    105.孙道德.基于残差平方和的线性模型选择简单方法及其相合性研究[J].数学杂志,2006,26(6):642-646.
    106.孙继超.太岳山油松人工林生物量和碳储量研究[D].北京:北京林业大学,2011.
    107.孙维侠,史学正,于东升.土壤有机碳的剖面分布特征及其密度的估算方法研究:以我国东北地区为例[J].土壤,2003,35(3):236-241.
    108.覃连欢.广西森林植被碳储量及价值估算研究[D].南宁:广西大学,2012.
    109.唐宵,黄从德,张健,等.四川主要针叶树种含碳率测定分析[J].四川林业科技,2007,28(2):21-22.
    110.唐旭利,温达志,周国逸,等.鼎湖山南亚热带季风常绿阔叶林植被C储量分布[J].生态学报,2003,23(1):90-97.
    111.陶玉华,冯金朝,马麟英,等.广西罗城马尾松、杉木、桉树人工林碳储量及其动态变化[J].生态环境学报,2011,20(11):1608-1613.
    112.陶玉华.森林生态系统碳储量研究的意义及国内外研究进展[J].林业科学,2012,(9):205-212.
    113.田大伦,方晰,项文化.湖南会同杉木人工林生态系统碳素密度[J].生态学报,2004,24(11):2382-2386.
    114.汪金松,张春雨,范秀华,等.臭冷杉生物量分配格局及异速生长模型[J].生态学报,2011,31(14):3918-3927.
    115.汪少华,张茂震,赵平安,等.基于TM影像、森林资源清查数据和人工神经网络的森林碳空间分布模拟[J].生态学报,2011,31(4):998-1008.
    116.汪业勖.中国森林生态系统区域碳循环研究.见:自然资源综合考察委员会博士论文文库.北京:中国科学院,1999,123p.
    117.王百田,王颖,郭江红,等.黄土高原半干旱地区刺槐人工林密度与地上生物量效应[J].中国水土保持科学,2005,3(3):35-40.
    118.王兵,魏文俊.江西省文林碳储量与碳密度研究[J].江西科学,2007,25(6):681-687.
    119.王成,金永焕,金春德,等.天然赤松个体生物量的研究[J].应用生态学报,2000,11(1):5-8.
    120.王光华.北京森林植被固碳能力研究[D].北京:北京林业大学,2012.
    121.王宁,王百田,王瑞君,等.山西省油松林生态系统碳密度与分配格局[J].应用基础与工程科学学报,2014,22(1):58-68.
    122.王宁,王百田,王瑞君,等.晋西山杨和油松生物量分配格局及异速生长模型研究[J].水土保持通报,2013a,33(2):151-155.
    123.王宁,王百田,王瑞君,等.山西中部主要森林植被类型土壤碳密度研究[J].土壤通报,2013b,44(4):858-863.
    124.王绍强,周成虎,李克让,等.中国土壤有机碳库及空间分布特征分析[J].地理学报,2000,55(5):533-544.
    125.王绍强,刘纪远,于贵瑞.中国陆地土壤有机碳蓄积量估算误差分析[J].应用生态学报,2003,14(5):797-802.
    126.王绍强,刘纪远.土壤碳蓄积量变化的影响因素研究现状[J].地球科学进展,2002,17(4):528-534.
    127.王绍强,朱松丽.中国土壤有机碳库及其空间分布特征[J].地理学报,2000,55(5):533-544.
    128.王淑君,管东生,黎夏,等.广州森林碳储量时空演变及异质性分析[J].环境科学学报,2008,28(4):778-785.
    129.王维芳,王琪,李国春,等.基于气象模型的黑龙江省植被净第一性生产力[J].东北林业大学学报,2009,(4):27-29.
    130.王维枫,雷渊才,王雪峰,等.森林生物量模型综述[J].西北林学院学报,2008,23(2):58-63.
    131.王文杰,祖元刚,王辉民,等.基于涡度协方差法和生理生态法对落叶松林C02通量的初步研究[J].植物生态学报,2007,31(1):118-128.
    132.王效科,白艳莹,欧阳志云.全球碳循环中的失汇及其形成原因[J].生态学报,2002,22(1):94-103.
    133.王效科,冯宗炜,欧阳志云.中国森林生态系统的植物碳储量和碳密度研究[J].应用生态学报,2001,12(1):13-16.
    134.王新闯,齐光,于大炮,等.吉林省森林生态系统的碳储量、碳密度及其分布[J].应用生态学报,2011,22(8):2013-2020.
    135.王秀云.不同年龄长白落叶松人工林碳储量分布特征[D].北京:北京林业大学,2011.
    136.王雪军,黄国胜,孙玉军,等.近20年辽宁省森林碳储量及其动态变化[J].生态学报,2008,28(10):4757-4764.
    137.王玉辉,周广胜,蒋延玲,等.基于森林资源清查资料的落叶松林生物量和净生长量估算模式[J].植物生态学报,2001,25(4):420-425.
    138.魏艳敏.荒漠环境规模化人工杨树林生物量和碳储量研究[D].乌鲁木齐:新疆大学,2010.
    139.温学发,于贵瑞,孙晓敏.基于涡度相关技术估算植被/大气间净CO2交换量中的不确定性[J].地球科学进展,2004,19(4):658-663.
    140.温远光,陈放,刘世荣,等.广西桉树人工林物种多样性与生物量关系[J].林业科学,2008,44(4):14-19.
    141.吴金友.辽宁省森林植被碳储量动态仿真模型研究[D].北京:北京林业大学,2010.
    142.吴小山.杨树人工林生物量碳计量参数研究[D].雅安:四川农业大学,2008.
    143.邢素丽,张广录,刘慧涛,等.基于Landsat ETM数据的落叶松林生物量估算模式[J].福建林学院学报,2004,24(2):153-156.
    144.邢艳秋,王立海.基于森林调查数据的长白山天然林森林生物量相容性模型[J].应用生态学报,2007,18(1):1-8.
    145.胥辉.两种生物量模型的比较[J].西南林学院学报,2003,23(2):36-39.
    146.续珊珊,姚顺波.基于生物量转换因子法的我国森林碳储量区域差异分析[J].北京林业大学学报(社会科学版),2009,8(3):109-114.
    147.续珊珊,姚顺波.森林碳汇研究进展[J].林业调查规划,2011,36(6):21-25.
    148.薛立,杨鹏.森林生物量研究综述[J].福建林学院学报,2004,24(3):283-288.
    149.闫平,冯晓川.原始阔叶红松林碳素储量及空间分布[J].东北林业大学学报,2006,31(5):23-25.
    150.杨传金,杨帆,梅浩,等.区域森林碳储量估算方法概述[J].中南林业调查规划,2012,31(3):62-66.
    151.杨存建,刘纪远,张曾祥.热带森林植被生物量遥感估算探讨[J].地理与地理信息科学,2004,20(6):22-25.
    152.杨金艳,王传宽.东北东部森林生态系统土壤碳贮量和碳通量[J].生态学报,2005,25(11):2875-2982.
    153.杨金艳,杨万勤,王开运,等.木本植物对C02浓度和温度升高的相互作用的响应[J].植物生态学报,2003,27(3):304-310.
    154.杨昆,管东生.珠江三角洲地区森林生物量及其动态[J].应用生态学报,2007,18(4):705-712.
    155.杨万勤,张健,胡庭兴,等.森林土壤生态学[M].成都:四川科学技术出版社,2006.
    156.杨晓霞.方山县林业生态建设现状与对策[J].山西林业,2011,5:10-12.
    157.杨玉姣,陈云明,曹扬.黄土丘陵区油松人工林生态系统碳密度及其分配[J].生态学报,2014,8.
    158.杨玉盛,郭剑芬,陈银秀,等.福建柏和柳杉人工林凋落物分解及养分动态的比较[J].林业科学,2003,40(3):19-25.
    159.尹晓芬,王灏,王晓鸣.贵州森林碳汇现状及增汇潜力分析[J].地球与环境,2012,40(2):266-270.
    160.于贵瑞,孙晓敏.中国陆地生态系统碳通量观测技术及时空变化特征[M].北京:科学出版社,2006:100-210.
    161.于贵瑞,张雷明,孙晓敏,等.亚洲区域陆地生态系统碳通量观测研究进展[J].中国科学D辑:地球科学,2004,34(S2):15-30.
    162.于贵瑞.全球变化与陆地生态系统碳循环与碳蓄积[M].北京:气象出版社,2003.
    163.俞艳霞,张建军,王孟本.山西省森林植被碳储量及其动态变化研究[J].林业资源管理,2008,12(6):35-40.
    164.俞艳霞.吕梁山南段森林碳密度及其空间分布格局[D].太原:山西大学,2010.
    165.曾伟生,张会儒,唐守正.立木生物量建模方法[M].北京:中国旅游出版社,2011.
    166.张城,王绍强,于贵瑞,等.中国东部地区典型森林类型土壤有机碳储量分析[J].资源科学,2006,28(2):97-103.
    167.张方敏,居为民,陈镜明,等.基于遥感和过程模型的亚洲东部陆地生态系统初级生产力分布特征[J].应用生态学报,2012,23(2):307-318.
    168.张国斌,刘世荣,张远东,等.岷江上游亚高山暗针叶林的生物量碳密度[J].林业科学,2008,44(1):1-6.
    169.张慧芳,张晓丽,黄瑜.遥感技术支持下的森林生物量研究进展[J].世界林业研究,2007,20(4):30-34.
    170.张佳华,符涂斌.生物量估测模型中遥感信息与植被光合参数的关系研究[J].测绘学报,1999,28(2):128-132.
    171.张杰.山西省城镇化进程中土地利用问题研究[D].太谷:山西农业大学,2013.
    172.张茂震,王广兴,周国模,等.基于森林资源清查、卫星影像数据与随机协同模拟尺度转换方法的森林碳制图[J].生态学报,2009,29(6):2919-2928.
    173.张萍.北京森林碳储量研究[D].北京:北京林业大学,2009.
    174.张树华,王百田.晋西黄土丘陵县域景观格局分析[J].水土保持研究,2007,14(2):249-251.
    175.张晓娟,魏天兴,荆丽波,等.晋西黄土区天然次生林营养元素分配与积累研究[J].北京林业大学学报,2008,30(3):57-62.
    176.张兴锐,许中旗,纪晓林,等.燕山北部山地典型植物群落土壤有机碳贮量及其分布特征[J].水土保持学报,2010,24(1):186-190.
    177.张志强,孙成权.全球变化研究十年新进展[J].科学通报,1999,44(5):464-477.
    178.昭日格,岳永杰,姚云峰,等.内蒙古自治区森林碳储量及其动态变化[J].干旱区资源与环境,2011,25(9):80-84.
    179.赵茂盛,Ronald, Neilson气候变化对中国植被可能影响的模拟[J].地理学报,2002,57(1):28-38.
    180.赵敏,周广胜.基于森林资源清查资料的生物量估算模式及其发展趋势[J].应用生态学报,2004,15(8):1468-1472.
    181.赵敏,周广胜.中国森林生态系统的植物碳贮量及其影响因子分析[J].地理科学,2004,24(1):50-54.
    182.周国模,刘恩斌,余光辉.森林土壤碳库研究方法进展[J].浙江林学院学报,2006,23(2):207-216.
    183.周玉荣,于振良,赵士洞.我国主要森林生态系统碳贮量和碳平衡[J].植物生态学报,2000,24(50):518-522.
    184.朱建奎.山西太岳山地区森林土壤理化性状研究[D].北京:北京林业大学.2009.
    185.朱永杰.中国省域森林资源碳汇贡献及其补偿问题研究[M].北京:中国林业出版社,2012,p207.
    186. Alexeyev V, Birdsey R, Stakanov V, et al. Carbon in vegetation of Russian forests:Methods to estimate storage and geographical distribution[J]. Water, Air and Soil pollution,1995, 82:271-282.
    187. Ajtay G L, Ketner P, Duvigneaud P. Terrestrial primary production and phytomass [M]// Bolin B. The Vlnhal Rarhnn Cvcle. New Vnrk2Inhn:Wileys &Sons,1979:129-181.
    188. Antonio N, TomeM, Tome J, et al. Effect of tree, stand, and site variables on the allometry of Eucalyptus globulus tree biomass[J]. Canadian Journal of Forest Research,2007,37(5):895-906.
    189. Baldwin V C Jr, Peterson K D, Burkhart H E, et al. Equations for estimating loblolly pine branch and foliage weight and surface area distribution[J]. Canadian Journal of Forest Research,1997,27(6):918-927.
    190. Batjes N H. Total carbon and nitrogen in the soils of the world[J]. European Journal of Soil Science,1996,47:151-163.
    191. Bert D, Danjon F. Carbon concentration variations in the roots, stem and crown of mature Pinus pinaster (Ait.) [J]. Forest Ecology and Management.2006,222(1-3):279-295.
    192. Birdsey R A. Carbon storage and cumulation in United States forest ecosystems[R].United States Department of Agriculture Forest Service. General Technical Report,1992,12:52-59.
    193. Bohn H L. Estimate of organic carbon in world soils [J]. Soil Science Society of America Journal,1976,40:468-470.
    194. Bond-Lamberty B, Wang C, Gower S T. Aboveground and belowground biomass and sapwood area allometric equations for six boreal tree species of northern Manitoba[J]. Canadian Journal of Forest Research,2002,32(8):1441-1450.
    195. Boyd D S, Foody G M, Curran P J. The relationship between the biomass of Cameroonian tropical forest and radiation reflected in middle infrared wavelength[J]. International Journal of Remote Sensing,1999,20(5):1017-1023.
    196. Boysen J P. Studier over skovtraemes forhold til lyset Tidsskr[J].ES kooaessen,1910, 22:11-61.
    197. Brown S J, Pearson T. Methods Manual for Measuring Terrestrial Carbon[M].Winrock International.2005.
    198. Brown S J. Tropical forests and the global carbon cycle:estimating state and change in biomass density[C]. In Forest Eeosystem, Forest In Forest Ecosystem, Forest Management and the Global Carbon Cycle, M.J.Apps and D.T.Price(eds.) Proceedings of a NATO Advanced Research Workshop, NATO ASI Series I,1996,Vol.40, Springer-Verlag, Berlin:135-144.
    199. Brown S J, Gillespie R, Lugo A E. Biomass estimates for tropical moist forests of Brazilian Amazon[J]. Intereiencia,1989,17:8-18.
    200. Brown S J, Lugo A E. The storage and production of organic matter in tropical forests and their role in the global carbon cycle[J]. Biotropica,1982.14:161-187.
    201.Burcshel P, Kursten E. Present role of German forest and forestry in the national carbon budget and options to its increase[J]. Water, Air and Soil Pollution,1993,70:325-350.
    202. Cao M K, Wooddward F I. Dynamic responses of terrestrial ecosystem carbon cycling to global climate change[J].Nature,1998,393:249-252.
    203. Castellvi F, Snyder R L, Baldocchi D D. Surface energy-balance closure over rangeland grass using the eddy covariance method and surface renewal analysis[J]. Agricultural and Forest Meteorology,2008,148(6-7):1147-1160.
    204. Christopher S. Terrestrial biomass and effects of deforestation on the globe carbon cycle[J]. Bioscience,1999,49:769-778.
    205. Cienciala E, Cerny M, Tatarinov F, et al.Biomass functions applicable to Scots pine[J]. Trees, 2006,20(4):483-495.
    206. Davison E A, Ackerman I L. Changes in soil carbon inventories following cultivation of previously untilled soil[J].Biogeochemistry,1993,20:161-193.
    207. Deleourt H R, Harris W F. Carbon budget of the southeastern U.S.Biota:analysis of historical change in trend from source to sink[J]. Science,1980,210:321-322.
    208. Dixon R K, Brown S, Houghton R A, et al. Carbon pools and flux of global forest ecosystems[J]. Science,1994,263:185-190.
    209. Ebermeyr E. Die gesammte Lehre der Waldstreu mit Rucksicht auf die chemische Statik des Waldbaues[M]. Berlin:Springer,1876.
    210. Eriksson H. Sources and sinks of carbon dioxide in Sweden [J]. Ambio,1991,20:146-150.
    211. Fang J Y, Chen A P, Peng C H, et al. Changes in Forest Biomass Carbon Storage in China Between 1949and1998[J].Science,2001,292:2320-2322.
    212. Fang J Y, Wang G Q, Liu G H, et al. Forest biomass of China:an estimation based on the biomass-volume relationship. Ecological Applications,1998,8:1084-1091.
    213. Fang J Y, Wang Z M. Forest biomass estimation at regional and global levels, with special reference to China's forest biomass [J]. Ecological Research,2001,16(3):587-592.
    214. FAO. Production Yearbook[M]. Food & Agric. Organization, Rome, Italy:2011,1-369.
    215. Field C B, Fung J Y. The not-so-big US. Carbon sink[J].Science,1999,285:544-545.
    216. Friedl M A, Davis F W, Michaelsen J, et al. Scaling and Uncertainty in the Relationship between the NDVI and Land Surface Biophysical Variables:An Analysis Using a Scene Simulation Model and Data form FIFE[J]. Remote Sensing,1995,54:233-246.
    217. Giese L A B, Aust W M, Kolka R K, et al. Biomass and carbon pools of disturbed riparian forests [J]. Forest Ecology and Management,2003,180:493-508.
    218. Guo Z D, Fang J Y, Pan Y D, et al. Inventory-based estimates of forest biomass carbon stocks in China:A comparison of three methods[J]. Forest Ecology and Management,2010,259(7): 1225-1231.
    219. Houghton R A, Lawrence K T, Hackler J L, et al. The spatial distribution of forest biomass in the Brazilian Amazon:a comparison of estimates[J]. Global Change Biology,2001,7(7): 731-746.
    220. Houghton R A, Skole D L, Nobre C A, et al. Annual fluxes or carbon from deforestation and regrowth in the Brazilian Amazon[J]. Nature,2000,403(6767):301-304.
    221. Houghton R A. Land-use change and the carbon cycle [J]. Global Change Biology,1995,1: 275-297.
    222. Jobbagy E G, Jackson R B. The vertical distribution of soil organic carbon and its relation to climate and vegetation[J]. Ecological Applications,2000,10:423-436.
    223. Karjalainen T, Seppo K, Ari P.Carbon balance in the forest sector in Finland during 1990-2039[J].Climate Change,1995,30(4):451-478.
    224. Ketterings Q M, Coe R, van Noordwijk M, et al. Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests[J]. Forest Ecology and Management,2001,146(1/3):199-209.
    225. Krankine O N, Dixon R K. Forest management option to conserve and sequester terrestrial carbon in the Russian Federation[J]. World Resource Review,1994,6(1):88-101.
    226. Kurz W A, Apps M J, Webb T M, et al. Informative report[R]. The carbon budget of the Canadian forest sector:Phase I. forestry Canada, Edmonton, Alberta, Canada.1992.
    227. Kurz W A, Apps M J. Contribution of northern forest to the global carbon cycle:Canada as a case study[J]. Water, Air and Soil Pollution,1993,70:163-176.
    228. Lacelle B. Canada's soil organic carbon database[C]//Lal R,etal.Soil Processes and the Carbon Cycle.Boca Raton:CRC Press,1997:93-102.
    229. Lal R. Forest soils and carbon sequestration [J]. Forest Ecology and Management, 2005,220:242-258.
    230. Lamlom S H, Savidge RA. Carbon content variation in boles of mature sugar maple and giant sequoia[J]. Tree Physiology.2006,26(4):459-468.
    231.Loeffler D, Calkin D E, Silverstein R P. Estimating volumes and costs of forest biomass in Western Montana using forest inventory and geospatial data[J]. Forest Products Journal,2006,56(6):31-37.
    232. Luyssaert S, P Ciais, S L Piao,et al. The European carbon balance. Part 3:forests[J]. Global Change Biology,2010,16:1429-1450.
    233.Neeff T, Dutra L V, dos Santos J R, et al. Tropical forest measurement by interferometric height modeling and P-band radar backscatter[J]. Forest Science,2005,51(6):585-594.
    234. Nelson B W, Mesquita R, Pereira J L G, et al. Allometric regressions for improved estimate of secondary forest biomass in the central Amazon[J]. Forest Ecology and Management,1999, 117(1/3):149-167.
    235. Nelson R F, Kimes D S, Salas W A, et al. Secondary forest age and tropical forest biomass estimation using thematic mapper imagery[J]. Bioscience,2000,50(5):419-421.
    236. Nicholas C. Improvement in predicting stand growth of pinus radiate across Landscapes using NOAA AVHRR and Landsat MSS imagery combined with a forest growth process model[J]. Photogrammetric Engineering & Remote Sensing,1999,65(10):1149-1156.
    237.Niklas K J. Plant Allometry:The Scaling of Form and Process[M]. Chicago, Illinois: University of Chicago Press,1994.
    238. Ovington J D. The form, weights and productivity of tree species growth of tree speciese grown in close stands [J].New Phytology,1956,55:289-304.
    239. Pastor J, Aber J D, Melillo J M. Biomass prediction using generalized allometric regressions for some northeast tree species[J]. Forest Ecology and Management,1984,7(4):265-284.
    240. Peichl M, Arain M A. Allometry and partitioning of above-and belowground tree biomass in an age-sequence of white pine forests[J]. Forest Ecology and Management,2007,253(1/3): 68-80.
    241. Phillips O L, Malhi Y, Higuchi N, et al. Changes in the carbon balance of tropical forests: evidence from long-term plots[J]. Science,1998,282:440-442.
    242. Post W M, W R Emanuel, P J Zinke, et al. Soil carbon pools and world life zones[J]. Nature,1982,298:156-159.
    243. Prentice I C, Lloyd J. C quest in the Amazon Basin [J].Nature,1998,396:619-620.
    244. Raich J W, Schlesinger W H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate [J]. Tellus,Series B-Chemical and Physical Meteorology,1992,44(2):81-99.
    245.Thuille Al, Buchmann N, Schulze ED.Carbon stocks and soil respiration rates during deforestation,grassland use and subsequent Norway spruce afforestation in the Southern Alps,Italy[J]. Tree Physiology,2000,20(13):849-857.
    246. Ravindranath N H, Madelene Ostwald. Carbon Inventory Methods[M]. Springer Science, 2008,p308.
    247. Remezon N P. Method studying the biological cycles of elements in forest [J]. Soviet soil Sciences,1959,1:59-67.
    248. Rennie P J. The uptake of nutrients by mature forest growth[J]. Plant Soil,1955,7:49-95.
    249. Satoo T. Physical basis of growth of forest trees [J].Silvicultural Sciences,1995,116-141.
    250. Schlessinger W H. Evidence from chronosequence studies for a low carbon-storage potential of soil[J]. Nature,1990,348(15):232-234.
    251. Schroeder P, Ladd L. Slowing the increase of atmospheric carbon dioxide:a biological approach[J]. Climate Change,1991,19:283-290.
    252. Sedjo R A. The carbon cycle and global forest ecosystem [J].Water Air and Soil Population, 1993,70:295-317.
    253. Shvidenko A Z, Nilsson S, Rojikov V A, et al. Carbon budget of the Russian boreal forests:a systems analysis approach to uncertainty[C]. In:Apps M J, Price D T.eds.Forest Eeosystems,Forest Management and the Global Carbon Cycle. Berlin:Springer Verlag,1996,145-162.
    254. Simone A V, Luciana F A, Paulo J D, et al. Stocks of carbon and nitrogen and partitioning between above-and belowground pools in the Brazilian coastal Atlantic Forest elevation range[J]. Ecology and Evolution,2011,1(3):421-434.
    255. Spencer R D, Green M A, Blggs P H. Integrating eucalypt forest inventory and GIS in Western Australia[J]. Photogrammetric Engineering & Remote Sensing,1997,63(12):1345-1351.
    256. Ter-Mikaelian M T, Korzukhin M D. Biomass equations for sixty-five North American tree species[J]. Forest Ecology and Management,1997,97(1):1-24.
    257. Thuille A, Buchmann N, Schulze E D. Carbon stocks and soil respiration rates during deforestation, grassland use and subsequent Norway spruce afforestation in the Southern Alps, Italy[J].Tree Physiology,2000,20(13):849-857.
    258. Titlyanove A A, Bulavko G I, Kudryashova S, et al. The reserves and losses of organic carbon in the soils of Siberia[J].Pochrovedenie,1998,1:51-59.
    259 Turner D P, Koepper G J, Harmon M E, et al. A carbon budget for forests of the conterminous United States[J]. Ecological Application,1995,5:421-436.
    260. Usman S, Singh S P, Rawat Y S, et al. Fine root decomposition and nitrogen mineralization patterns in Quercus leucotrichphora and Pinus roxburghii forest in central Himalaya[J]. Forest Ecology and Management,2000,131:191-199.
    261. Wang C Y. Biomass allometric equations for 10 co-occuring tree species in Chinese temperate forestsfJ]. Forest Ecology and Management,2006,222(1/3):9-16.
    262. Wang G X, Oyana T, Zhang M Z, et al. Mapping and spatial uncertainty analysis of forest vegetation carbon by combining national forest inventory data and satellite images [J]. Forest Ecology and Management,2009,258(7):1275-1283.
    263. Watson R T. Land use change, and forestry:a special report of the IPCC[M]. Cambridge, United Kingdom:Cambridge university press,2000:189-217.
    264. West P W. Tree and Forest Measurement [M]. Berlin, Springer,2004:167.
    265. Westbrook Jr M D, Greene D, Izlar R L. Utilizing forest biomass by adding a small chipper to a tree-length southern pine harvesting operation[J]. Southern Journal of Applied Forestry,2007,31 (4):165-169.
    266. Whittaker R H, Liken G E. The biosphere and man[C]. In:Lieth H, Whittaker R H. Eds. Primary Productivity of the Biosphere, Springer-Verlag, New York,1975,305-338.
    267. Wirth C, Schumacher J, Schulze E D. Generic biomass functions for Norway spruce in Central Europea-a meta-analysis approach toward prediction and uncertainty estimation[J]. Tree Physiology,2004,24(2):121-139.
    268. Woodwell G M, Whittaker R H, Reiners W A, et al. The biota and the world carbon budget[J]. Seience,1978,199,141-146.
    269. Xiao C W, Ceulemans R. Allometric relationships for below-and aboveground biomass of young Scots pines[J]. Forest Ecology and Management,2004,203(1/3):177-186.
    270. Yue T X, Liu J Y, Jorgensen S E, et al. Changes of Holdridge life zone diversity in all of China over half a century [J]. Ecological Modelling,2001,144(2-3):153-162.
    271. Zhang X, Xu D Y. Calculation forest biomass change in China[J]. Science,2002,199:141-146.
    272. Zhou G S, Wang Y H, Jiang Y L, et al. Estimating biomass and net primary production from forest inventory data:a case study of China's larix forest[J]. Forest Ecology and Management,2002,16 9:149-157.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700