用户名: 密码: 验证码:
盆腔器官脱垂的比较蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
●研究目的
     1.应用双向荧光差异凝胶电泳和质谱技术,建立绝经后POP患者与正常女性主骶韧带的蛋白质表达谱,筛选并鉴定POP患者与正常对照之间的差异表达蛋白。
     2.分析差异表达蛋白,探讨POP发生的分子机制。
     ●材料和方法
     1.在绝经状态、年龄、体重指数、产次等影响POP发生的重要因素匹配的前提下,选取5例POP与5例无POP患者的子宫主骶韧带复合体标本。
     2.提取组织总蛋白,普通双向电泳分离,银染显色鉴定蛋白质抽提质量以及在胶图上的分布情况,并优化实验方法。
     3.荧光染料分别标记POP组、对照组以及内标,进行双向电泳得到双向荧光差异凝胶图谱。同时制作制备胶。对胶图进行匹配和差异分析,筛选出两组之间|AV.Ratio|≥1.5,P<0.05的差异表达蛋白质点。
     4.将差异蛋白质点胶内酶解后进行MALDI-TOF质谱分析和数据库搜索,鉴定差异表达的蛋白质点。
     ●实验结果
     1.提取的组织蛋白经定量和普通双向电泳检测,蛋白质浓度符合实验要求,在胶图上分离情况满意,平均可获得1224±22个蛋白质点。
     2.获得5张双向荧光差异凝胶电泳胶图,每张胶图上共约1111±54个蛋白质点,经过比较分析筛选出33个差异表达蛋白质点,均在POP组下调,最大下调比例为8.5倍。
     3.质谱成功鉴定出12种蛋白,分别是白蛋白、纤维蛋白原、未知蛋白、电子传递黄素蛋白、血红蛋白、载脂蛋白A-I、肌动蛋白、转胶蛋白、丝切蛋白、亲环素A、肌球蛋白、半凝乳素-1。
     ●结论
     1.经过机械研磨、匀浆以及超声破碎即可使韧带组织的提取蛋白质浓度和纯度基本满足实验要求,使用24cm PH3-10非线性胶条可以达到较为理想的蛋白质分离效果。双向电泳可作为筛选POP差异表达蛋白的研究方法。
     2.半凝乳素-1和亲环素A在神经损伤修复中发挥重要作用。这两种蛋白在POP组的下调说明盆底神经损伤可能是POP发生的病因之一。
     3.电子传递黄素蛋白的减少与线粒体异常相关,线粒体的异常可加重患者盆底组织的衰老程度,增加POP发生的风险。
     4.肌动蛋白、转胶蛋白、肌球蛋白和丝切蛋白的下调可导致细胞骨架异常以及收缩功能异常,使POP患者的盆底支持组织逐渐松弛形成脱垂。
     5.载脂蛋白A-I参与PPAR信号通路,对组织纤维化和收缩能力产生影响,可能是POP的发生机制之一。
     6.POP组血红蛋白表达较对照组显著减少,在一定程度上说明POP患者主骶韧带中血供减少。结合以往研究证实的绝经后女性生殖道血供减少,解释了绝经后女性易发生POP的临床现象。
●OBJECTIVES
     1. To identify the differentially expressed proteins in cardinal-sacral ligament between patients with pelvic organ prolapsed (POP) and those without POP by2-D fluorescence difference gel electrophoresis (2-D DIGE) and mass spectrometry.
     2. To further explore the possible molecular mechanism associated with POP based on the identified proteins.
     ●MATERIALS AND METHODS
     1. Cardinal-sacral ligament samples were obtained from five postmenopausal patients with POP-Q stage Ⅲ and five age/BMI/parity matched postmenopausal patients without POP.
     2. Total proteins were extracted and quantified, and then separated on two-dimensional gel, stained with silver with optimized experimental methods.
     3. Samples were labeled with Cydye DIGE fluors and then separated by2D-DIGE. Gels were scanned and analyzed. Spots with average differential rate(|AV.Ratio|)≥1.5and P <0.05were identified as differentially expressed proteins.
     4. Digested the picked spots and identified the peptides by MALDI-TOF-MS. Search the peptide mass fingerprint (PMF) in the database.
     ●RESULTS
     1. High-quality proteins were extracted from the samples, and could be well separated in the2D gel. The mean detection rate was1224±22.
     2. The image analysis showed that the average protein spots were1111±54in DIGE. A total of33differentially expressed proteins spots were detected between POP and normal patients, all of which were down-regulated in POP group. The most differentiated spot showed8.5fold down-regulation.
     3. Twelve proteins were identified by MALDI-TOF-MS. They were serum albumin, fibrinogen, unnamed protein, electron transfer flavoprotein, hemoglobin, apolipoprotein A-I, actin, transgelin, cofilin-1, cyclophilin A, myosin and galectin-1respectively.
     ●CONCLUSIONS
     1. Cardinal-sacral ligament proteins could be well extracted and purified by mechanical grinding, homogenization and ultrasonication. Proteins in this tissue could be well separated in24cm PH3-10non-liner gel.2-D DIGE can be used as a standard method to study the differentially expressed protein in POP.
     2. Galectin-1and cyclophilin are essential factors for nerve regeneration. The down-regulation of these two proteins in POP group suggests that nerve injury contributes to the development of POP.
     3. The defect of electron transfer flavoprotein relates to mitochondrial dysfunction. Mitochondrial dysfunction may aggravate the tissue aging of patients and increase the risk of POP.
     4. Actin, transgelin, myosin and cofilin-1contribute to the cell skeleton and cell contraction. The lower expressions of these proteins in POP group relax the pelvic support tissues and lead to prolapse.
     5. Apolipoprotein A-I (ApoAI) involves in PPAR pathway. The down-graduation of ApoA-I has significant effect on the development of tissue fibrosis and may weaken the performance of contraction. It may be a potential factor for development of POP.
     6. Hemoglobin decrease in POP group suggests the reduction of blood supply in the patients' cardinal-sacral ligament. Decrease of hemoglobin in POP group is consistent with previous study, and suggests the reduction of blood supply might contribute to the development of POP too, explains that menopausal women are the high-risk group of
引文
1. Olsen AL, Smith VJ, Bergstrom JO, Colling JC, Clark AL. Epidemiology of surgically managed pelvic organ prolapse and urinary incontinence. Obstet Gynecol 1997;89(4):501-6.
    2. Ghetti C, Lowder JL, Ellison R, Krohn MA, Moalli P. Depressive symptoms in women seeking surgery for pelvic organ prolapse. Int Urogynecol J Pelvic Floor Dysfunct 2010;21(7):855-60.
    3. Bump RC, Mattiasson A, B(?) K, et al. The standardization of terminology of female pelvic organ prolapse and pelvic floor dysfunction. Am J Obstet Gynecol 1996;175(1):10-7.
    4. DeLancey JO. Anatomic aspects of vaginal eversion after hysterectomy. Am J Obstet Gynecol 1992;166(6 Pt 1):1717-24.
    5. Seo JT, Kim JM. Pelvic organ support and prevalence by Pelvic Organ Prolapse-Quantification (POP-Q) in Korean women. J Urol 2006; 175(5):1769-72.
    6. Hendrix SL, Clark A, Nygaard I, Aragaki A, Barnabei V, McTiernan A. Pelvic organ prolapse in the Women's Health Initiative:gravity and gravidity. Am J Obstet Gynecol 2002; 186(6):1160-6.
    7. Mant J, Painter R, Vessey M. Epidemiology of genital prolapse:observations from the Oxford Family Planning Association Study. Br J Obstet Gynaecol 1997;104(5):579-85.
    8. Swift SE. The distribution of pelvic organ support in a population of female subjects seen for routine gynecologic health care. Am J Obstet Gynecol 2000;183(2):277-85.
    9. Molloy MP, Brzezinski EE, Hang J, McDowell MT, VanBogelen RA. Overcoming technical variation and biological variation in quantitative proteomics. Proteomics 2003;3(10):1912-9.
    10.钱小红,贺福初.蛋白质组学:理论与方法.2003;49-50.
    11. Rabilloud T. Use of thiourea to increase the solubility of membrane proteins in two-dimensional electrophoresis. Electrophoresis 1998;19(5):758-60.
    12. Lawrie LC, Fothergill JE, Murray GI. Spot the differences:proteomics in cancer research. Lancet Oncol 2001;2(5):270-7.
    13. Cheng AL, Huang WG, Chen ZC, et al. Identificating cathepsin D as a biomarker for differentiation and prognosis of nasopharyngeal carcinoma by laser capture microdissection and proteomic analysis. J Proteome Res 2008;7(6):2415-26.
    14. Lawrie LC, Curran S, McLeod HL, Fothergill JE, Murray GI. Application of laser capture microdissection and proteomics in colon cancer. Mol Pathol 2001;54(4):253-8.
    15. Neubauer H, Clare SE, Kurek R, et al. Breast cancer proteomics by laser capture microdissection, sample pooling,54-cm IPG IEF, and differential iodine radioisotope detection. Electrophoresis 2006;27(9):1840-52.
    16. Karp NA, Kreil DP, Lilley KS. Determining a significant change in protein expression with DeCyder during a pair-wise comparison using two-dimensional difference gel electrophoresis. Proteomics 2004;4(5):1421-32.
    17. Leffler H. Galectins structure and function--a synopsis. Results Probl Cell Differ 2001;33:57-83.
    18. Horie H, Kadoya T, Hikawa N, et al. Oxidized galectin-1 stimulates macrophages to promote axonal regeneration in peripheral nerves after axotomy. J Neurosci 2004;24(8):1873-80.
    19. Yiu G, He Z. Glial inhibition of CNS axon regeneration. Nat Rev Neurosci 2006;7(8):617-27.
    20. Sasaki T, Hirabayashi J, Manya H, Kasai K, Endo T. Galectin-1 induces astrocyte differentiation, which leads to production of brain-derived neurotrophic factor. Glycobiology 2004;14(4):357-63.
    21. Lekishvili T, Hesketh S, Brazier MW, Brown DR. Mouse galectin-1 inhibits the toxicity of glutamate by modifying NR1 NMD A receptor expression. Eur J Neurosci 2006;24(11):3017-25.
    22. Sakaguchi M, Shingo T, Shimazaki T, et al. A carbohydrate-binding protein, Galectin-1, promotes proliferation of adult neural stem cells. Proc Natl Acad Sci USA 2006;103(18):7112-7.
    23. Horie H, Inagaki Y, Sohma Y, et al. Galectin-1 regulates initial axonal growth in peripheral nerves after axotomy. J Neurosci 1999;19(22):9964-74.
    24. Inagaki Y, Sohma Y, Horie H, Nozawa R, Kadoya T. Oxidized galectin-1 promotes axonal regeneration in peripheral nerves but does not possess lectin properties. Eur J Biochem 2000;267(10):2955-64.
    25. Fukaya K, Hasegawa M, Mashitani T, et al. Oxidized galectin-1 stimulates the migration of Schwann cells from both proximal and distal stumps of transected nerves and promotes axonal regeneration after peripheral nerve injury. J Neuropathol Exp Neurol 2003;62(2):162-72.
    26. Kadoya T, Horie H. Structural and functional studies of galectin-1:a novel axonal regeneration-promoting activity for oxidized galectin-1. Curr Drug Targets 2005;6(4):375-83.
    27. Kadoya T, Oyanagi K, Kawakami E, et al.Oxidized galectin-1 advances the functional recovery after peripheral nerve injury. Neurosci Lett 2005;380(3):284-8.
    28. Akazawa C, Nakamura Y, Sango K, Horie H, Kohsaka S. Distribution of the galectin-1 mRNA in the rat nervous system:its transient upregulation in rat facial motor neurons after facial nerve axotomy. Neuroscience 2004;125(1):171-8.
    29. Kami K, Senba E. Galectin-1 is a novel factor that regulates myotube growth in regenerating skeletal muscles. Curr Drug Targets 2005;6(4):395-405.
    30. Morley R, Cumming J, Weller R. Morphology and neuropathology of the pelvic floor in patients with stress incontinence. Int Urogynecol J Pelvic Floor Dysfunct 1996;7(1):3-12.
    31. Zhu L, Lang JH, Chen J, Chen J. Morphologic study on levator ani muscle in patients with pelvic organ prolapse and stress urinary incontinence. Int Urogynecol J Pelvic Floor Dysfunct 2005; 16(5):401-4.
    32. Busacchi P, Perri T, Paradisi R, et al. Abnormalities of somatic peptide-containing nerves supplying the pelvic floor of women with genitourinary prolapse and stress urinary incontinence. Urology 2004;63(3):591-5.
    33. Haczku A, Takeda K, Redai I, et al. Anti-CD86 (B7.2) treatment abolishes allergic airway hyperresponsiveness in mice. Am J Respir Crit Care Med 1999; 159(5 Pt 1): 1638-43.
    34. Gothel SF, Marahiel MA. Peptidyl-prolyl cis-trans isomerases, a superfamily of ubiquitous folding catalysts. Cell Mol Life Sci 1999;55(3):423-36.
    35. Damsker JM, Bukrinsky MI, Constant SL. Constant, Preferential chemotaxis of activated human CD4+ T cells by extracellular cyclophilin A. J Leukoc Biol 2007;82(3): 613-8.
    36. Jin ZG, Melaragno MG, Liao DF, et al. Cyclophilin A is a secreted growth factor induced by oxidative stress. Circ Res 2000;87(9):789-96.
    37. Boulos S, Meloni BP, Arthur PG, Majda B, Bojarski C, Knuckey NW. Evidence that intracellular cyclophilin A and cyclophilin A/CD 147 receptor-mediated ERK1/2 signalling can protect neurons against in vitro oxidative and ischemic injury. Neurobiol Dis2007;25(1):54-64.
    38. Redell JB, Zhao J, Dash PK. Acutely increased cyclophilin a expression after brain injury:a role in blood-brain barrier function and tissue preservation. J Neurosci Res 2007;85(9):1980-8.
    39. Seko Y, Fujimura T, Taka H, Mineki R, Murayama K, Nagai R. Hypoxia followed by reoxygenation induces secretion of cyclophilin A from cultured rat cardiac myocytes. Biochem Biophys Res Commun 2004;317(1):162-8.
    40. Harman D. The biologic clock:the mitochondria?. J Am Geriatr Soc 1972;20(4): 145-7.
    41. Liu CS, Cheng WL, Lee CF, et al. Alteration in the copy number of mitochondrial DNA in leukocytes of patients with mitochondrial encephalomyopathies. Acta Neurol Scand 2006; 113(5):334-41.
    42. Kajander OA, Rovio AT, Majamaa K, et al. Human mtDNA sublimons resemble rearranged mitochondrial genoms found in pathological states. Hum Mol Genet 2000;9(19):2821-35.
    43. Sun MJ, Cheng WL, Wei YH, et al. Low copy number and high 4977 deletion of mitochondrial DNA in uterosacral ligaments are associated with pelvic organ prolapse progression. Int Urogynecol J Pelvic Floor Dysfunct 2009;20(7):867-72.
    44.金玲,张晓红,王建六,谢大鹤,魏丽惠.盆腔器官脱垂患者支持组织超微结构特征的研究.现代妇产科进展2006;15(8):592-95.
    45. Ding R, Darland DC, Parmacek MS, D'Amore PA. Endothelial-mesenchymal interactions in vitro reveal molecular mechanisms of smooth muscle/pericyte differentiation. Stem Cells Dev 2004;13(5):509-20.
    46. Lepore JJ, Cheng L, Min Lu M, Mericko PA, Morrisey EE, Parmacek MS. High-efficiency somatic mutagenesis in smooth muscle cells and cardiac myocytes in SM22alpha-Cre transgenic mice. Genesis 2005;41 (4):179-84.
    47. Mishra PJ, Mishra PJ, Humeniuk R, et al. Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells. Cancer Res 2008;68(11):4331-9.
    48. Beppu H, Mwizerwa ON, Beppu Y, et al. Stromal inactivation of BMPRII leads to colorectal epithelial overgrowth and polyp formation. Oncogene 2008;27(8):1063-70.
    49. Ishiguro K, Yoshida T, Yagishita H, Numata Y, Okayasu T. Epithelial and stromal genetic instability contributes to genesis of colorectal adenomas. Gut 2006;55(5):695-702.
    50.程云会,韩梅,温进坤.SM22a参与血清饥饿诱导的血管平滑肌细胞微丝重塑.细胞生物学杂志2006;28:95-8.
    51. Kolodney MS, Wysolmerski RB. Isometric contraction by fibroblasts and endothelial cells in tissue culture:a quantitative study. J Cell Biol 1992;117(1):73-82.
    52. Rayment I, Rypniewski WR, Schmidt-Base K, et al. Three-dimensional structure of myosin subfragment-1:a molecular motor. Science 1993;261(5117):50-8.
    53. Lowey S, Trybus KM. Role of skeletal and smooth muscle myosin light chains. Biophys J 1995;68(4 Suppl):120S-126S.
    54.郎希龙,朱家麟,张宝仁.风湿性心脏病心肌肌球蛋白轻链的变化及其对心功能的影响.中华心血管病杂志2000;28(2):105.
    55. Ono S, Minami N, Abe H, Obinata T. Characterization of a novel cofilin isoform that is predominantly expressed in mammalian skeletal muscle. J Biol Chem 1994;269(21):15280-6.
    56. Meberg PJ, Bamburg JR. Increase in neurite outgrowth mediated by overexpression of actin depolymerizing factor. J Neurosci 2000;20(7):2459-69.
    57. Wu Z, Rosen ED, Brun R, et al. Cross-regulation of C/EBP alpha and PPAR gamma controls the transcriptional pathway of adipogenesis and insulin sensitivity. Mol Cell 1999;3(2):151-8.
    58. Mano H, Kimura C, Fujisawa Y, et al. Cloning and function of rabbit peroxisome proliferator-activated receptor delta/beta in mature osteoclasts. J Biol Chem 2000;275(11):8126-32.
    59. Loichot C, Jesel L, Tesse A, et al. Deletion of peroxisome proliferator-activated receptor-alpha induces an alteration of cardiac functions. Am J Physiol Heart Circ Physiol 2006;291(1):H161-6.
    60. Diep QN, Benkirane K, Amiri F, Cohn JS, Endemann D, Schiffrin EL. PPAR alpha activator fenofibrate inhibits myocardial inflammation and fibrosis in angiotensin II-infused rats. J Mol Cell Cardiol 2004;36(2):295-304.
    61.蒋芳,朱兰,郎景和,姜雪莺.盆底功能障碍性疾病患者阴道前后壁中蛋白基因产物9.5和血管活性肠肽的表达研究.生殖医学杂志2008;17(6):444-8.
    1、Ghetti C, Lowder JL, Ellison R, et al. Depressive symptoms in women seeking surgery for pelvic organ prolapse. Int Urogynecol J Pelvic Floor Dysfunct,2010 Mar 24. [Epub ahead of print]
    2、DeLancey JO. Anatomic aspects of vaginal eversion after hysterectomy. Am J Obstet Gynecol,1992, 166(6 Pt 1):1717-24.
    3、Morley R, Cumming J, Weller R. Morphology and neuropathology of the pelvic floor in patients with stress incontinence. Int Urogynecol J Pelvic Floor Dysfunct,1996,7(1):3-12.
    4、Hilliges M, Falconer C, Ekman-Ordeberg G, et al. Innervation of the human vaginal mucosa as revealed by PGP 9.5 immunohistochemistry. Acta Anat (Basel),1995,153(2):119-26.
    5、蒋芳,朱兰,郎景和,等。盆底功能障碍性疾病患者阴道前后壁中蛋白基因产物9.5和血管活性肠肽的表达研究。生殖医学杂志,2008,17(6):444-48.
    6、陈娟,郎景和,朱兰,等。压力性尿失禁患者阴道黏膜的神经表达。中华妇产科杂志,2004,39(4),254-256.
    7、海宁,朱兰,郎景和。盆底功能障碍性疾病患者会阴神经潜伏期测定在隐匿性压力性尿失禁诊断中的意义。中华妇产科杂志,2009,44(2):145-147.
    8、Deffieux X, Hubeaux K, Amarenco G. Female urinary stress incontinence:Analysis of pathophysiological hypothesis. J Gynecol Obstet Biol Reprod,2008,37(2):186-96.
    9、Miller JM, Ashton-Miller JA, DeLancey JO. A pelvic muscle precontraction can reduce cough-related urine loss in selected. J Am Geriatr Soc,1998,46(7):870-74.
    10、L Zhu, JH Lang, J Chen, et al. Morphologic study on levator ani muscle in patients with pelvic organ prolapse and stress urinary incontinence. Int Urogynecol J Pelvic Floor Dysfunct,2005,16:401-404.
    11、Busacchi P, Perri T, Paradisi R, et al. Abnormalities of somatic peptide-containing nerves supplying the pelvic floor of women with genitourinary prolapse and stress urinary incontinence. Urology,2004, 63(3):591-95.
    12、Gregory WT, Lou JS, Stuyvesant A, et al. Quantitative electromyography of the anal sphincter after uncomplicated vaginal delivery. Obstet Gynecol,2004,104(2):327-35.
    13、Dietz HP. The aetiology of prolapse. Int Urogynecol J Pelvic Floor Dysfunct,2008,19(10):1323-29.
    14、Takano CC, Girao MJ, Sartori MG, et al. Analysis of collagen in parametrium and vaginal apex of women with and without uterine prolapse. Int Urogynecol J Pelvic Floor Dysfunct,2002,13:342-345.
    15、Wong MY, Harmanli OH, Agar M, et al. Collagen content of nonsupport tissue in pelvic organ prolapse and stress urinary incontinence. Am J Obstet Gynecol,2003,189:1597-99.
    16、Goepel C, Hefler L, Methfessel HD, Koelbl H. Periurethral connective tissue status of postmenopausal women with genital prolapse with and without stress incontinence. Acta Obstet Gynecol Scand,2003,82:659-64.
    17、Chen Y, Desautel M, Anderson A, et al. Collagen synthesis is not altered in women with stress urinary incontinence. Neurourol Urodyn,2004,23:367-73.
    18、Kushner L, Mathrubuthan M, Burney T, et al. Excretion of collagen derived peptides is increased in women with stress urinary incontinence. Neurourol Urodyn,2004,23:198-203.
    19、Lang J, Zhu L, Sun ZJ, et al. Clinical study on collagen and stress urinary incontinence. Clin Exp Obstet Gynecol,2002,29:180-82.
    20、Moalli PA, Shand SH, Zyczynski HM, et al. Remodeling of vaginal connective tissue in patients with prolapse. Obstet Gynecol,2005,106:953-963.
    21、Ewies AA, Al-Azzawi F, Thompson J. Changes in extracellular matrix proteins in the cardinal ligaments of postmenopausal women with or without prolapse:a computerized immunohistomorphometric analysis. Hum Reprod,2003,18:2189-95.
    22、Moalli PA, Talarico LC, Sung VW, et al. Impact of menopause on collagen subtypes in the arcus tendineous fasciae pelvis. Am J Obstet Gynecol,2004,190:620-27.
    23、Jackson SR, Avery NC, Tarlton JF, et al. Changes in metabolism of collagen in genitourinary prolapse. Lancet,1996,347:1658-61.
    24、Boreham MK, Zaretsky MV, Corton MM, et al. Appearance of the levator ani muscle in pregnancy as assessed by 3-D MRI. Am J Obstet Gynecol,2005,193:2159-64.
    25、Mant J, Painter R, Vessey M. Epidemiology of genital prolapse:observations from the Oxford Family Planning Association study. Br J Obstet Gynaecol,1997,104:579-85.
    26、Dannecker C, Lienemann A, Fischer J, et al. Influence of spontaneous and instrumental vaginal delivery on objective measures of pelvic organ support assessment with the pelvic organ prolapse quantification (POP-Q) technique and functional cine magnetic resonance imaging. Eur J Obstet Gynecol Reprod Biol,2004,115(l):32-38.
    27、Mott JD, Werb Z. Regulation of matrix biology by matrix metalloproteinases. Curr Opin Cell Biol, 2004,16:558-64.
    28、Chen B, Wen Y, Zhang Z, et al. Menstrual phase-dependent gene expression differences in periurethral vaginal tissue from women with stress incontinence. Am J Obstet Gynecol,2003, 189:89-97.
    29、Mietz H, Chevez-Barrios P, Lieberman MW, et al. Decorin and suramin inhibit ocular fibroblast collagen production. Graefes Arch Clin Exp Ophthalmol,1997,235:399-403.
    30、Kobak W, Lu J, Hardart A, et al. Expression of lysyl oxidase and transforming growth factor beta2 in women with severe pelvic organ prolapse. J Reprod Med,2005,50:827-31.
    31、Swift SE. The distribution of pelvic organ support in a population of female subjects seen for routine gynecologic health care. Am J Obstet Gynecol,2000,183(2):277-85.
    32、Drewes PG, Yanagisawa H, Starcher B, et al. Pelvic organ prolapse in fibulin-5 knockout mice: pregnancy-induced changes in elastic fiber homeostasis in mouse vagina. Am J Pathol,2007, 170:578-89.
    33、Rizk DE, Hassan HA, Al Marzouqi AH, et al. Combined estrogen and ghrelin administration restores number of blood vessels and collagen type Ⅰ/Ⅲ ratio in the urethral and anal canal submucosa of old ovariectomized rats. Int Urogynecol J Pelvic Floor Dysfunct,2008,19:547-52.
    34、Jackson S, James M, Abrams P. The effect of oestradiol on vaginal collagen metabolism in postmenopausal women with genuine stress incontinence. Br J Obstet Gynaecol,2002,109:339-44.
    35、Baden WF, Walker TA. Genesis of the vaginal profile:a correlated classification of vaginal relaxation. Clin Obstet Gynecol,1972,15(4):1048-54.
    36、Lang JH, Zhu L, Sun ZJ, et al. Estrogen levels and estrogen receptors in patients with stress urinary incontinence and pelvic organ prolapse. Int J Gynaecol Obstet,2003,80:35-39.
    37、Ewies AA, Thompson J, Al Azzawi F. Changes in gonadal steroid receptors in the cardinal ligaments of prolapsed uteri:immunohistomorphometric data. Hum Reprod,2004,19:1622-1628.
    38、Wasinger V C, Cordewell S J, Cerpa-Poljak A, et al. Progress with gene-product mapping of the Mollicutes:Mycoplasma genitalium. Electrophoresis.1995,16:1090-1094.
    39、Unlu, M., M.E. Morgan and J.S. Minden, Difference gel electrophoresis:a single gel method for detecting changes in protein extracts. Electrophoresis,1997.18(11):p.2071-7.
    40、Tonge R, Shaw J, Middleton B, et al. Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology. Proteomics.2001 Mar;1(3):377-96.
    41、Ahn WS, Kim KW, Bae SM, et al. Targeted cellular process profiling approach for uterine leiomyoma using cDNA microarray, proteomics and gene ontology analysis. Int J Exp Pathol,2003; 84(6):267-79.
    42、王静,张小为,葛晓慧等.晚期卵巢癌的血浆蛋白质组学模型用于早期卵巢癌诊断的初步研究.中国妇产科临床杂志.2008;9(2):124-127.
    43、马丽,向阳,赵俊等.良性转归葡萄胎与恶性转变葡萄胎的比较蛋白质组学研究.中国实用妇科与产科杂志.2008;24(2):117-120.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700