用户名: 密码: 验证码:
盐类矿床水压致裂水溶开采的多场耦合理论及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盐类矿床是一类开发与利用价值极高的矿床,不仅其蕴含矿物(氯化钠、硫酸钠、氯化钾、碳酸钠等)是重要的化工原料,在国民经济和社会生活中占有重要的地位和作用;而且由于其所具有的特殊地质条件及优良物理力学特性,水溶开采后岩盐溶腔还是石油、天然气地下储备的理想场所。因此,科学的盐类矿床开采理论与方法,始终是对盐类矿床合理开发与应用的基础和保障。
     由于盐类矿物易溶于水的特性,对盐类矿床的开采常采用水溶开采的方法。然而,由于水溶开采过程是一个涉及化学流体运移、矿物溶解、传热传质、固体变形等多场相互作用的固—流—热—传质耦合问题,使得水溶开采理论的建立复杂困难、水溶开采技术的发展重受制约。因此,进行盐类矿床水溶开采的多场耦合理论及其应用的研究,可以深入奠定盐类矿床水溶开采的理论基础、进一步促进水溶开采技术的发展、以及加强盐类矿床科学合理的开发应用,具有十分重要的意义和价值。
     本文以盐类矿床水压致裂水溶开采的多场耦合理论及应用作为研究课题,通过实验研究、理论分析、数值模拟、以及现场试验的方法,对围绕该课题的岩盐高温力学特性、盐类矿床水压致裂—溶解理论、盐矿床水溶开采多场耦合理论、以及群井致裂控制水溶开采技术及应用进行了系统的研究。
     主要研究内容及结果如下:
     (1)岩盐高温及再结晶力学特性的实验研究。在岩盐基本力学特性实验的基础上,进行了240℃范围内岩盐高温力学特性、以及损伤岩盐高温再结晶力学特性的实验研究。研究发现:岩盐力学特性具有明显的温度效应特征,随温度的升高,岩盐的强度与温度呈对数关系增强,塑性变形量也在相应增大;高温再结晶可以使损伤岩盐晶间摩擦系数得以恢复,但对内聚力的恢复不明显。
     (2)盐类矿床水压致裂—溶解理论及技术研究。盐类矿床水力压裂,是一个岩体断裂、溶液渗流、裂纹起裂扩展、岩盐溶解扩散的多因素综合作用的固—流—溶解—扩散耦合作用过程,本文在耦合理论分析的基础上,建立了盐类矿床水压致裂——溶解理论,提出了盐类矿床的水压致裂连通技术;数值模拟结果表明,水压致裂过程
    
    摘要
    中,岩盐水力裂缝呈扇形张开,与不考虑溶解时的裂缝宽度明显不同,其裂缝宽度与
    距离、时间的关系为:w=(0.0034+0.0006t)e‘众。007+0·oolst)‘,数值模拟结果与现场压裂
    试验结果相吻合。
     (3)盐矿水溶开采的固一流一热一传质祸合理论研究。盐矿水溶开采过程,是
    一个化学流体运移、矿物溶解、传热传质、固体变形等多场相互作用的固一流一热一
    传质祸合作用过程,矿物的溶解与溶腔内流场、溶液浓度场、以及温度场密切相关;
    本文以岩体力学、流体力学、传热传质学等理论为基础,建立了盐矿水溶开采的固一
    流一热一传质多场祸合理论,并进行了相应的数值模拟;数值模拟结果,清楚地说明
    了多场之间的相互作用关系。
     (4)盐矿水溶开采模拟实验研究。在室内进行了盐矿水溶开采的模拟实验,研
    究岩盐水溶开采过程中各物理量的变化及相互作用规律。室内模拟实验结果表明:在
    水溶开采过程中,岩盐溶解速度与溶蚀面积成指数关系,而溶解速度,则在一定范围
    内随流速的增大而增大;水力压裂可以使得裂缝沿软弱夹层大面积扩展,并实现群井
    间连通,矿床的溶解特征与数值模拟结果相一致。
     (5)芒硝矿群井致裂控制水溶开采技术与应用研究。群井致裂控制水溶开采技
    术,是利用盐类矿床水压致裂裂缝大面积扩展及流体流向群井间可调控的特性,对盐
    矿床实施高效、低成本的控制溶解开采。本文在上述理论分析及实验研究的基础上,
    提出了群井致裂控制水溶开采技术,并进行了现场试验研究;试验结果表明,群井致
    裂控制水溶开采,是一项理论科学、技术可行的、可以实现高回采率、高效率、高效
    益、低成本的水溶开采方法。
     (6)盐矿床内油气储备和核废料处置。对在盐类矿床内进行石油、天然气储备
    和核废料地质处置、储库溶腔的建造技术方法、以及加强对盐矿床的综合开发利用,
    进行了初步的分析探讨。
Salt deposits are a special kind of deposits, which enjoy high mining and utilizing values. Not only the minerals contained in them are valuable chemical industry materials, which paly important roles in our natioanl economy and social lives, but also their mined cavity are considered to be ideal hosts for oil and gas storage underground due to their advantageous geologic and mechanical characteristics. So scientific mining thoery and technology for salt deposits are always an indispensable foundation or guarantee for rational exploiting and utilizing them.
    As salt minerals are easily dissolved in water, solution mining method is commonly adopted for salt deposits mining. However, to found a scientific and comprehensive solution mining theory system is much difficult and consequently to further the current solution mining technology is heavily resticted because that the solution mining process of salt deposts is a complicated multi-field coupling problem, which involves fluid flow, mineral dissolution, heat and mass transfer, solid deformation, and so on. So, the research on multi-field coupling theory and application of solution mining for salt deposits is greatly significant and meaningful for scientifically theorizing and rationally exploiting for the deposits.
    In this dissertation, the study on the multi-field coupling theory and its application of hydraulic fracturing and solution mining for salt deposits is carried out in the following aspects. (1) The experimental study on pysical and mechanical characteristics of both intact and damaged rock salt samples under different temperatures raging from 20 # to 240 #; (2) The study on theory and technology of hydraulic fracturing and dissolving of salt deposits based on solid deformation, fluid flow, mineral solution and solute diffuse coupling analysis; (3) The foundation of mathematical model of solid deformation, fluid flow, heat and mass transfer coupling for solution mining of salt deposits, and numerical simulations of the model; (4) The simulated experimental study on double-well convection and multi-well hydraulic fracturing and solution mining in the laboratory; (5) The technology of multi-well hydraulic fracturing and controlled solution mining and its in situ test in thenardite mining of Yuncheng Salt Lake;
    (6) The primary analysis and discuss on oil and gas storage and wastes disposal in salt deposits.
    
    
    Through systematic studyies in this dissertation, main obtained conclusions are as
    follows: (1) Thenardite rock salt is a soft rock and temperature effects on its mechanical
    characteristics are remarkable. With tempearture increasing, both the mechanical strength
    and plastic deformation of the samples are enhanced to certain degree; (2) Hydraulic
    fracturing in salt deposit is a complex and coupled process, which is involved with rock
    fracture, solid deformation, fluid flow, salt mineral solution, solute diffusion and so on,
    numerical simulation of which demonstrates that the fracture opens in a fan shape and the
    relation of fracture aperture(w) with distance(x) and time(t) is w = (0.0034 +
    0.0006t) e(0.0007+0.0018t)x; (3) The solution mining process is a complicated process, which is
    involved with fluid flow, mineral solution, solute diflusion, heat and mass transfer, and
    solid deformation; it is a multi-field coupling procedure. The results of corresponding
    numerical simulation well demonstrate their relations; (4) During solution mining process,
    the relation between dissolving rate and dissolved area of salt deposits is in the form of
    exponential law, and the dissolving rate increases with the flow speed of the brine to some
    extent; Hydraulic fracturing can make crake expand along the weak interlayer in salt
    deposits and wells connect easily; (5) The technology of multi-well hydraulic fracturing
    and controlled solution mining of salt deposits is an economiocal and feasible method, the
    effect of which is well demonstrated by its application in thenardite mining of Yuncheng
    Slat Lake; (6) The cavern constructed with the
引文
1.袁见齐.袁见齐教授盐矿地质论文集[M].北京:学苑出版社,1989年:117~120
    2.《盐矿开采基本知识编写组》.盐矿开采基本知识[M].北京:轻工业出版社,1977:51~75
    3.王洪道,窦鸿身,颜京松,等.中国湖泊资源.北京:科学出版社,131~141
    4.杨吉根.略谈我国核废料岩盐处置的前景[J].华东地质学院学报.1989,12(2):55~62
    5.[美]R.J.森 著,全惟俊 简永年 译,水力压裂法地下处置放射性废物[M].北京:原子能出版社,1987
    6. Langer, M. Use of solution-mined caverns in salt for oil and gas storage and toxic waste disposal in Germany. Engineering Geology, 1993(35): 183-190
    7. Committee on the Waste Isolation Pilot Plant, etc. The Waste Isolation Pilot Plant, a Potential Solution for the Disposal of Transuranic Waste, Washington, D. C: National Academy Press, 1996: 7~14
    8.阎光灿.世界地下储气库[J].天然气与石油.1997,15(3):4~9
    9.王清明.关于我国盐矿水采溶洞利用问题的刍议[J].中国井矿盐,2002,33(1):17~20
    10.王俊槐,舒萍,邱红枫.大庆油区地下储气库建库研究[J].大庆石油地质与开发,1999,18(1):24~27
    11.管国兴,李留荣.配合“西气东输”加快岩盐开发建立地下储气库[J].中国井矿盐,2001,32(6):25~27
    12.王家枢.石油与国家安全[M].北京:地震出版社,2001
    13.张聪义.乌丘屿不能作为堆放核废料场址[J].台湾海峡,1999,18(2):227~233
    14. Caries De Las Cuevas, Lourdes Miralles. The Effect of Geological Parameters on Radiation Damage in Rock Salt: Application to Rock Salt Repositories. Nuclear Technology Vol.114 June 1996.325~336
    15. P. E. Hansen, F. D. Russell, J. F. Carter, N. L. Handin, J.-W. Mechanical behavior of rock salt Phenomenology and micro-mechanisms Senseny, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts v 29 n 4 Jul 1992 p 363-378 0148-9062
    16. Haupt, M. Constitutive law for rock salt based on creep and relaxation tests: Rock Mechanics and Rock Engineering v 24 n 4 Oct-Dec 1991 p 179-206 0723-2632
    17. Wawersik, W. R. Stone, C.M. Characterization of pressure records in inelastic rock demonstrated by hydraulic fracturing measurements in salt: International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts v 26 n 6 Dec 1989 p 613-627 0148-906
    
    
    18. K. S. Chan, N. S. Brodsky, A. F. Fossum, S. R. Bodner and D. E. Munson. Damage-Induced Nonassociated Flow in Rock Salt. International Journal of Plasticity, Vol. 10, No.6,pp.623~642,1994
    19.王清明.我国水溶采矿技术的发展[J].中国井矿盐.1999,30(5):8~13
    20.王清明.论水溶采矿方法的名称和分类[J].中国井矿盐,1999,30(3):6~10
    21.宣之强.中国盐矿开发的历史回顾与前瞻[J].化工矿产地质,1997,19(3):203~206
    22.杨秀夫,刘希坚,陈勉,陈志喜.国内外水压裂缝几何形态模拟研究的发展现状[J].西部探矿工程,1997,9(6):8~11
    23.杨秀夫,刘希坚,陈勉,陈志喜.国内外水力压裂技术现状及发展趋势[J].钻采工艺,1998,21(4):21~25
    24.阳友奎.岩盐水力压裂机理及其工程应用的研究[博士论文].重庆大学,1993.
    25.肖长富,周时光,阳友奎,邱贤德,吴刚.岩盐水力压裂的实验研究[J].重庆大学学报.1992,15(1):15~20.
    26.肖长富,阳友奎,吴刚,邱贤德,周时光.岩盐水力压裂的破裂判据[J].重庆大学学报.1992,15(2):78~84.
    27.阳友奎,肖长富,邱贤德,吴刚.水力压裂裂缝形态与缝内压力分布[J].重庆大学学报(自然科学版),1995,18(3):20~26.
    28.周时光,阳友奎,卢国胜,张勇武,庄乾城.三向应力状态下岩盐的水力压裂机理[J].化工矿山技术.1993,22(5):14~18.
    29.漆智先,湛精华等.赵集盐矿开采方法探讨[J].中国井矿盐,2001,32(1):26~29
    30.崔贵平,唐孟龙.定向对接井的应用与发展趋势[J].中国井矿盐,2001,32(3):18~20
    31.易胜利,严正伟,陈强.岩盐水溶开采后期技术的探讨[J].中国井矿盐,2002,33(5):27~30
    32.夏筱红,杨伟峰,刘志强.应城盐矿区采卤对接井施工技术[J].中国井矿盐,2002,33(3):22~24
    33.谭晓.定向水平侧井技术在井矿盐开采中的应用[J].中国井矿盐,2002,33(1):27~28
    34.郑茂全,陈光彬.岩盐矿山逆倾向水平对接井技术[J].中国井矿盐,2003,34(1):18~20
    35.王清明.关于径向对接井连通水溶开采新工艺的探讨[J].中国井矿盐。1998,29(1):10~14.
    36.张治平,阳慕尧.受控定向钻孔在水溶开采中的应用[J].化工矿山技术.1995,24(5):36~38.
    37.向军文.定向钻井技术发展与展望[J].探矿工程.1998,(6):8~10.
    38.郝世俊,石智军等.对接井钻进工艺研究[J].煤田地质与勘探.2000,28(3):62~64.
    39.李辑明,万天霞.自动控制在岩盐水溶开采中的应用[J].中国井矿盐.1998,29(5):13~14.
    40.余勇进.薄层复层状盐矿水溶开采溶腔研究与地面沉降分析[J].中国井矿盐.1998,29(2):14~16
    
    
    41.杨炳鑫.云南地面钻井水溶典型事故井浅析[J].中国井矿盐.1998,29(2):17~20.
    42.那云宏.乔后盐矿开采状态下的地质条件探析[J].中国井矿盐.29(1):15~19.
    43.黄卫安.盐矿水溶采空区及地面重要建筑设施的监控管理问题探讨[J].中国井矿盐.1997,28(3):27~29.
    44.陈群芝.长山矿区岩盐矿床开采技术条件浅析[J].中国井矿盐.1995,26(4):22~26.
    45.黄书城.淮安盐矿下关矿区岩盐矿床地质特征与水溶开采[J].江苏地质,1994,18(2):81~85.
    46.张建胜.兰坪盐矿钻井水溶开采[J].中国井矿盐.1994,25(5):8~8.
    47.彭黎闽.云应盐矿区提高资源回采率的有效措施[J].中国井矿盐.1994,25(2)28~29,33.
    48.陈群芝.长山矿区岩盐矿床开采技术条件浅析[J].中国井矿盐,1995,26(4):22~26.
    49. Michanel S. Bruno and Maurice B. Dusseault, Geomechanical Analysis of Pressure Limits for Thin Bedded Salt Carvens, Solution Mining Research Institute, Spring 2002 Technical Meeting, Banff, Alberta,Canada, April 29-30;
    50. Jug Manocha and Onorio Cicchini, Storage of Hydrocarbons in Underground Formations, Solution Mining Research Institute, Spring 2002 Technical Meeting, Banff, Alberta,Canada, April 29-30;
    51. Georgi Valev and Penka Kastreva, Remarks on a New Way for Defining the Deformation Accoding to the Finite Elements Methods and its Application for Salt Deposits, Solution Mining Research Institute, Spring 2002 Technical Meeting, Banff, Alberta,Canada, April 28-May 1;
    52. Reinhard B. Rokahr, Reingis Hauck, Kurt Staudtmeister and etc, High Pressure Cavern Analysis,Solution Mining Research Institute, Research Project Report No.2002-2-SMRI;
    53. Tom W. Pfeifle, Kirby D.Mellegard, Nils T.Skaug, and etc, An Investigation of the Integrity of Cemented Casing Seals with Application to Salt Cavern Sealing and Abandonment, Solution Mining Recearch Institute, Research Project Report No.2000-2-SMRI
    54.王清明.试论盐类矿床水溶采矿的理论基础[J].中国井矿盐,1997(2):17~24
    55.杨骏六,王登之.水溶采矿中溶腔形状变化的数值模拟[J].四川联合大学学报(工程科学版).1997,1(6):21~25.
    56.杨骏六,吴乘胜.水溶采矿中竖直盐壁面上自然对流层流边界层的相似解[J].四川大学学报(工程科学版).2000,32(4):1~3.
    57. P. Weidinger, A. Hampel, W. Blum, U. Hunsche. Creep behavior of natural rock salt and its description with the composite model. Materials Science & Engineering A234-236(1997)646~648
    58. Z. Chen, M. L. Wang, T. Lu and S. J. Zhou. A micro-and macro-mechanical investigation of creep
    
    mechanism for the WIPP rock salt. Radiation Waste Management and Environmental Restoration. 1996,vol.20,pp.73~91
    59. M. Hanpt. A Constitutive Law for Rock Salt Based on Creep and Relaxation Tests. Rock Mechanics and Rock Engineering, 1991,24:179~206
    60. Leol. Van. Sambeek, Joel. Ratigan, Frank D. Hansen. Dilatancy of Rock Salt in Laboratory Test. In. J. Rock. Min. Sci.& Geomech. Abstr. Vol.30,no.7,pp.735~738,1993
    61. K. Fuenkajorn, S. Serata. Numerical Simulation of Strain-Softening and Dilation of Rock Salt. In. J. Rock. Min. Sci. & Geomech. Abstr. Vol.30,no.7,pp.1303~1306,1993
    62. N.D. Cristescu. A General Constitutive Equation for Transient and Stationary Creep of Rock Salt. In. J. Rock. Min. Sci. & Geomech. Abstr. Vol.30,no.7,pp.125~140,1993
    63. J.R. Weatherby, D. E. Munson and J. G. Arguello. Three-dimensional finite element simulation of creep deformation in rock salt. Engineering Copmutations.Vol. 13 No.8,1996,pp.82~105
    64. Jishan Jin and N. D. Cristescu. An elastic/visco-plastic model for transient creep of rock salt. International Journal of Plasticity, vol. 14,Nos. 1~3,pp.85~107,1998
    65. U. Hunsche and H. Albrecht. Results of True Triaxial Strength Tests on Rock Salt. Engineering Fracture Mechanics.Vol.35, No.4/5,pp.867~877,1990
    66.刘新荣,姜德义,余海龙,马建春.岩盐变形特性的试验研究[J].矿冶工程.1999,19(4):12~15
    67.杨春和,殷建华,J.J.K.Daemen.岩盐应力松弛效应的研究[J].岩石力学与工程学报.1999,18(3):262~265
    68.马建春.岩盐流变特性的研究[博士论文].重庆大学,1995
    69.贾喜荣.矿山岩层力学[M].北京:煤炭工业出版社,1997.16~70
    70.沈成康.断裂力学[M].上海:同济大学出版社,1996
    71.梁卫国,赵阳升.岩盐水压致裂连通溶解的数学模型[J].太原理工大学学报.2002,33(4):361-363
    72.梁卫国,赵阳升.盐类矿床群井水力压裂连通理论与实践[J].岩石力学与工程学报,2002,2 1(增2):2579~2582
    73.赵阳升.矿山岩石流体力学[M].北京:煤炭工业出版社,1994
    74.王清明.盐类矿床水溶开采[M].北京:化学工业出版社,2003:62~82
    75.梁卫国,赵阳升.盐类矿床水溶开采机理分析[J].太原理工大学学报,2002,33(3):234~237
    76. J. Bear. Dynamics of Fluids in Porous Media [M]. American Elsevier Publishing Company. Inc. 1972:47~90
    77.蔡美峰,何满朝,刘东燕.岩石力学与工程[M].北京:科学出版社,2002
    
    
    78.徐志英.岩石力学[M].北京:中国水力水电出版社,1997
    79.陈颐,黄庭芳.岩石物理学[M].北京:北京大学出版社,2001
    80.杨世铭,陶文铨.传热学[M].北京;高等教育出版社,2002
    81.肖长富,阳友奎,吴刚,李昌平,邱贤德.岩盐溶解特性及其传质过程的研究[J].重庆大学学报.1993,16(2):51~57
    82.李昌平.岩盐溶解特性及其传质理论实验研究[硕士论文].重庆大学,1991
    83.吴刚,肖长富,邱贤德.岩盐溶解速率的研究[J].化工矿山技术.1991,21(1):19~22
    84.杨骏六,杨进春,邹玉书.岩盐水溶特性的试验研究[J].四川联合大学学报.1997,1(2):74~79
    85.李志萍,赵阳升.芒硝溶解特性的实验研究[J].太原理工大学学报.2003,34(3):309~312
    86.李志萍.盐矿群井致裂水溶开采数值模拟与实验研究[硕士论文].太原理工大学,2003
    87.王清明.论水采矿山的矿石采收率与开采损失[J].中国井矿盐.2000,31(4):19~22
    88.王家枢.石油与国家安全[M].北京:地震出版社,2001
    89.苗承武,刘华印,齐志斌,等.西气东输工程建设条件和效益分析[J].石油规划设计,2000,11(3):1~3,7
    90.史震古,徐宁娟.不可忽视核电站产生的核废料之危害性[J].基建优化,1994,15(2):13~16
    91.阎光灿.世界地下储气库[J].天然气与石油,1997,15(3):4~9
    92.任立新.世界石油、天然气储量及其开采现状[J].国外油田工程,2001,17(8):24~26
    93.黄维秋.我国油气储运行业的回顾与展望[J].江苏石油化工学院学报,1999,11(4):56~60
    94.王清明.论水采矿山的矿石采收率与开采损失[J].中国井矿盐.2000,31(4):19~22.
    95.宣之强.中国盐矿开发的历史回顾与前瞻[J].化工矿产地质,1997,19(3):203~206.
    96.余勇进.薄层复层状盐矿水溶开采溶腔研究与地面沉降分析[J].中国井矿盐.1998,29(2):14~16.
    97.余勇进.薄层复层状盐矿水溶开采溶腔研究与地面沉降分析(续)[J].中国井矿盐.1998,29(3):12~13.
    98.杨炳鑫.云南地面钻井水溶典型事故井浅析[J].中国井矿盐.1998,29(2):17~20.
    99.那云宏.乔后盐矿开采状态下的地质条件探析[J].中国井矿盐.29(1):15~19.
    100.黄卫安.盐矿水溶采空区及地面重要建筑设施的监控管理问题探讨[J].中国井矿盐.1997,28(3):27~29.
    101.陈群芝,长山矿区岩盐矿床开采技术条件浅析[J].中国井矿盐.1995,26(4):22~26.
    102.彭黎闽,云应盐矿区提高资源回采率的有效措施[J].中国井矿盐.1994,25(2)28~29,33.
    103.张聪义.乌丘屿不能作为堆放核废料场址[J].台湾海峡,1999,18(2):227~234
    104.[美]R.J.森 著,全惟俊简永年译,水力压裂法地下处置放射性废物.北京:原子能出版
    
    社,1987:P1~72
    105. Chart, K.S. Munson, D.E. Bodner, S.R.Fossum, A.E Cleavage and creep fracture of rock salt: Acta Matedalia 44 Sep 1996 Elsevier Science Ltd p 3553-3565
    106. P.E. Hansen, F.D. Russell, J.F. Carter, N.L. Handin, J.-W. Mechanical behaviour of rock salt. Phenomcnology and micromechanisms Senseny, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts v 29 n 4 Jul 1992 p 363-378
    107. Haupt, M. Constitutive law for rock salt based on creep and relaxation tests: Rock Mechanics and Rock Engineering v 24 n 4 Oct-Dec 1991 p 179-206
    108. Wawersik, W. R. Stone, C. M. Characterization of pressure records in inelastic rock demonstrated by hydraulic fracturing measurements in salt: International Journal of Rock Mechanics and Mining Sciences & Gcomechanics Abstracts v 26 n 6 Dec 1989 p 613-627
    109. Chan, K.S.Brodsky, N.S. Fossum, A.E Bodner, S.R. Munson, D.E. Damage-induced nonassociated inelastic flow in rock salt: International Journal of Plasticity v 1l0 n 6 1994 Pergamon Press Inc p 623-642
    110. Henry W. Jr. Solution mining of Wyoming trona Haynes: SPE-Rocky Mountain Regional/Low Permeability Reservoirs Symposium and Exhibition May 18-21 1997 1997 Society of Petroleum Engineers (SPE) p 123
    111. Langer, M. Use of solution-mined caverns in salt for oil and gas storage and toxic waste disposal in Germany: Engineering Geology v 35 n 3-4 Oct 1993 p 183-190
    112. Anon Solution mining. A review of 1992 activities: Mining Engineering (Littleton, Colorado) v 45 n 6 Jun 1993 p 610-611
    113. Nasun-Saygili, Gulhayat Okutan, Hasancan Application of the solution mining process to the Turkish trona deposit: Hydrometallurgy 42 1 Aug 1996 Elsevier Science B.V. p 103-113
    114. E Weidingcr, A. Hampel, W. Blum, U. Hunsche. Creep behavior of natural rock salt and its description with the composite model. MATERIALS SCIENCE & ENGINEERING A234-236(1997).
    115. C. De Las Cuevas. Pore structure characterization in rock salt. Engineering Geology 47(1997)17~30.
    116. Z.Chen, M.L.Wang, T. Lu and S.J.Zhou. A micro-and macro-mechanical investigation of creep mechanism for the WIPP rock salt. Radiation Waste Management and Environmental Restoration. 1996, vol.20, pp.73~91.
    117. LEOL.VAN.SAMBEEK, JOEL.RATIGAN, FRANK D.HANSEN. Dilatancy of Rock Salt in
    
    Laboratory Test. In. J. Rock. Min. Sci.& Geomech. Abstr. Vol.30, no.7, p.735~738, 1993.
    118. K.FUENKAJORN, S. SERATA. Numerical Simulation of Strain-Softening and Dilation of Rock Salt. In. J. Rock. Min. Sci.& Geomech. Abstr. Vol.30, no.7, pp.1303~1306, 1993.
    119. N.D.CRISTESCU. A General Constitutive Equation for Transient and Stationary Creep of Rock Salt. In. J. Rock. Min. Sci.& Geomech. Abstr. Vol.30, no.7, pp.125~140, 1993.
    120. Carles De Las Cuevas, Lourdes Miralles. The Effect of Geological Parameters on Radiation Damage In Rock Salt: Application To Rock Salt Repositories. Nuclear Technology Vol.114 June 1996.325~336
    121. M. Haupt. A Constitutive Law for Rock Salt Based on Creep and Relaxation Tests. Rock Mechanics and Rock Engineering.24, 179~206.
    122. J. R. Weatherby, D. E. Munson and J. G. Arguello. Three_dimensional finite element simulation of creep deformation in rock salt. Engineering Copmutations.Vol.13 No.8, 1996, pp.82~105.
    123. Jishan Jin and N.D.Cdstescu. An Elastic/Viscoplastic Model for Transient Creep of Rock Salt. International Journal of Plasticity, vol. 14, Nos. 1~3, pp.85~107, 1998.
    124. U. Hunsche and H. Albrecht. Results of True Triaxial Strength Tests on Rock Salt. Engineering Fracture Mechanies.Vol.35, No.4/5,pp.867~877,1990.
    125. K. S. Chan, N. S. Brodsky, A. E Fossum, S. R. Bodner and D. E. Munson. Damage-Induced Nonassociated Flow in Rock Salt. International Journal of Plasticity, Vol.10, No.6, pp.623~642, 1994.
    126. Michael S. Bruno and Mauriee B. Dusseault. Geomechanical Analysis of Pressure Limits fro Thin Bedded Salt Caverns. Spring 2002 Meeting, April 29-30, 2002 Banff, Alberta
    127. Ralph Cole. The Long Term Effects High Pressure Natural Gas Storage on Salt Caverns. Spring 2002 Meeting, 28 April-1 May 2002, Banff, Alberta, Canada.
    128. Toshiaki Makita, Yoshiharu Miyanaga, Keiji Iguehi and Teruyoshi Hatano. Underground oil storage facilities in Japan. Engineering Geology, 35 (1993): 191~198
    129. Kazuo Hoshino. Construction of underground caverns for petroleum storage in orogenic areas: Geological stability. Engineering Geology, 35 (1993): 199~205

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700