用户名: 密码: 验证码:
耐温抗盐表面活性剂驱油体系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表面活性剂驱提高采收率技术在国内外油田取得了较为广泛的应用,取得了良好的经济和社会效益。但目前常用的驱油表面活性剂大多耐温抗盐能力较差,不能适用于高温、高盐储层,使其应用范围受到了一定限制。开展耐温抗盐表面活性剂驱油体系的研究,对扩大表面活性剂驱油的范围和提高采收率效果具有重要的意义。本文首先室内考察了单一表面活性剂的表面活性、界面活性以及乳化性,并对性能优越的表面活性剂APG的吸附量、生物毒性进行评价,非离子型表面活性剂较离子型表面活性剂的临界胶束浓度低,与碱复配后降低界面张力的效果优于阴离子型表面活性剂;非离子型表面活性剂的乳化力强于离子型表面活性剂,乳化力达87.0%;APG静态吸附量为0.846mg/g砂,动态吸附量为0.123mg/g砂,吸附量低于常用的驱油表面活性剂,且APG无毒,对环境环保。在对单一表面活性剂性能评价的基础上,对不同表面活性剂的复配体系进行了研究,优选出四个低界面张力的耐温抗盐表面活性剂驱油体系;并对其乳化能力、耐温抗盐性能进行评价,优选出的复配体系的乳化效果优于单一表面活性剂,耐温能力达140-160℃,抗Na~+能力达15000-50000mg/L,抗Ca~(2+)能力达1500-4500mg/L,具有较好的耐温抗盐及乳化能力;最后对耐温抗盐表面活性剂驱油体系的驱油效果进行评价,驱替试验表明,在水驱的基础上可提高采收率19.3%。研究的耐温抗盐表面活性剂驱油体系具有界面活性高、乳化性能好、耐盐能力强、成本低廉、绿色环保等特点,期待在油田推广应用。
Surfactant flooding,an enhanced oil recovery technology in the oilfields ,which is widely applied at home and abroad, has achieved good economic and social benefits.However, because of the poor resistance to temperature and salinity, ordinary surfactant can not be used in high-temperature or salty layers, whose application subjects to certain restrictions. So it is significant to develop surfactant resistant to temperature and salinity in order to enlarge application scope and enhance oil recovery. In this paper, we have examined surface activity, interfacial activity, and emulsifying capacity of single surfactant. Surfactant adsorption and biological toxicity of APG has been evaluated. Compared with ionic Surfactant, non-ionic Surfactant has a lower critical micelle concentration, and the effect of interfacial tension reduction is better than anionic surfactant while compounding with the alkali. In addition, emulsion capacity of non-ionic surfactants is superior to ionic surfactants, with an emulsion up to 87%. Whose adsorption is lower than ordinary surfactant, Static adsorption and dynamic adsorption of APG is 0.846mg/g sand and 0.123mg/g sand respectively , and it is nontoxic and friendly to the environment..On the basis of evaluation of single surfactant, four surfactant flooding systems with low interfacial tension which is resistant to temperature and salinity has been selected through studying different surfactants mixed systems. Its emulsifying capacity and resistance to temperature and salinity has also been assessed. The results reveal that the optimized system is better than single surfactant in emulsification and resistance to temperature and salinity, whose limitation to temperature, Na~+ and Ca~(2+) is 140-160℃, 15000-50000mg/L and 1500-4500mg/L respectively. Finally, the effectiveness of displacement of the compouding system was investigated. Experiment shows that oil recovery increases by 19.3% compared with water flooding system. All in all, the anti-temperature and anti-salt surfactant flooding system has several advantages,such as high interfacial activity salt-tolerant, low cost, friendly to environment, which deserves a promising future in wide applicationn in oilfeilds.
引文
[1]赵国玺,朱埗瑶.表面活性剂作用原理[M].北京:中国轻工业出版社,2003:68-71
    [2]沈平平.第二届化学驱技术中基础研究学术会议论文集[P],北京:P1,1997
    [3]隋智慧.驱油用表面活性剂的研究[J].精细石油化工进展,2005,6(1):6-10
    [4]宋瑞国,梁成浩,张志军.三次采油用表面活性剂体系的发展趋势及展望[J].内蒙古石油化工,2006,12:193-195
    [5]徐燕莉.表面活性别的功能[M].北京:化学工业出版社,2000.1-22
    [6]郭东红,李森,衷建国.表面活性剂驱的驱油机理与应用[J].精细石油化工进展,2002,3(7):36-41
    [7] Bourrel M,Schechter R S. Microemulsions and related systems. Formulation,solvency and physical properties. In: Surfactant Science Series Vo1.30[M].New York:Marcel Dekker Inc,1988,18
    [8]赵田红,郑国华,李少庆,等.三次采油用表面活性剂的研究现状与趋势[J].化学工程师,2005,(11):32-34
    [9]于涛,刘娜,丁伟.磺酸盐类表面活性剂在三次采油中的应用[J].化学工程师,2004,(10):52-54
    [10]康万利,刘永建.我国复合驱用表面活性剂研究进展[J].日用化学工业,2000,30(4):30-33
    [11] Masahiko Abe,Kazuhiko Tobita, Hideki Sakai et al.Thermoresponsive Viscoelasticity of Concentrated Solutions with a Fluorinated Hybrid Surfactant[J].Langmuir,2000,167:47-60
    [12] Graciaa A,Creux P,Lachaise J.et al. Competitive Adsorption of Surfactant at Air/Water Interfaces[J].Joural of Colloid and Interface Science,2003,261:233-237
    [13] Andreea Pasc-Banu,Raluca Stan,Muriel Blanzat.Microstructures in aqueous solutions of hybrid fluorocarbon/hydrocarbon catanionic surfactants[J].Colloids and Surfaces A:Physicochem. Eng. Aspects,2004,242:195–201
    [14]郭东红,辛浩川,崔晓东,等.以大庆减压渣油为原料的高效、廉价驱油表面活性剂OCS的制备与性能研究[J].石油学报(石油加工),2004,20(2):47-52
    [15]郭东红,辛浩川,崔晓东,等.高效、廉价驱油用表面活性剂kit-3的界面活性及驱油性能研究[J].石油炼制与化工,2005,36(12):41-44
    [16]王业飞,焦翠,赵福麟.羧甲基化的非离子型表面活性剂与石油磺酸盐的复配试验[J].石油大学学报,1996,20(4):52-55
    [17]王业飞,李继勇,赵福麟.高矿化度条件下应用的表面活性剂驱油体系[J].油气地质与采收率,2001,8(1):67-69
    [18]曹亚,李惠林.CMC系列高分子表面活性剂与原油超低界面张力形成机理的研究[J].高等学校化学学报,2001,22(2):312-316
    [19]曹亚,李惠林,徐俗.羧甲基纤维素系列高分子表面活性剂的嵌段结构对其形态和性能的影响[J].高分子学报,2001,(1):3-7
    [20]沈平平,俞稼镰.大幅度提高石油采收率的基础研究(2002)[M].北京:石油工业出版社,2004:59-64,11-16
    [21]王海峰,杨勇,张国印,等.新型Gemini表面活性剂在三次采油中的应用前景[J].油气地质与采收率,2003,10(6):59-61
    [22]谭中良,韩冬,杨普华.孪连表面活性剂的性质和三次采油中应用前景[J].油田化学,2003,20(2):187-191
    [23]郭丽梅,熊开琴.Gemini表面活性剂的结构特点及在采油中的应用[J].化工文摘,2006,(6):50-53
    [24] Zhao Zhongkui,Li Zongshi,Qiao Weihong,et al. Dynamic interfacial behavior between crude oil and octyhnethylna-phthalene sulfonate surfactant flooding systems[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2005,259(1-3):85-94
    [25] Zhao Zhongkui,Ba Yan,Li Zongshi,et al. Dynamic interfacial behavior of decyl methylnaphthalene sulfonate surfactant for enhanced recovery[J].Tenside Surf Det,2004,41(5):225-229
    [26]乔卫红,那海涛,李宗石.三次采油用表面活性剂结构与性能的研究[A].中国石化油田化学品研讨会论文集[C].南京:中国石油化工集团公司科学技术委员会,2001:299-302
    [27] Berger Paul D,Berger Christie H,Hsu Iris K.Anionic surfactants based on alkene sulfonic acid[P].US 6043391,1999:7-22
    [28] Berger P D,Lee C H. Ultra-low concentration surfactant for sandstone and limestone floods [A].SPE75186,SPE/DOE,Improved Oil Recovery Symposium [C].Tulsa,Oklahoma:2002:4-13
    [29]彭朴主编.采油用表面活性剂[M].北京:化学工业出版社,2003,13
    [30]朱有益,沈平平编著.三次采油复合驱用表面活性剂合成、性能及应用[M].北京:石油工业出版社,2002,18
    [31]郭祥峰,贾丽华.离子表面活性剂及应用[M],化学工业出版社,2002
    [32]魏西莲,尹宝霖,孙得志,等.C_nNCl和SDS在水溶液中的相互作用[J].应用化学,2005,22(4):427-430
    [33]杨锦宗;张淑芬.21世纪的精细化工.日用化学品科学[J],1999,4:1,8
    [34] Uota,M;Arakawa,H;Kitamura,N;Yoshimura,T;Tanaka,J;Kijima,T.Langmuir.2005,21,4724
    [35] Usui,H;Shimizu,Y;Sasaki,T;Koshizaki,N.J.Phys.Chem.B.2005:109-120
    [36]张凤英,杨光,刘延彪.高温高盐油藏用化学驱油剂的研究[J].精细石油化工进展,2005,6(5):8-11
    [37]王业飞,李继勇,赵福麟.高矿化度条件下应用的表面活性剂驱油体系[J].油气地质与采收率,2001,8(1):67-69.
    [38]李宜坤,赵福麟,王业飞.以丙酮作溶剂合成烷基酚聚氧乙烯醚羧酸盐[J].石油学报(石油加工),2003,19(2):33-38
    [39]郭东红,李森,袁建国.表面活性剂驱的驱油机理与应用[J].精细石油化工进展,2002,3(7):36-40
    [40]岳湘安,王尤富,王克亮.提高石油采收率基础[M].北京:石油工业出版社,2007,8:129-142
    [41]宋瑞国,梁成浩,张志军.三次采油用表面活性剂体系的发展趋势及展望[J].内蒙古石油化工,2006,(12):193-195
    [42]陈涛平,李楠.低渗透油层SL活性剂提高采收率实验[J].大庆石油学院学报,2005,29(6):45-48
    [43]郭万奎,杨振宇,伍晓林,等.用于三次采油的新型弱碱表面活性剂[J].石油学报,2006,27(5):75-78
    [44]汤小燕,蒲万芬,罗杰.表面活性剂在三次采油中的应用现状及展望[J].试采技术,2006,27(1):55-58
    [45]王海峰,伍晓林,张国印,等.大庆油田三元复合驱表面活性剂研究及发展方向[J].油气地质与采收率,2004,11(5):62-64
    [46]韩冬,沈平平.表面活性剂驱油原理及应用[M].北京:石油工业出版社,2001:9-14
    [47] SY/T 5370-1999,表面及界面张力测定方法[S].国家石油和化学工业局,1999
    [48] GB 6369-86,表面活性剂乳化力的测定比色法[S].国家标准局,1986
    [49] Devinsky F.,Lacko I.,Bittererova F.J..Relationship between critical micelle concentration and minium inhibitory concentration for some non aromatic quaternary ammonium salts and oxide[J].Joural of Colloid and Interface Science,1985,22:10-15
    [50] Devinsky F.,Lacko I.,Bittererova F.J..Relationship between critical micelle concentration and minium inhibitory concentration for some non aromatic quaternary ammonium salts and oxide[J].Joural of Colloid and Interface Science,1985,22:10-15
    [51]韩冬,沈平平.表面活性剂驱油原理及应用[M].北京:石油工业出版社,2001:82-146
    [52]赵世民编.表面活性剂-原理、合成、测定及应用[M].北京:中国石化出版社,2005:19-30
    [53]岳湘安,王尤富,王克亮.提高石油采收率基础[M].北京:石油工业出版社,2007,8:129-142
    [54] GB 6369-86,表面活性剂乳化力的测定比色法[S].国家标准局,1986
    [55]周雅萍,赵丽辉,王希芹,等.化学驱油体系中各组分在油砂表面上静吸附特征研究[J].化学工程师,2009,161(2):63-67
    [56]王红艳,曹绪龙,张继超,等.胜利石油磺酸盐驱油体系的动态吸附研究[J].精细石油化工进展,2005,6(3):28-32
    [57]王业飞,张丁涌,乐小明.阴离子表面活性剂在油砂和净砂表面的吸附规律[J].石油大学学报(自然科学版),2002,26(3):59-61
    [58]李道山,刘忠福.牺牲剂降低表面活性剂吸附损失研究[J].大庆石油地质与开发,2000,19(3):20-23
    [59]李继山,姚同玉.分光光度法测定阳离子表面活性剂在砂岩表面的吸附[J].日用化学工业,2005,35(3):188-191
    [60]赵国玺,朱埗瑶.表面活性剂作用原理[M].北京:中国轻工业出版社,2003:330-331
    [61]黄宏度,何归,张群.非离子、阳离子表面活性剂与驱油表面活性剂的协同效应[J].石油天然气学报(江汉石油学院学报),2007,29(4):101-104
    [62]孙岩,殷福珊,宋湛谦,等.新表面活性剂[M].北京:化学工业出版社,2003:253-264
    [63]谭晶,曹绪龙,李英,等.油/水界面表面活性剂的复配协同机制[J].高等学校化学学报,2009,30(5):949-953
    [64]刘奕,张子涵,廖广志,等.三元复合驱乳化作用对提高采收率影响研究[J].日用化学品科学,2000,23(增刊):125
    [65] Rosen M.J.,Hua X.Y. Surfactant concentrations and molecular interactions in binary mixtures of surfactant[J].Colloid Interface Sci,1982,86:164-172
    [66]李学刚,赵国玺.混合阴、阳离子表面活性剂溶液中的分子相互作用和相分离[J].物理化学学报,1995,11(5):450
    [67] Zhang L.H.,Zhao G.X,Zhu B.Y.Synergism in binary mixtures of surfactants IV.Effectiveness of surfactant tension reduction [J].Joural of Colloid and Interface Science,144(2):491
    [68] Regev O,Khan A.Alkyl chain symmetry effects in mix cationic anionic surfactant systems [J].Joural of Colloid and Interface Science,1996,182(1):95-109
    [69]方云.两性表面活性剂[M].北京:中国轻工业出版社,1990
    [70]朱步瑶,赵振国.界面化学基础[M].北京:化学工业出版社,1996:2-119
    [71]肖进新,赵振国.表面活性剂应用原理[M].北京:化学工业出版社,2003:15-52
    [72]张可,任艳滨,卢祥国.复配表面活性剂对复合驱油体系性能影响研究[J],日用化学工业,2007,37(5):503-703

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700