用户名: 密码: 验证码:
超深地层盐岩地下储气库可行性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盐岩是世界上公认的油气储备的理想介质,国内已经对盐岩地下储气库展开了研究,金坛已有溶腔地下储气库于2007年底开始注气,云应盐岩地下储气库也已经通过了可行性论证。国外盐岩地下储库的埋深一般为1000-1800米之间,国内预对1800米下的潜江超深地层盐岩油气储库进行可行性研究,超深地层有高温高压的特点,带来了一系列的问题与挑战。本文以潜江超深地层油气储库为依托,针对超深地层高温高压的特性,系统展开了高温高压条件下的力学试验研究,根据盐岩的破坏特点建立了盐岩的强度理论,结合数值模拟的手段对超深地层盐岩地下储气库的稳定性进行了研究,主要研究内容及结论如下:
     1.模拟2000米处地层温度和压力,进行了不同温度和不同压力条件下的压缩试验。研究了高温高压条件下盐岩的力学特性,获取了力学参数。对比了高温高压条件下与常温压条件下的力学特性的区别,研究了围压及温度对盐岩力学特性的影响。
     2.针对储气库不断进行注气、采气的特点,进行了单轴、三轴加卸载试验,研究了屈服面下的加卸载变形特性,建立了屈服面下的加卸载本构关系。
     3.进行了高压条件下的盐岩蠕变试验。研究了长时间下蠕变曲线的特征,根据试验结果,获取了稳态蠕变率参数。提出了考虑偏应力效应的初始蠕变本构关系,建立全过程蠕变本构方程,提出了判定盐岩蠕变破坏的加速蠕变边界线。
     4.提出了考虑高温高压力学特性的盐岩复合强度理论,基于试验,建立了剪切破坏准则、拉伸破坏准则,以及高于临界围压的不坏准则,建立了表征盐岩渗透特征的扩容准则。根据强度理论,对盐岩地下溶腔的围岩体分为弹性区、塑性区、扩容区以及破坏区,基于围岩体分区,建立了盐岩地下储气库围岩体稳定性判断准则。
     5.基于前面建立的理论模型,在FLAC3D平台上,利用VC++自定义本构,利用模型验证了自编本构的正确性。基于自定义本构以及通过试验获取的力学参数,进行了超深地层盐岩地下储气库的数值模拟分析,综合考虑静力稳定性计算结果与长期蠕变分析结果,建议储气库长期最小运行压力为17MPa,紧急供气时内压可以最低降到10MPa,10MPa-17MPa的库容量可以作为短期应急供气库容量;套管鞋和腔顶的最小距离不少于8米。两倍溶腔直径的矿柱宽度是安全可行的。
Rock salt is a worldwide-recognized ideal medium for storing oil and natural gas. Rock salt underground gas storage has been studied for several years in our country. Discarded salt cavities in Jintan have been used to store natural gas for the first time in the world in 2007, and the feasibility of rock salt storage in Yunying has been demonstrated in 2009. From 1000 to 1500 meters, it is the most economical formation for rock salt underground gas storage. But there are some principles for selecting the suitable formation, so the selected formation may be not the most economical one. For the formation of over 1800m, which is called ultra-deep formation, its temperature and pressure are much higher than the common formation. According to the feather of the ultra-deep formation, systematic mechanical tests in high temperature and high pressure have been conducted for Qianjiang rock salt underground gas storage, which is in formation of 1990m to 2080m. Based on the fracture feather, strength theory of rock salt has been built. The stability of ultra-deep salt rock underground gas storage has been researched by numerical simulation method. The main contents and conclusions are as follows:
     1. Based on the temperature and pressure in 2000-meter formation, compression tests in different temperatures and pressures were conducted. The mechanical properties in high temperature and pressure were studied, and mechanical parameters were obtained. The differences of mechanical properties under high and normal temperatures and pressures were compared. The effects of confining pressure and temperature on rock salt mechanical property were researched.
     2. According to the characteristics of cyclic gas injection and production, uniaxial and axial cyclic loading and unloading test were conducted. The deformation properties of loading and unloading under yield surface were studied, and the constitutive relationship between loading and unloading was given.
     3. Creep tests in high pressure were conducted, and the feather of long-time creep curve was researched. Based on the test result, the steady-state creep rates were obtained. The primary creep constitutive relationship, which considering the effect of deviatoric stress, was built. Then global creep constitutive equation was given. The accelerated creep boundary line was presented to determine creep failure.
     4. Strength theory which is considering the effect of high temperature and pressure was built. Based on the tests, shear failure criterion, tension failure criterion and the stability criterion over critical confining press were built. The dilation criterion which represents permeability properties was built based on compress tests. The surrounding rock mass of rock salt dissolved cavity can be divided into elasticity zone, plasticity zone, dilation zone and failure zone; based on the zones, stability criterion was built.
     5. Based on the theory model built previous, self-defined constitutive was compiled to the interface of FLAC3D by VC++6.0, and validity of self-defined constitutive was verified by using a tunnel model. Based on the self-defined constitutive and parameters obtained by tests, numerical simulation analysis was conducted for the rock salt underground gas storage in ultra-deep formation. Considering results of stability and creep analysis, 17MPa was advised to be the long-term minimum pressure. When gas supply is emergency, the pressure can be dropped to 10MPa, and the storage capacity between 10MPa to 17MPa can be used as short-term emergency gas supply. The minimum distance between casing shoe and cavity roof is 8 meters, and two times of cavity diameter is feasible for the pillar width.
引文
[1]杨春和,梁卫国,魏东喉。中国盐岩能源地下储存可行性研究[J]。岩石力学与工程学报,2005,24(24):4409-4417.
    [2]束昱,编著。地下空间资源的开发与利用[M]。上海:同济大学出版社,2005。
    [3]胡建义,吴因业,张静。高海波与超深地层石油地质若干问题[J]。石油学报,2009,30(2): 159-197
    [4]Barron T F. Regulatory, technical pressures prompt more US salt-cavern gas storage[J]. Petroleum society of CIM,1995(2):55-67.
    [5]Coates G.K. Lee C.A. MeClain W.C. et al. Closure and Collapse of Man-Made Cavities in Salt[A]. In:Proc.6th International symposium on salt[C].1983:139-157.
    [6]Hardy R.H., Langer M, editors. Proc.1st Conf. Mech. Beh. Of Salt[M]. Pensylvania, November 1981. Trans Tech Pub., Clausthal-Zellerfeld, Germany,901pages..
    [7]Hardy R.H., Langer M, editors. Proc.2nd Conf. Mech. Beh. of Salf[M]. Hannover, September 1984. Trans Tech Pub., Clausthal-Zellerfeld, Germany,781pages.
    [8]Hardy R.H., Langer M, Berest P., et al. Editors. Proc 3rd Conf. Mech. Beh. of Salt[M]. Palaiseau, September 1993. Trans Tech Pub., Clausthal-Zellerfeld, Germany,621 pages.
    [9]Aubertin M, Hardy R.H. editors. Proc 4th Conf. Mech. Beh. of Salt[M], Montreal, June 1996. Trans Tech Pub., Clausthal-Zellerfeld, Germany,658pages,1997.
    [10]Cristescu N, Hardy R.H. editors. Proc 5th Conf. Mech. Beh. of Salt[M]. Bucarest, August 1999, Trans Tech Pub., Clausthal-Zellerfeld, Germany,675pages,2002.
    [11]Manfred Wallner, Karl-Heinz Lux, Wolffang Minkley, editors. Proc 6th Conf Mech. Beh. of Salt[M]. Taylor & Francis Group, London, UK,2007
    [12]Hunsche U, Albrecht H. Results of true triaxial strength tests on rock salt[J]. Engineering Fracture mechanics,1990,35(4):867-877.
    [13]Hunsche U. A failure criterion for natural polycrystalline rock salt[A]. Advances in Constitutive laws for Engineering Materials. Proc. ICCLEM (Volume 2)[C]. International Academic Publ.,1989:1043-1046.
    [14]Hunsche U. Fracture experiments on cubic rock salt samples[A]. The first Conference on the Mechanical Behavior of Salt[C]. Trans Tech publications,1984:169-179.
    [15]Hansen FD, Mellegard K D, Sensen P E. Elasticity and strength of ten natural rock salt[A]. The first Conference on the Mechanical Behavior of Salt[C]. Trans Tech publications, 1984:71-83.
    [16]Farmer I.W., Gilbert M.J. Dependent strength reduction of rock salt[A]. The first Conference on the Mechanics Behavior of Salt[C]. Trans Tech Publications,1984:4-18.
    [17]Skrotzki W. An Estimate of the Brittle do ductile transition in salt[A]. The first Conference on the Mechanical Behavior of salt[C]. Trans Tech publications,1984:381-388.
    [18]Hunsche U. Result and interpretation of creep experiments on rock salt[A]. The first Conference on the Mechanics Behavior of Salt[C]. Trans Tech Publications,1984:159-167.
    [19]Cristescu N.D. A general constitutive equation for transient and stationary creep of rock salt[J]. Int. J. Rock Mech. Min. Sci.& Geomech Abstr.1993(3),2:125-140.
    [20]Cristescu N.D., Paraschiv I. Creep and creep damage around large rectangular-like caverns[J]. Mechanics fo Cohesive-Frictional Materials.1996(1):165-197.
    [21]Hampel A, Hunsche U, Weidinger P, et al. Description of the creep of rock salt with the composite model-Ⅱ Steady-State creep[A]. The 4th Conference on the Mechanical Behavior of Salt[C]. Trans Tech Publication,1996:287-299.
    [22]李二兵。层状盐岩中天然气地相爱储存库稳定性评价研究[博士学位论文][D]。南京:中国人民解放军理工大学,2007
    [23]Chan K.S., Bodner S.R., Fossum A.F., et al. A constitutive model for inelastic flow and damage evolution in solids under triaxial compression[J]. Mechanics of Materials,1992(14): 1-14.
    [24]Chan K.S., DeVries K.L. Bodner S.R. A damage mechanics approoch to life prediction for a salt sturcture[R]. SAND94-2135C, Sandia National Laboratories, Albuquerque, NM,1994.
    [25]Chan K.S. Final development of the Multimechanism Deformation Coupled Fracture(MDCF) Constitutive Model[R]. Monthly Technical Report No.FY96-2, Monthly Progress Report for Southwest Research Institute,1996.
    [26]DeVries K.L., Nieland J.D., Ratigan J.L. Feasibility study for lowering the minimum gas pressure in Solution-Mined Caverns based on geomechanical analysis of creep-induced damage and healing[R]. RSI-0960, prepared by RESPEC, Rapid City, SD, for U.S. Department of Energy, Morgantown, WV,1998.
    [27]DeVries K.L., Mellegard K.D., Callahan G.D. Salt damage criterion proof-of-concept research[R]. RSI-1675, prepared by RESPEC, Rapid City, SD, for U.S. Department of Energy, Morgantown, WV.2002.
    [28]Lux K.H. Hou Zhengmeng. New developments in mechanical safety anylysis of repositiories in rock salt[A]. In:Proc. Int. Conf on radioactive waste disposal, disposal technologies & concepts[C]. Berlin:Springer Verlag,2000:281-286.
    [29]Hou Zhengmeng, Wu Wen. Improvement of design of storage cavity in rock salt by using the Hou/Lux constitutive model with consideration of creep rupture criterion and damage[J]. Chinese Journal of Geotechnical Engineering,2003,25(1):104-108.
    [30]邱贤德,姜永东,东兰。岩盐流变特性与卸荷损伤本构关系研究[J]。中国井矿盐,2003,34(4):21-24
    [31]邱贤德,邵明康,张兰,等。岩盐流变特性与工程应用研究[J]。中国井矿盐,2004,36(6):16-20
    [32]邱贤德,姜永东,阎宗岭,等。岩盐的蠕变损伤破坏分析[J]。重庆大学学报(自然科学版),2003,(5):106-109
    [33]严仁俊,裴小彬,罗鑫,等。四川三叠系盐岩蠕变规律实验研究,西部探矿工程,2005,(4):93-94
    [34]杨春和,李银平,屈丹安,等。层状盐岩力学特性研究进展[J]。力学进展,2008,38(4):484-494
    [35]杨春和,高小平,吴文。盐岩时效特性试验研究与理论分析[J]。辽宁工程技术大学学报,2004,23(6):764-766
    [36]刘江,杨春和,吴文,等。盐岩短期强度和变形特性试验研究[J]。岩石力学与工程学报,2006,25(增1):3104-3109
    [37]高小平,杨春和,吴文。岩盐时效特性实验研究[J]。岩土工程学报,2005,27(5):558-561
    [38]李银平,蒋卫东,刘江,等。湖北云应盐矿深部层状盐岩之间试验研究[J]。岩石力学与工程学报,2007,26(9):1767-1772
    [39]杨春和,马洪岭,刘建峰。循环加、卸载下盐岩变形特性试验研究[J]。岩土力学,2009,30(12):3562-3568。
    [40]杨春和,李银平。互层盐岩体的Cosserat介质扩展本构模型[J]。岩石力学与工程学报,2005,24(23):4226-4232
    [41]李银平,杨春和。层状盐岩体的三维Cosserat介质扩展本构模型[J]。岩土力学,2006,27(4):509-514
    [42]李银平,刘江,杨春和。泥岩夹层对盐岩变形和破损特征的影响分析[J]。岩石力学与工程学报,2006,25(12):2461-2466
    [43]吴文,徐松林,杨春和,等。盐岩冲击特性试验研究[J]。岩石力学与工程学报,2004,23(21):3613-3620
    [44]吴文,徐松林,杨春和,等。岩盐冲击过程本构关系和状态方程研究[J]。岩土工程学报,2004,26(3):367-372
    [45]杨春和,曾义军,吴文,等。深层盐岩本构关系及其在石油钻井工程中的应用研究[J]。岩石力学与工程学报,2003,22(10):1678-1682
    [46]Yang Chunhe, Bai Shiwei. Analysis of stress relaxiation behavior of rock salt[A]. In: Proceedings of the 37th U.S. Rock Mechanics Symposium[C]. New York:John Willey & Sons, 1999:935-938.
    [47]Yang Chunhe, Daemen J.J.K. Yin Jianhua, et al. Experimental investigation of creep behavior of salt rock [J]. International Journal of Rock Mechanics and Mining Sciences. Vol.36,1999: 233-242.
    [48]杨春和,殷建华,J.J.K. Daemen。盐岩应力松弛效应的研究[J]。岩石力学与工程学报,1999,18(3):262-265
    [49]杨春和,白世伟,吴益民。应力水平及加载路径对盐岩时效的影响[J]。岩石力学与工程学报,2000,19(3):270-275
    [50]陈峰,杨春和,白世伟。盐岩储气库蠕变损伤分析[J]。岩土力学,2006,27(6):945-950
    [51]刘江,杨春和,吴文,等。盐岩蠕变特性和本构关系研究[J]。2006,27(8):1267-1271
    [52]陈峰,李银平,杨春和,等。云应盐矿盐岩蠕变特性试验研究[J]。岩石力学与工程学报,2006,25(增1):3022-3027
    [53]陈卫忠,王者超,伍国军,等。盐岩非线性蠕变损伤本构模型及其工程应用[J]。岩石力学与工程学报,2007,26(3):467-472
    [54]韦立德,杨春和,徐卫亚。基于细观力学的盐岩蠕变损伤本构模型研究[J]。岩石力学与工程学报,2005,24(23):4253-4258
    [55]胡其志,冯夏庭,周辉。考虑温度损伤的盐岩蠕变本构关系研究[J]。岩土力学,2009,30(8)2245-2248
    [56]吴文,候正猛,杨春和。盐岩的渗透特性研究[J]。岩土工程学报,2005,27(7):746-749
    [57]周宏伟,何金明,武志德。含夹层盐岩渗透特性及其细观结构特征[J]。岩石力学与工程学报,2009,28(10):2068-2073
    [58]梁卫国,赵阳升。岩盐力学特性的试验研究[J]。岩石力学与工程学报,2004,23(3):391-394
    [59]梁卫国,徐素国,莫江,等。盐岩力学特性应变率效应的试验研究[J]。岩石力学与工程学报,2010,29(1):43-50
    [60]梁卫国,徐素国,赵阳升,等。盐岩蠕变特性的试验研究[J]。岩石力学与工程学报,2006,25(7):1386-1391
    [61]梁卫国,徐素国,刘江,等。金坛储气库岩盐蠕变特性及其实用本构研究[J]。辽宁工程技术大学学报,2007,26(3):354-356
    [62]徐素国,梁卫国,郤保平,等。钙芒硝盐岩蠕变特性的研究[J]。岩石力学与工程学报,2008,27(增2):3516-3520
    [63]任中俊,彭向和,万玲,等。三轴加载下盐岩蠕变损伤特性的研究[J]。应用力学学报,2008,25(2):212-218
    [64]张强勇,刘德军,贾超,等。盐岩油气储库介质地质力学模型相似材料的研制[J]。岩土力学,2009,30(12):3581-3586
    [65]王贵君。一种盐岩流变损伤模型[J]。岩土力学,2003,24(增):81-84
    [66]唐明明,王芝银,丁国生,等。含夹层盐岩蠕变特性试验机器本构关系[J]。煤炭学报, 2010,35(1):42-46
    [67]林元华,曾德智,施太和,等。确定岩盐层力学参数的反演方法研究[J]。天然气工业,2005,25(5):59-63
    [68]林元华,曾德智,施太和,等。岩盐层蠕变规律的反演方法研究[J]。2005,26(5):111-114。
    [69]Dreyer W.E., The science of rock mechanics[M]. Trans Tech Publications, v.1,501pages, 1972.
    [70]Dreyer W.E., Results of Recent studies on the Stability of Crude Oil and Gas Storage in Salt Caverns[A]. In:Proc. Fourth International symposium on salt[C].1973:65-92.
    [71]Lux K.H., Gebirsmechanischer entwurf und felderfahrungen im Salzkavernenbau[M]. Stuttgart:Ferdinand Enke Verlag,1984.
    [72]Robert L. Thorns and Richard M.Gehle. Survey of existing caverns in U.S. salt domes. The mechanical behavior of salt proceedings of the second conference.1984,703-717
    [73]Tillerson J.R. Geomechanics investigations of SPR crude oil storage caverns[R]. SANN79-2031C, Sandia Nitioanal Laboratories, Albuquerque, NM,1979.
    [74]Preece D.S. Foley J.T. Finite element analysis of salt caverns employed in the Strategic Petroleum reserve[A]. In:Proc.6th International symposium on salt[C].1983:49-63.
    [75]Preece D.S. Foley J.T. Lont-term performation predictions for SPR salt caverns[R]. SAND83-2343, Sandia National Laboratories, Albuquerque, NM,1984.
    [76]Preesce D.S. Calculation of creep induced volume reduction of the Weeks Island SPR facility using 3D finite element methods[R]. SAND87-1694, Sandia National Laboritories, Albuquerque, NM,1987.
    [77]Schmidt U, Staudtmeister K. Determining minimum permissible operating pressure for a gas cavern using the finite element method[A]. In:Proceedings of International Conference on Storage of Gases in Rock Caverns[C], Trondheim,1989:103-115.
    [78]Ehgartner B.L. Effects of cavern spacing and pressure on subsidence and storage losses for the US SPR[R].SAND91-2575, Sandia National Laboratories, Albuquerque, NM,1991.
    [79]Bruno Hugout. Mehcanical behavior of salt cavities-in situ tests-model for calculating the cavity volume evolution[C]. The mechanical behavior of salt proceedings of the second conference.1984,291-310
    [80]Stefan Heusermann, Olaf Rolfs and Uwe Schmidt. Nonlinear finite-element analysis of solution mined storage caverns in rock salt using the LUBBY2 constitutive model [J]. Computers & Structures.2003(81):629-638.
    [81]Hoffman E.L. Effects of cavern spacing on the performance and stability of gas-filled storage caverns[R]. SAND92-2575, Sandia National Laboratories, Albuquerque, NM 1992.
    [82]Hoffman E.L Effects of cavern depth on surface subsidence and storage loss of gas-filled storage caverns[R]. SAND92-0053, Sandia National Laboratories, Albuquerque, NM 1992.
    [83]Hoffman E. Ehgartner B.L. Using three dimensional structural simulations to study the interactions of multiple excavations in salt[R]. Sandia National Laboratories, Albuquerque, NM,1997.
    [84]Standtmeister K., Rokahr R.B. Rock mechanical design of storage in bedded salt caverns[J]. International Journal of Rock Mechanics & Mining Sciences.1997,34(3):646
    [85]Stephen Horseman and Evan Passaris. Creep tests for storage cavity closure prediction[C]. The mechanical behavior of salt proceedings of the first conference. Clausthal, trans tech publications.1981:119-157
    [86]Gerhard Staupendahl and Manfred W. Schmidt. Field investigation of the long term deformational behavior of a 10,000m3 cavity at the asse salt mine[C]. The mechanical behavior of salt proceedings of the first conference. Clausthal, trans tech publications. 1981:511-525
    [87]Philippe Boucly. In situ experience and mathematical representation of the behavior of rock salt used in storage of gas[C]. The mechanical behavior of salt proceedings of the first conference. Clausthal, trans tech publications.1981:453-471
    [88]Ussam A. Mirza. Prediction of creep deformations in rock salt pillars[C]. The mechanical behavior of salt proceedings of the first conference. Clausthal, trans tech publications. 1981:311-325
    [89]Pierre Berest and Duc Nguyen Minh. Deep underground strorage cavities in rock salt: interpretation of in situ data from French and foreign sites [C]. The mechanical behavior of salt proceedings of the first conference. Clausthal, trans tech publications.1981:555-571
    [90]杨春和,等。岩盐溶腔稳定性及失稳控制研究[R]。武汉:中国科学院武汉岩土力学所,2003
    [91]王莉,布丛。盐穴储气库注-采气过程中溶腔压力和温度的估算[J]。石油规划设计,2001,12(3):32-33
    [92]姜德义。岩盐溶腔稳定性及失稳控制研究[博士学位论文][D]。重庆:重庆大学,2003
    [93]王贵君。盐岩层中天然气存储洞室围岩长期变形特征[J]。岩土工程学报,2003,25(4):431-435
    [94]王贵君。天然气盐岩洞室群长期存储能力[J]。岩土工程学报,2004,26(1):62-66
    [95]吴文,候正猛,杨春和。盐岩中能源(石油和天然气)地下储存库稳定性评价标准研究[J]。岩石力学与工程学报,2005,24(14):2497-2505
    [96]尹雪英,杨春和,陈剑文。金坛盐矿老腔储气库长期稳定性分析数值模拟[J]。岩土力学,2006,27(6):869-874
    [97]陈峰,杨海军,杨春和。盐岩储气库注气排卤期剩余可排卤水分析[J]。岩土力学,2009.,30(12):3602-3606
    [98]陈峰,杨春和,白世伟。盐岩储气库最佳采气速率数值模拟研究[J]。岩土力学,2007,28 (1):57-62
    [99]施锡林,李银平,杨春和,等。盐穴储气库水溶造腔夹层垮塌力学机制研究[J]。岩土力学,2009,30(12):3613-3620
    [100]王安明,杨春和,黄诚,等。层状盐岩力学和变形特性数值试验研究[J]。岩土力学,2009,30(7):2173-2178
    [101]陈卫忠,伍国军,戴永浩,等。废弃盐穴地下储气库稳定性研究[J]。岩石力学与工程学报,2006,25(4):848-854
    [102]陈卫忠,谭贤君,伍国军,等。含夹层盐岩储气库气体渗透规律研究[J]。岩石力学与工程学报,2009,28(7):1927-1934
    [103]陈剑文,杨春和,郭印同。基于盐岩压缩-扩容边界理论的盐岩储气库密闭性分析研究[J]。岩石力学与工程学报,2009,28(增2):3302-3309
    [104]谭贤君,陈卫忠,杨建平,等。盐岩储气库温度-渗流-应力-损伤耦合模型研究[J]。岩土力学,2009,30(12):3633-3641
    [105]戴永浩,陈卫忠,杨春和,等。金坛盐岩储气库运营模型试验研究[J]。岩土力学,2009,30(12):3574-3580
    [106]梁卫国,杨春和,赵阳升。层状盐岩储气库物理力学特性与极限运行压力[J]。岩石力学与工程学报,2008,27(1):22-27。
    [107]郤保平,赵阳升,赵延林,等。层状盐岩储库长期运行腔体围岩流变破坏及渗透现象研究[J]。岩土力学,2008,29(增刊):241-246
    [108]余海龙,谭学术,鲜学福,等。岩盐溶腔稳定性模拟试验研究矿山压力与顶板管理,1995(Z1):156-159
    [109]丁国生,杨春和,张保平,等。盐岩地下储库洞室收缩形变分析[J]。地下空间与工程学报,2008,4(1):80-84
    [110]赵延林,赵阳升,郤保平。裂隙岩体的固气耦合模型及其在岩盐储气库中的应用[J]。矿业研究与开发,2006,26(2):38-41
    [111]唐建新,王宏图,李晓红,等。深部岩盐矿地应力的确定及特征分析[J]。2004,岩石力学与工程学报,2004,23(23):3954-3958
    [112]马林建,刘新宇,马淑娜,等。解放军理工大学学报(自然科学版)[J]。2009,10(6):604-609
    [113]刘新荣,余海龙,姜德义,等。岩盐顶板复合岩石力学性质试验研究平[J]。重庆建筑大学学报,2004,26(3):32-37
    [114]刘新荣,钟祖良。用于核废料处理的岩盐溶腔力学特性[J]。重庆大学学报(自然科学版),2007,30(10):77-82
    [115]姜德义,任松,刘新荣,等。岩盐溶腔顶板稳定性突变理论分析[J]。岩土力学,2005,26(7):1109-1114
    [116]刘保县,姜德义,刘新荣。岩盐溶腔顶板稳定性分析及其控制[J]。2007,30(3):133-135
    [117]刘新荣,姜德义,许江,等。岩盐溶腔围岩应力分布规律的有限元分析[J]。重庆大学学报,2003,26(2):39-42
    [118]姜德义,任松,刘新荣,等。岩盐溶腔稳定性控制研究[J]。中国井矿盐,2005,36(3):16-19
    [119]任松,姜德义,刘新荣,等。岩盐溶腔井组间矿柱稳定性突变理论分析[J]。中国矿业,2004,13(1):70-72
    [120]杨强,刘耀儒,冷旷代,等。能源储备地下库群稳定性与连锁破坏分析[J]。岩土力学,2009,30(12):3553-3568
    [121]贾超,张强勇,张宁,等。盐岩地下储气库风险分级机制初探[J]。岩土力学,2009,30,(12):3621-3626
    [122]何爱国。盐穴储气库建库技术[J]。天然气工业.2004,24(9):122-125
    [123]黄海.地下储气库储气量的校核[J].石油规划设计.2001(1):11-15
    [124]王红艳,许发年.江汉油区建设地下储气库库址优选研究[J].江汉油田职业大学学报.2002,15(2):28-30
    [125]谭羽非,陈家新.天然气地下储气库最优设计方案的确定[J].哈尔滨工业大学学报.2002,34(2):207-210
    [126]Hou Zheng-meng,Wu wen. Improvement of design of storage cavity in rock salt by using the Hou/Lux constitutive model with consideration of creep rupture criterion and damage[J]岩土工程学报.2003,25(1):105-108
    [127]梁卫国,赵阳升,李志萍.盐类矿床群井控制水溶开采溶腔变形数值模拟[J].化工矿物与加工.2003(3):105-109
    [128]赵志成,朱维耀,单文文,万玉金.盐穴储气库水溶建腔机理研究[J].石油勘探与开发.2003,30(5):107-109
    [129]王绳祖。高温高压岩石力学——历史、现状、展望[J]。地球物理学报,1995,10(4):1-31
    [130]高小平。盐岩力学特性时温效应试验研究及其本构方程[D]。武汉:中国科学院,2005。
    [131]张连英,茅献彪,孙景芳,等。高温状态下大理岩力学性能实验研究[J]。重庆建筑大学学报,2008,30(6):46-51.
    [132]张连英,卢文厅,茅献彪。高温作用下砂岩力学性能实验[J]。采矿与安全工程学报,2007,24(3):293-297
    [133]许锡昌,刘泉声。高温下花岗岩基本力学性质初步研究[J]。岩土工程学报,2000,22(3):332-335.
    [134]刘泉声,许锡昌,山口勉,等。三峡花岗岩与温度及时间相关的力学性质试验研究[J]。岩石力学与工程学报,2001,20(5):715-719
    [135]徐燕萍,刘泉声,许锡昌。温度作用下的岩石热弹塑性本构方程的研究[J]。辽宁工程技术大学学报(自然科学版),2001,20(4):527-529
    [136]夏小和,王颖铁,黄醒春,等。高温作用对大理岩强度及变形特性影响的实验研究[J]。上海交通大学学报,2004,38(6):996-999.
    [137]周永胜,蒋海昆,何昌荣。不同温压条件下居庸关花岗岩脆塑性转化与失稳形式的实验研究[J]。中国地震,2002,18(4):389-400.
    [138]朱珍德,张勇,王春娟。大理岩脆-延性转换的微观机理研究[J],煤炭学报,2005,30(1):31-35.
    [139]朱合华,闫治国,邓涛,等。3种岩石高温后力学特性的试验研究[J]。岩石力学与工程学报,2006,25(10):1945-1950
    [140]杜守继,职洪涛。经历高温后花岗岩与混凝土力学性质的试验研究[J]。岩土工程学报,2004,26(4):482-485。
    [141]尹士兵,李夕兵,周子龙,等。粉砂岩高温后动态力学特性研究[J]。地下空间与工程学报,2007,3(6):1060-1064
    [142]陈剑文。盐岩的温度效应及细观机理研究[博士学位论文][D]。武汉:中国科学院,2008.
    [143]高小平,杨春和,吴文。温度效应对盐岩力学特性影响的试验研究[J]。岩土力学,2005,26(11):1775-1778
    [144]高小平,杨春和,吴文。盐岩蠕变特性温度效应的实验研究[J]。岩石力学与工程学报,2005,24(12):2054-2059
    [145]陈剑文,杨春和,高小平,等。盐岩温度与应力耦合损伤研究[J]。岩石力学与工程学报,2005,24(11):1986-1991
    [146]陈剑文,杨春和,冒海军。升温过程中盐岩动力特性实验研究[J]。岩土力学,2007,28(2):231-236
    [147]梁卫国,赵阳升,徐素国。240℃内盐岩物理力学特性的实验研究[J]。岩石力学与工程学报,2004,23(14):2365-2369
    [148]梁卫国,徐素国,赵阳升。损伤盐岩高温再结晶剪切特性的试验研究[J]。2004,23(20):3413-3417
    [149]杨春和,李银平,陈峰,著。层状盐岩力学理论与工程[M]。北京:科学出版社,2009:
    [150]尤明庆,华安增。岩样单轴压缩的破坏形式和承载能力的降低[J],岩石力学与工程学报,1998,17(3):292-296.
    [151]荣传新,王秀喜,程桦。冻土的有限变形本构关系的实验研究[J]。实验力学,2005,20(1):133-138.
    [152]丁洲祥,朱合华,龚晓南,等。压缩试验本构关系的大变形表述法[J],岩石力学与工程学报,2007,26(7):1356-1364.
    [153]Chester F M. The brittle-ductile transition in a deformation mechanism map for halite[J], Tectonophysics,1988,154:125-136.
    [154]Heard H C. Transition form brittle fracture to ductile flow in Solenhofen limestone as a function of temperature, confining pressure, and interitial fluid pressure[C]. In:Griggs, D, Handin J eds. Rock Deformation. Geol Soc Am Menoir,1960,79:193-226.
    [155]Jaeger J C, Cook N G W. Fundamentals of Rock Mechanics[M]. London:Chapman and Hail, 1979:80-81.
    [156]Paterson M S. Experimental deformation and faulting in Wombeyan marble[J]. Bull Geol Soc Am,1958,69:465-467.
    [157]Mogi K. Deformation and fracture of rocks under confining pressure[J]. Elasticity and plasticity of some rocks. Bull Earthquake Res Inst Tokyo Univ,1965,43:349-379.
    [158]Mogi K. Pressure dependence of rock strength and transition form brittle fracture to ductile flow[J]. Bull Earthquake Res Inst Tokyo Univ,1966,44:215-232.
    [159]Handin J. An application of high pressure in geophysica; experimental rock deformation. Trans Am Soc Mech Eng,1953,75:315-324.
    [160]谢红强,何江达,徐进。岩石加卸载变形特性及力学参数试验研究[J]。岩土工程学报,2003,25(3):336-338.
    [161]任建喜,葛秀润,蒲毅斌。节理岩石卸载损伤破坏过程CT实时监测[J]。岩土力学,2002,23(5):575-578.
    [162]何世秀,龙立华,杨雪强,等。黏性土卸载屈服特性试验研究[J]。岩土力学,2008,29(增刊):449-452.
    [163]哈秋舲,李建林,张永兴,等。节理岩体卸载非线性岩石力学[M]。北京:中国建筑工业出版社,1998。
    [164]蔡美峰,主编。岩石力学与工程[M]。北京:科学出版社,2002:57
    [165]韩贝传。岩石的记忆功能及对岩体变形的影响[J]。工程地质学报,1998,6(4):326-332.
    [166]尤明庆。复杂路径下岩样的强度和变形特性[J]。岩石力学与工程学报,2002,21(1):23-28.
    [167]高春玉,徐进,何鹏,等。大理岩加卸载力学特性的研究[J]。岩石力学与工程学报,2005,24(3):456-460.
    [168]苏承东,杨圣奇。循环加卸载下岩样变形与强度特征试验[J]。河海大学学报(自然科学版),2006,34(6):667-671.
    [169]尤明庆,苏承东,徐涛。岩石试样的加载卸载过程及杨氏模量[J]。岩土工程学报,2001,23(5):588-592.
    [170]许江,鲜学福,王鸿,等。循环加、卸载条件下岩石类材料变形特性的实验研究[J]。岩石力学与工程学报,2006,25(增1):3040-3045.
    [171]赵克烈。注采气过程中地下盐岩储气库可用性研究[博士学位论文][D]。武汉:中国科学院,2009
    [172]张忠亭,王宏,陶振宇,等。岩石蠕变特性研究进展概况[J]。长江科学院院报,1996,13:1-5.
    [173]张建可。金属材料的低温蠕变的机理[J]。真空与低温,1994,13(4):209-213
    [174]仲莹莹,张新明,邓运来,等。ZM6合金室温蠕变机理研究[J]。特种铸造及有色合金,2009,29(4):378-382
    [175]张诗昌,宗钦,胡衍生,等。高温低应力下AZ31镁合金的蠕变性能及蠕变机理[J]。机械工程学报,2009,45(3):291-295
    [176]陈锋。盐岩力学特性及储气库建设中的关键应用研究[博士学位论文][D]。武汉:中国科学院,2006
    [177]吴文。盐岩的静、动力学特性实验研究与理论分析[博士学位论文][D]。武汉:中国科学院,2003。
    [178]D.E. Munson. Extension of the M-D model for treating stress drops in salt[R]. Albuquerque, Sandia National Laboratories,1993,
    [179]谭学术,鲜学福。复合岩体力学理论及其应用[M]。北京:煤炭工业出版社,1994,1-28,155-199.
    [180]刘宝琛,崔志莲,涂继飞。幂函数型岩石强度准则研究[J]。岩石力学与工程学报,1997,16(5):437-444.
    [181]李世平,等。岩石力学简明教程。北京:煤炭工业出版社,1996.
    [182]贾喜荣。矿山岩层力学。北京:煤炭工业出版社,1997.
    [183]刘佑荣,唐辉明。岩体力学。武汉:中国地质大学出版社,1999
    [184]蔡美峰,主编。岩石力学与工程。北京:科学出版社,2002
    [185]高红,郑颖人,冯夏庭。材料屈服与破坏的探索[J],岩石力学与工程学报,2006,25(12):2515-2522.
    [186]郑颖人,沈珠江,龚晓南。广义塑性力学——岩土塑性力学原理[M]。北京:建筑工业出版社,2002.
    [187]沈珠江。理论土力学[M]。北京:中国水利水电出版社,2000.
    [188]郑颖人,沈珠江,龚晓南。广义塑性力学——岩土塑性力学原理[M]。北京:中国建筑工业出版社,2002.
    [189]LEO L. VAN SAMBEEK, JOE L. RATIGAN, FRANK D. HANSEN. Dilatancy of Rock Salt in Laboratory Tests. International Journal of Rock Mechanics and Mining Science,1993, 30 (7):735-738
    [190]Hunsche U.E. Failure Behavior of Rock Salt Around Underground Cavities[C].7th International Symposium on Salt, Kyoto, Japan,1992.
    [191]Spiers C.J., Peach C.J., Brzesowsky R.H., et al. Long-Term Rheological and Transport Properties of Dry and Wet Salt Rocks[C], EUR 11848, prepared for Commission of the Euorean Communities, by University of Utrecht, Utrecht, The Netherlands,1988.
    [192]Ratigan J.L., Van Sambeek L.L., Devries K.L., et al. The Influence of Seal Design on the Development of the Disturbed Rock Zone in the WIPP Alcove Seal Tests[R], Topical Report RSI-0400, prepared by Parsons Brinkerhoff, San Francisco, CA, and RE/SPEC Inc., Rapid City, SD, for Sandia National Laboratories, Abbuquerque, NM,1991.
    [193]Moo Y. Lee and Brian Ehgartner, Laboratory Evaluation of Damage Critreia and Creep Parameters of Tioga Dolomite and Rock Salt from Cavern Well No.1[R]. Sandia:2001.
    [194]H. Alkan, Y Cinar, G. Pusch. Rock salt dilatancy boundary from combined acoustic emission and triaxial compreesion tests[J]. International Journal of Rock Mechanics and Minng Sciences,2007,44:108-119.
    [195]Otto Schulze, Till Popp, Hartmut Kern. Development of damage and permeability in deforming rock salt[J]. Engineering Geology,2001,61:163-180.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700