用户名: 密码: 验证码:
新疆库车盆地古近系—新近系蒸发岩系发育规律及其金属成矿研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国铜矿资源丰富,但仍然不能满足国内经济增长的需求,近几年国内铜原料62%依靠进口,所以铜矿仍然是国内比较短缺的矿种之一。统计资料表明:砂页岩型铜矿无论从数量、储量上,是仅次于斑岩型铜矿的第二大铜矿床类型。新疆库车盆地新近系碎屑岩地层中发育众多的砂岩型铜矿化,而拜城小型滴水铜矿自清朝末年就已开采,这种砂岩型铜矿化与盆地大量分布的蒸发岩有着密切的联系。所以寻找以铜为主的金属矿产,从蒸发岩体系与金属成矿的角度出发,研究库车盆地蒸发岩体系与砂岩型铜等金属成矿作用的关系,从而为我国铜矿勘探与开发开辟新的途径。
     新疆库车盆地古近系-新近系吉迪克时期发育一套巨厚的蒸发岩沉积,盐、膏层厚度变化从几十米至两千多米。其上覆新近系吉迪克组、康村组砂岩中发育一系列铜矿化。野外调查及室内分析表明:砂岩型铜矿化基本位于盐丘附近,沿近东西向断裂带分布;盆地铜矿物主要为与干旱气候条件及卤水有关的氯铜矿(Cu2(0H)3C1);地表灰岩断裂破碎带上氯铜矿和残余结晶盐岩共存:近垂直砂岩层面的节理面上充填石膏,氯铜矿浸染于石膏表面或石膏之中;新近系后生石膏团块中含有氯铜矿或自然铜,或砂岩裂隙中渗出卤水,在裂隙处发育氯铜矿;电子探针分析显示氯铜矿为自生化学沉积,呈脉状、树枝状充填于砂岩的裂隙中;盆地近东西向断裂带上发现硫化氢气体溢出,附近自然硫、碳酸钙矿物沉淀,在自然硫样品中发现CuS(铜蓝),说明地层深部硫酸盐还原反应存在,其产物沿断裂构造运移并能为Cu富集提供还原环境。扫描电镜分析,首次在库车盆地蒸发岩样品(地表盐丘采集的盐岩样品,石油钻井4412米深的膏岩样品,及地表结晶的盐壳样品)中发现金属矿物,包括氯铜矿,铜、锌、银等金属的硫化物,自然金等。上述现象说明砂岩型铜等金属矿化、蒸发岩、断裂构造密切相关。
     要解释上述地质现象,回答砂岩型铜等金属矿化、蒸发岩、断裂构造之间的关系,需要对库车盆地蒸发岩的发育规律、砂岩型铜矿化特征、矿化机理,特别是蒸发岩体系(蒸发岩体、围岩、围岩中的断裂构造)与砂岩型铜矿化的关系有一个深入的研究,最关键的是解决蒸发岩体系在砂岩型铜成矿过程中所起的作用,从而解决蒸发岩体系能否成金属矿的问题。
     根据以上目的,采取以下研究方法。1、野外调查库车盆地盐丘及铜矿化分布特征,铜矿化与蒸发岩的关系,矿化在新近系碎屑岩的分布特征,采集泉水、卤水、盐霜、铜矿化样品、蒸发岩和碎屑岩样品,对出露盐丘剖面、盆地碎屑岩剖面测量、取样。2、室内利用扫描电镜、薄片分析、X衍射、电子探针、同位素分析、固样水样化学分析、蒸发淋滤实验等手段,查明固体样品中矿物成分、组成、结构构造等,分析水样、固样中各元素含量变化关系,卤水来源,矿源层和含矿层,盐、膏中铜矿化成因,铜的淋滤条件、富集沉淀环境。同时依据蒸发岩沉积旋回划分及空间模型建立研究蒸发岩在时空上的变化关系。
     研究结果表明,蒸发岩赋存的层位主要为古近系库姆格列木群、苏维依组、新近系吉迪克组。蒸发岩类型主要为石盐岩和膏岩,少量白云岩和灰岩,含有钙芒硝、硬石膏、钾石盐、光卤石、杂卤石、钾石膏及氯化钙等矿物。通过对盆地古近系—新近系蒸发岩沉积旋回研究,共识别出5期沉积旋回,其中I1、I2沉积旋回位于库姆格列木群(E1-2k,I3旋回位于苏维依组(E2-3s),I4、I5旋回位于吉迪克组(N1j)。库姆格列木时期,盆地西部的I2旋回在I,旋回基础上向南北方向扩展;苏维依时期,盆地西北部基底抬升,卤水迁移导致沉积区一分为二,分别向盆地南部、东部迁移,发育I3旋回;吉迪克时期,盆地南部、东部的两个沉积区继续发育巨厚的蒸发岩沉积(I4旋回)。盐、膏矿体空间展布模型显示:矿体起伏趋势与秋里塔格构造带、克拉苏构造带相一致,同时反映出库姆格列木时期,库车盆地西部蒸发岩沉积曾经有两个中心,分别位于西部盆地的拜城附近和拜城南部附近,新近系的吉迪克时期,库车盆地东部出现两个蒸发岩沉积中心,位于轮台北部附近和库车东部附近。盆地这种东西部次级沉积中心发育的地方,应为库车盆地次级的蒸发岩沉积盆地,而钾盐的富集一般产于大的盆地内这种次级的构造单元。
     野外调查和室内研究表明:库车盆地共有2个小型铜矿,8处铜矿化点,其中新发现铜矿化点2处(克孜尔铜矿化点和阿格铜矿化点);铜矿化的分布与盐丘紧密相邻,位于南北两大构造带上,沿断裂构造带呈近东西向展布。主要发育3种成因类型:灰岩型、砂岩型、泥岩型。铜矿物主要有氯铜矿、蓝铜矿、自然铜等。矿化层位主要位于中、上新统的康村组,部分位于中新统的吉迪克组,位于背斜的轴部或偏向两翼的部位。矿源层为蒸发岩、沉积岩(主要为褐红色粉砂岩、褐红色泥岩)。基本的含矿层为灰绿色粉砂岩、细砂岩、灰白色中粗砂岩。
     卤水来自盆地中原生沉积卤水及大气降水溶解蒸发岩形成后生溶滤卤水,南天山含铜老地层提供了铜的初期物质来源,褐红色碎屑岩、蒸发岩提供了铜的后期物质来源。含铜卤水运移的动力主要有晶间脱水作用、盐体负荷卸载作用、构造挤压作用。吉迪克晚期的断裂构造形成含矿卤水有利的运移通道。盆地古近系一新近系地层中硫酸盐热化学还原作用存在说明当地层深部含铜卤水遇到富含还原硫的卤水时,能形成铜的硫化物,这一点已经被滴水铜矿钻探证实。
     砂岩型铜成矿作用除了主要与卤水有关外,还与砂岩的原生沉积作用有关。铜成矿时代从晚中新世到上新世中晚期,不晚于早更新世早期。本文研究表明:砂岩型铜及其金属成矿作用离不开蒸发岩体系(蒸发岩体、围岩、围岩中的断裂构造),蒸发岩体系能够成矿。
There are abundant copper resources, but it is not given a approving requirement to increase of economy in China, and about 62% material of copper is imported now, so the copper ore is still one of much lack ore sorts. The datum of Stat. makes shown that sandstone-type mineralization is the second largest in copper ore sorts than Porphyry copper deposit either amount or reserves. Many sandstone-type coppers had been developed in fragmentary rock in Neogene in Kuqa Basin, especially Baicheng Dishui small copper, has been exploited from Qing dynasty, and these are closely contacted with much evaporates in the Basin. So searching for metal mineral or copper, and researching the connection between evaporates systems and sandstone-type copper et al. metallization, it is given a new research domain which has been cut on copper prospecting.
     Evaporates sediment with gigantic thickness had been developed in Kuqa Basin from Paleogene to Neogene period and the thickness of salt or gypsum changes from tens of meters to two thousands meters. A series of copper mineralization has been developed in sandstones in Jidike Group and Kangcun Group in Neogene. It is well known that by field investigation and indoor analysis, the mineralization lies near by salt domes and distributes on structure belt from west to east, and the main copper mineral is Atacama (Cu2 (OH)3 Cl) which is also connected with brain and drought climates, not only has the Atacama been born with crystal remains of brain in structure belt of limestone, but also dip-dyed in gypsum which had been full of joint planes of sandstone, the Atacama and native copper are lied in epigenetic gypsum gobbet or the former lies in cranny of sandstone which the brain exuded, it is primary chemical sediment for Atacama and filling of cranny of sandstone with nervation or arborization by analyzing with Electron probe, sulfureted hydrogen is overflowing from structure belt, native sulfur and calcium carbonate are depositing, covellite (CuS) is found in native sulfur, all this give a conclusion that thermochemical sulfate reduction has been in existence, the outcome move by breakage and so reducing environment come into being, Some metals including Atacama, copper, zinc, silver, uranium and native gold are discovered in samples of evaporates including salt samples of salt domes, gypsum samples in petroleum drill holes with depth 4412 meters, and salt shell samples forming in the earth's surface in the first in Kuqa Basin. These tell us that metals or sandstone-type copper mineralization are close connection with evaporates and breakage.
     For the seek of explaining these geological phenomena and giving a approving answer for the relations on metals or sandstone-type copper mineralization, evaporates, and faults, we need to research the development rules of evaporates, characteristics and mechanism of sandstone-type copper mineralization, especially the relations on evaporates systems (evaporate body, wall rock, and faults of wall rock) and sandstone-type copper mineralization, and the key is the action of evaporates systems in the courses of sandstone-type copper mineralization, and so resolve the issue weather the evaporates systems can make metal ore or not.
     For the purpose some techniques are used. First distribution characteristics of salt domes, relations on evaporates and copper mineralization, distribution characteristics of fragmentary rock in Neogene by field investigation, and collecting some samples such as spring, barine, salt frost, copper mineralization or evaporates samples, and measuring sections, collecting some samples of salt domes or fragmentary rock. Second, indoor analyzing the samples by SEM, slice analysis, X diffraction, Electron probe, isotopes analysis, chemistry analysis of solid and water samples, and experiment on evaporation and leaching, and so we can find out mineral component, compose, configuration, conformation, et al. of solid, variety relations on elements of water samples, origin of brain, ore sources and ore-hosting, cause of formation of copper mineralization in salt and gypsum, conditions and environment of copper leached and enriched. In the same time, we can research diversification of evaporates in space time by division of evaporates sedimentary cycle and establishment of dimensional models.
     As a result for the research, the stratum of evaporates lie in mainly Kumugeliemu group, Suweiyi group in Paleogene, and Jidike group in Neogene. The-types of evaporates are main halite, gypsum, and a few dolomite and limestone, comprised of some minerals such as brongniartine, anhedritite, carnallite, halo-sylvite, kaluszite, and hydrophilite. By studying for sedimentary cycles of evaporates from Paleogene to Neogene in the basin, five cycles are identified, andⅠ1 andⅠ2 cycles lying in Kumugeliemu group,Ⅰ3 cycle in Sweiyi group,Ⅰ4 andⅠ5 cycles in Jidiek group.Ⅰ2 cycle was expanded from north to south based onⅠ1 cycle in Kumugeliemu period, accompanying with the floor has been raised in the northwest of the basin, brine began to move so that two sedimentary areas came into being, accordingly, the areas began to move by oneself from northwest to south and east, in Jidike period the evaporites sediment with gigantic thickness had kept on development in the areas. The space model of salt and gypsum are showed that the undulate trend of orebody is consistent with Qiulitage and Kelasu tectonic zone, and two sedimentary centre which lie in Baich and in south of it are reflected in the west of the basin in Kumugeliemu period, so is it in the east of the basin in Jidike period, but its sedimentary centre lie in Luntai and in north of it.
     Two mini-type copper ores and eight copper mineralization spots are discovered in the Basin by field investigation and indoor analysis, that the Kezier copper mineralization spot and Age copper mineralization spot are the first discovered, and the distribution of mineralization is near by salt domes which lie in two big tectonic zone from north to south and spread out from west to east. Four sorts of mineralization had been developed including limestone type, sandstone type, mudstone type, and sulfide type comprised quartz reef. the main copper minerals are Atacamite, azurite, and native copper. Kangcun group of Pliocene is main ore bed, and the other is Jidike group of Miocene, which lie in alar part near by axis part of anticline. The evaporates, maroon siltstone, and maroon mudstone are source bed and the essential ore beds are celadon siltstone, fine stone, and grey grit stone.
     The brine roots in primary bittern and evaporates dissolved by atmospheric water, the first origin of copper come from old copperish stratum of the south Tianshan tectonic belt, and the evaporates, maroon fragmentary rock offer the second origin of copper. Intergranular dehydration, unload of salt body, and tectonic extrusion are main momentum on movement of coppery brine. The good channels for ore brine are rift, fracture zone of late Jidike period. It is a hint that Coppery sulfid would come into being when brine enriched copper ions had happened to brine enriched sulfidion in deep stratum by discovering existence of thermochemical sulfate reduction(TSR) in Kuqa Basin from Paleogene to Neogene, and these are already approved by drilling for copper ore in Dishui.
     The sandstone-type copper metallization, not only connected closely on brine, but also related with prime deposition of sandstones. The metallization epoch is from later Miocene to middle or later Pliocene, and not later than forepart of Pleistocene. In this article the metals especially sandstone-type copper metallization in sandstones are not detached from evaporates systems (evaporates body, wall rock, and fracture structure), and it is possible that metallization can happen in the systems.
引文
Archibald S M, Migdisov A A and Willams-Jones.2002. An experhental study of stability of Copper chloride complexesin water vapor at elevated temperafures and pressare[J]. Geochim Cosmochim. Acta,66(9):1611-1619.
    A. H. Truesdell and B.F. Jones.1969. Ion Association in Natural Brines[J]. Chemical Geology,4:51-62.
    Bilalu U. Haq, Jan Hardenbol, and Petr R. vail.1987. Chronology of Fluctuating Sea Levels Since the Triassic. SCIENCE, Vol.235 P:1156-1167.
    Dan Asael, Alan Matthews, and Slawomir Oszczepalski, et al..2009. Fluid speciation controls of low temperature copper isotope fractionation applied to the Kupferschiefer and Timna ore deposits[J].Chemical Geology,262(3-4):147-158.
    F. M. Gradstein等编著.金玉玕,王向东,王玥译.地层学杂志,29(2):98.
    F. T. Manheim, J. L. Bischoff.1969. Geochemistry of Pore Waters from Shell Oil Company Drill Holes on the Continental Slope of the NorthernGulf of Mexico [J]. Chemical Geology,4:63-82.
    Frape, S.K., Fritz, P. and McNutt, R.H.,1984a. Water-rock interaction and chemistry of groundwaters from the Canandian Shield[J]. Geochimica et Cosmochica Acta,48:1617-1627.
    Frape, S.K., Fritz, P. and Blackmer, A.J.,1984b. Saline groundwater discharges from crystalline rocks near Thunder Bay, Ontario, Canada. In Hydrochemical Balances of Freshwater Systems,(ed)E.Eriksson, International Assocication for Hydrological Sciences, Publication 150:369-379.
    Fritz, P. and Frape, S.K.,1982. Saline groundwates in the Canadians Shield-a first overview[J]. Chemical Geology,36:179-190.
    G.里希特-贝恩布格.1983.盐矿床地质[M].四川:四川人民出版社,1-269.
    Graham S A, Hendrix M S, and Wang L B, et al.1993. Collision success or basin of western China:Impact of tectonic in heritance on sand composition [J]. Geological Society of American Bulletin,105: 323-324.
    Qustafson L B, Williams N.1981. Sediment-hosted stratiform deposits of copper, lead and zinc. Econ Geol., 75th Ann. Vol.,139-178.
    H. Borchert.1964.盐类矿床-蒸发岩的成因、变质和变形.袁见齐等编译,北京:地质出版社.
    Hay, Kyser.2001. Chemical sedimentology and paleoenvironmental history of Lake Olduvai, a Pliocene lake in northern Tanzania[J]. Geological Society of America Bulletin,113(12):1505-1521.
    Haynes D W.1986. Stratiform copper deposits hosted by low-energy sediments:ⅠandⅡ. Econ. Geol.,81: 250-280.
    He G Y and Chen H L.2004. Neogene coupling between Kuqa Basin and Southern Tien Shan Orogen, Northwestern China[J]. J Zhejiang Univ SCI, V5(8):970-975.
    J. J. Wilkinson, A. J. Boyce, and G. Earls, et al.1999. Gold Remobilization by Low-Temperature Brines:Evidence from the Curraghinalt Gold Deposit, Northern Ireland[J]. Economic Geology,94: 289-296.
    Jia D, Lu H F, and Cai D Sh, etc,1998. structural features of Northern Tarim basin:Implication for regional tectonics and petroleum traps [J]. AAPG Bulletin,82(1):147-159.
    John K. Warren.2006. Evaporites:Sediments, Resources and Hydrocarbons[M]. Sturtz A G, German: Almas Schimmel.791-881.
    Johnson J W, Oelkers E H and Helgeson H C.1992.Supert 92:a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5,000 bar and 0 to 1,000℃. Comp Geosci 18:899-947.
    Li Z, Song W J, Peng S T, et al.2004. Mesozoic-Cenozoic tectonic relationships between the Kuqa subbasin and Tian Shan, northwest China:constraints from depositional records[J]. Sedimentary Geology,172:223-249.
    Lu H, Howell D G, Jia D, et al.1994. Rejuvenation of the Kuqa foreland basin, northern flank of the Tarim basin, Northern China[J]. International Geology Review,36:1151-1158.
    M.瓦里亚什科.1965.钾盐矿床形成的地球化学规律[M].范立等译,北京:中国工业出版社,274-309.
    Mark H. Reed and James Palandri.2006. Sulfi de Mineral Precipitation from Hydrothermal Fluids[J]. Reviews in Mineralogy & Geochemistry,61:609-631.
    Migdisov A A, Williams-Jones A E and Suleimenov O M.1999. The solubility of chlorargyrite (AgCl) in water vapor at elevated temperatures and pressures[J]. Geochim Cosmochim Acta,63:3817-3827.
    Oliver J.1986. Fluids expelled tectonically from orogenic belts:their role in hydrocarbon migration and other geologic phenomena[J]. Geollogy,14:99-102.
    Parrish J T.1993. Climate of the supercontinent Pangea[J]. J Geol,101:215-233.
    P. R. Bush.1970. a Rapid Method for the Determination of Carbonate Carbon and Organic Carbon[J]. Chemical Geology,6:59-62.
    Schmalz RF.1970. Environment of marine evaporate deposition [J]. Miner. Ind,35(8):1-7.
    Scotes, Ch. R., et al.1979. Paleozoic base maps, J. Geolo.,87(3):217-227.
    Simms M J and Ruffell A H.1990. Climates and biotic change in the late Triassic[J]. Journal of the Geological Society,147(2):321-327.
    Sweeney M A, Binda P L, and Vaughan D J.1991. Genesis of the ores of the Zambian Copper belt. Ore Geol. Rev.,6:51-76.
    Tan Hongbing, Ma Wandong, Ma Wanzhou, et al.,2004. Hydrochemical Characteristics of brines and Application to locating potassium in western Tarim Basin[J]. GEOCHIMICA,33(2):152-158.
    Thiede S and Cameron N.1978. Concentration of Heavy Metals in the Elk Point Evaporite Sequence, Saskatchewan[J], Economic Geology, V73(3).
    Thompson A.B.1992. Water in the earths upper mantle[J].Nature,358:295-302.
    Usiglio Par M. J.,1849. Analyse de l'eau de la Mediterannee sur les cotes de Fiance. Etutes sur la composition de l'eau dela Mediterannee et sur l'exploitation des sels quelle contient, Ann. De Chim.et de Phys., SER3, T27.92-107.
    Vakhrameev V A.1991. Jurassic and Cretaceous floras and climates of the earth [J]. Cambridge University Press:285.
    Wang H Zh and Mo Xuanxue.1995. An outline of the tectonic evolution of China[J]. Episodes,18 (1-2):6-16.
    Wang Q C, Zhang Z P and Lin W.2004. Late Tertiary faults and their paleostress along the boundary between the Kuqa Basin and the Tianshan Mountains[J]. Chinese Science Bulletin, V49(4):374-381.
    Warren J. K.1997. Evaporites, brines and base metals:brines, flow and "the Evaporite that was"[J]. Australian Journal of Earth Sciences,44:149-183.
    Warren J. K.2000b. Evaporites, brines and base metals:low-temperature ore emplacement controlled by evaporite diagenesis[J]:Australian Journal of Earth Sciences,47:179-208.
    Warren J. K.2010. Evaporites through time:Tectonic, climatic and eustatic controls in marine and nonmarine deposits. Earth-Science Reviews,98:217-268.
    Wout K, Marianne E. Leewis, Miguel G, et al.2006. Tectonic control for evaporite formation in the Eastern Betics (Tortonian; Spain)[J]. Sedimentary Geology. V188-189:P155-170.
    Yan Detian, Wang Hua, Wang Jiahao, et al.2006. Sedimentary Characteristics and Reservoir Prediction of Paleogene in the East Part of Kuqa Foreland Basin[J]. Journal of China Uni versi t y of Geosciences, 17(2):138-145.
    Zalk I and Bentor Y K.1968. Some new data on the salt deposites of the dead area, Proceedings of the Hanover Symposium,15021:137-146.
    Zhang Z P and Wang Q C.2004. Development of joints and shear fractures in the Kuqa depression and its implication to regional stress field switching[J]. Science in China (Ser. D) Earth Sciences,47:74-85.
    Zheng MP.2001. On Salinology[J]. Hydrobiologia,406:339-347.
    安作相,胡征钦.1993.中亚含油气地区[M].北京:石油工业出版社,228-239.
    白国平,殷进垠.2007.中亚卡拉库姆盆地油气分布特征与成藏模式[J].古地理学报,9(3):293-301.
    蔡春芳,梅博文,马亭,等.1997.塔里木盆地油田水的成因与演化[J].地质论评,43(6):650-657.
    蔡克勤,高建华.1994.察尔汗盐湖钾盐矿床的形成条件[J].地学前缘,1(3-4):231-233.
    曹辉兰,华仁民,饶冰,等.2002.济阳坳陷油田卤水溶解金属元素的初步实验研究[J].地质论评,48(4):444-448.
    曹守连,陈发景,罗传容.1994.塔北中、新生代前陆盆地沉降机制的数值模拟[J].石油与天气地质,15(2):113-120.
    曹养同,刘成林,杨海军,等.2010.新疆库车盆地古近系—新近系蒸发岩沉积旋回识别及对比[J].古地理学报,12(1):31-41.
    车自成,罗金海,刘良.1998.中亚与中国西北地区陷落型前陆盆地的构造样式及成因分析[J].地球学报,19(3):225-232.
    陈楚铭,卢华复,贾东,等.1998.塔里木盆地晚第三纪-第四纪构造变形、沉积特征与石油地质意义[J].沉积学报,(4):113-116.
    陈楚铭,卢华复,贾东,等.1999.塔里木盆地北缘库车再生前陆褶皱逆冲带中丘里塔格前锋带的构造与油气[J].地质论评,45(4):421-433.
    陈根文,夏斌,吴延之,等.2000.楚雄盆地砂岩铜矿成矿机理研究[J].中国科学(D辑),30(增刊):169-175.
    陈根文,夏斌,钟志洪,等.2002.滇中地区砂岩铜矿矿物分带特征及其成因意义[J].地质地球化学,30(1):41-45.
    成守德,刘朝荣,肖立新.2002.塔里木盆地西部及邻区构造格局与演化[J].新疆地质,20(增):13-18.
    戴金星.1982.我国天然气藏的分布特征[J].石油与天然气地质,(3):270-276.
    戴金星,何斌,孙永祥,等.1995.中亚煤成气聚集域形成及其源岩—中亚煤成气聚集域研究之一[J].石油勘探与开发,22(3):1-7.
    邓起东,冯先岳,张培震,等.2000.天山活动构造[M].北京:地震出版社,1-399.
    邓秀芹,岳乐平,滕志宏.1998.塔里木盆地周缘库车组、西域组磁性地层学初步划分[J].沉积学报,16(2):82-86.
    地质矿产部《地质辞典》办公室.1983.地质辞典(一)[M].北京:地质出版社,395.
    冯锐,朱介寿,丁韫玉,等.1981.利用地震面波研究中国地壳结构[J].地震学报,3(4):335-350.
    付晓飞,宋岩,吕延防,等.2006.塔里木盆地库车坳陷膏盐质盖层特征与天然气保存[J].石油实验地质,28(1):25-29.
    高波,龙胜详,刘彬.2007.中国西部与中亚前陆盆地油气地质特征类比分析[J].天然气地球科学,18(2):187-191,223.
    高建华.1989.澳西金顶铅锌矿床和燕发岩建造成因关系的初步探讨[J].地球科学—中国地质大学学报,14(5):513-522.
    龚文君,谭凯旋,李小明,等.2000.兰坪白秧坪铜银多金属矿床流体地球化学特征及成矿机制探讨[J].大地构造与成矿学,24(2):175-181.
    郭宏莉,朱如凯.2005.利用有机包裹体探讨塔里木盆地依奇克里克构造带下侏罗统油气运移与油气藏存储条件[J].岩石学报,21(5):1467-1472。
    郭令智,施央申,卢华复,等.1992.印藏碰撞的两种远距离效应[A].见;李清波等主编,现代地质学研究文集(上)[C].江苏南京:南京大学出版社,1-7.
    郭全.2007.新疆滴水砂岩型铜矿成矿特征与富集规律[J].新疆有色金属,(增刊):12-15.
    何登发,白武明,孟庆任.1998.塔里木盆地地球动力学演化与含油气系统旋回[J].地球物理学报,4(增刊):77-87.
    何登发,贾承造,李德生,等.2005.塔里木多旋回叠合盆地的形成与演化[J].石油与天然气地质,26(1):64-77.
    何光玉,卢华复,王良书,等.2003.塔里木盆地库车地区早第三纪伸展盆地的证据[J].南京大学学报(自然科学),39(1):40-45.
    何光玉,卢华复,李树新,等.2004.库车再生前陆盆地油气运移特征[J].地质学报,78(6):848-853.
    何国琦,李茂松,刘德权,等.1994.中国新疆古生代地壳演化及成矿[M].乌鲁木齐:新疆人民出 版社,香港:香港文化教育出版社,1-245.
    何明勤,刘家军,杨世瑜,等.2004.云南宾川雄鲁摩铜多金属矿床的成矿流体[J].矿物学报,24(3):261-265.
    胡剑风,刘玉魁,杨明慧,等.2004.塔里木盆地库车坳陷盐构造特征及其与油气的关系.地质科学[J].39(4):580-588.
    黄满湘.1999.湖南麻阳铜矿成矿机制探讨[J].大地构造与成矿学,23(1):42-49.
    纪云龙,丁孝忠,李喜臣,等.2003.塔里木盆地库车凹陷三叠纪沉积相与古地理研究[J].地质力学学报,9(3):268-274.
    贾承造,杨树锋,陈汉林,等.2001.特提斯北缘盆地群构造地质与天然气[M].北京:石油工业出版社.
    贾承造,何登发,陆洁民.2004.中国喜马拉雅运动的期次及其动力学背景[J].石油与天然气地质,25(2):121-169.
    贾承造.1992.塔里木板块构造演化[A].见:李清波等主编.现代地质学研究文集(上)[C].南京:南京大学出版社,22-31.
    贾承造.1997.中国塔里木盆地构造特征与油气[M].北京:石油工业出版社,348-357.
    李忠,王清晨,王道轩,等.2003.晚新生代天山隆升与库车坳陷构造转换的沉积约束[J].沉积学报,21(1):38-45.
    李大民,孙永军,许文进.2006.甘肃天鹿砂岩型铜矿床地质特征及成矿模式[J].矿床地质,25(3):312-320.
    李双建,石永红,王清晨.2006.碎屑重矿物分析对库车坳陷白垩-第三纪物源变化的指示[J].沉积学报,24(1):28-35.
    李双建,王清晨,李忠,王道轩.2006.砂岩碎屑组分变化对库车坳陷和南天山盆山演化的指示[J].地质科学,41(3):465-478.
    李廷栋,韩同林.1980.青藏高原地区构造特征[A].见:国际交流地质学术论文集(1):构造地质、地质力学(为二十六届国际地质大会撰写)[C].北京:地质出版社,153-162.
    李维峰,高振中,彭德堂,等.2000.塔里木盆地库车坳陷中三叠统辫状河三角洲沉积[J].石油实验地质,22(1):55-54.
    李伟.1989.金的迁移及其富集的若干问题[J].云南大学学报(自然科学版),11(1):30.
    李振生,刘德良,杨强,等.2006.库车前陆盆地断裂封存的超高压封存箱[J].中国科技大学学报,36(4):453-457.
    林耀庭,颜仰基,吴应林.1996.四川盆地某地富矿卤水水文地球化学特征及其成因资源意义[J].岩相古地理,16(4):12-22.
    林耀庭.2000.世界钾盐矿床的时空组合[J].中国井矿盐,P48.
    刘宝珺,曾允孚.1985.岩相古地理基础和工作方法[M].北京:地质出版社,271-276.
    刘成林,焦鹏程,曹养同,等.2008a.蒸发岩盆地构造反转对钾盐成矿控制研究[A].见:第九届全国矿床会议论文集[C].北京:地质出版社:370-373.
    刘成林,焦鹏程,王弭力,等.2003b.新疆罗布泊第四纪盐湖上升卤水流体及其成钾意义[J].矿床地质,22(4):386-392.
    刘成林,焦鹏程,王弭力,等.2007.罗布泊盐湖巨量钙芒硝沉积及其成钾效应分析[J].矿床地质,26(3):322-329.
    刘成林,焦鹏程,王弭力.2003a.罗布泊第四纪含盐系成岩作用特征研究[J].沉积学报,21(2):240-246.
    刘成林,焦鹏程.2002.罗布泊第四纪卤水钾矿储层孔隙成因与储集机制研究[J].地质论评,48(4):437-443.
    刘成林,王弭力,焦鹏程,等.2006a.世界主要古代钾盐找矿实践与中国找钾对策[J].化工矿产与地质,28(1):1-8.
    刘成林,王弭力,焦鹏程,等.2006b.罗布泊盐湖钙芒硝结晶实验与化学反映探讨[J].矿床地质,25(增):233-236.
    刘成林,王弭力,焦鹏程,等.2006c.中国新疆罗布泊盐湖断裂构造特征、形成机制及成钾意义[J].地质学报,P1866.
    刘成林,王弭力,焦鹏程,等.2008b.罗布泊杂卤石沉积特征及成因机理探讨[J].矿床地质,27(6):705-713.
    刘成林,王弭力,焦鹏程,等.2009.罗布泊盐湖钾盐矿床分布规律及控制因素分析[J].地球学报,30(6):796-803.
    刘成林,王弭力,焦鹏程.1999b.罗布泊盐湖氢氧、锶和硫同位素地球化学及成矿意义[J].矿床地质,18(3):268-275.
    刘成林,王弭力.1999a.罗布泊第四纪沉积环境演化与成钾作用[J].地球学报,2(增刊),264-270.
    刘成林,杨海军,顾乔元,焦鹏程,等.2008.塔里木盆地重要蒸发岩坳陷成盐及油气生储条件研究,塔里木油田公司报告.
    刘成林.1987.河南安棚碱矿核二段沉积相标志及沉积环境研究,中国地质科学院.
    刘成林.2003c.罗布泊钾矿区外围盐湖钾盐资源研究与评价新进展[J].矿床地质,22(3):286.
    刘德权,唐延龄,周汝洪.2005.中国新疆铜矿床和镍矿床[M].北京:地质出版社,171.
    刘群,陈郁华,李银彩,等.1987.中国中、新生代陆源碎屑—化学岩型盐类沉积[M].北京:北京科学技术出版社,15-17.
    刘群,杜之岳,陈郁华,等.1997.陕北奥陶系和塔里木石炭系钾盐找矿远景[M].北京:原子能出版社:210-214.
    刘群,许德明.1979.钾盐矿床的分类及其找矿意义[J].地质学报,(4):352-362.
    刘志宏,卢华复,李西建,等.2000.库车再生前陆盆地的构造演化[J].地质科学,35(4):482-492.
    卢华复,贾东,蔡东升,等.1996.塔里木和西天山古生代板块构造演化[A].见:童晓光等主编,塔里木盆地石油地质研究新进展[C].北京:科学出版社,235-245.
    卢华复,贾东,陈楚铭,等.1999.库车新生代构造性质和变形时间[J].地学前缘,6(4):215-221.
    马东升.1990.地球的金丰度[J].黄金,第6期.
    马丽芳.2002.中国地质图集[M].北京:地质出版社,348.
    毛景文,李晓峰,张荣华,等.2005.深部流体成矿系统[M].武汉:中国地质大学出版社.
    钱自强,曲一华,刘群,等.1994.钾盐矿床[M].北京:地质出版社,11.
    邱芳强,丁勇,王辉.2000.库车盆地的沉积物源分析[J].新疆地质,18(3):252-257.
    曲懿华.1997.兰坪—思茅盆地与泰国呵呖盆地含钾卤水同源性研究—兼论该区找钾有利层位和地区[J].化工矿产地质,19(2):81-98.
    曲懿华,袁品泉,帅开业,等.1998.兰坪—思茅盆地钾盐成矿规律及预测[M].北京:地质出版社,1-120.
    冉崇英.1988.论东川—易门式铜矿的矿源与成矿流体[J].中国科学(B辑),(12):1305-1313.
    任纪舜,王作勋,陈炳蔚,等.1999.从全球看中国大地构造——中国及邻区大地构造图简要说明[M].北京:地质出版社,6-9.
    任纪舜.2003.新一代中国大地构造图—中国及邻区大地构造图(1:5000000)附简要说明:从全球看中国大地构造[J].地球学报,24(1):1-2.
    沈军,吴传勇,李军,等.2006.库车坳陷活动构造的基本特征[J].地震地质,28(2):269-278.
    斯特拉霍夫.1960.地史学原理,杨鸿达等译[M].北京:地质出版社.
    孙大鹏.1986.大陆含钾盆地钾盐沉积的形成问题[J].矿物岩石,6(2):13-14.
    孙永祥.1994.有关天山山系山间盆地的含油性[J].石油地质信息,15(1):13-14.
    孙玉壮,Puettmann and Kucha.2001.波兰Lubin矿区“含脉黑色页岩”的地球化学性质[J].地质学报,126.
    谭红兵,马万栋,马海州,等.2004.塔里木盆地西部古盐矿点卤水水化学特征与找钾研究[J].地球化学,33(2):152-158.
    谭凯旋,龚文军,李小明,等.1999.地洼盆地砂岩铜矿床的构造—流体—成矿体系及演化[J].大地构造与成矿学,23(1):35-41.
    谭凯旋.1998.砂岩铜矿地球化学和成矿动力学[M].北京:地震出版社.
    谭秀成,王振宇,李凌,等.2006.库车前陆盆地第三系沉积相配置及演化研究[J].沉积学报,24(6):790-797.
    汤良杰,贾承造,金之钧,等.2003.塔里木盆地库车前陆褶皱带中段盐相关构造特征与油气聚集[J].地质论评,49(5):182-186.
    汤良杰.1992.塔里木盆地多层次滑脱构造与含油气远景探讨[J].地质学报,66(2):97-107.
    汤良杰.1997.略论塔里木盆地主要构造运动[J].石油实验地质,19(2):108-114.
    滕志宏,岳乐平,何登发,等.1997.南疆库车河新生界剖面磁性地层研究[J].地层学杂志,21(1)55-62.
    万天丰,曹瑞萍.1992.中国中始新世-早更新世构造事件与应力场[J].现代地质,6(3):275-285.
    王弭力,刘成林,焦鹏程,等.1998.罗布泊罗北凹地超大型钾盐矿床及其开发前景[J].矿床地质,17(增):433-435.
    王弭力,刘成林,焦鹏程,等.2001.罗布泊盐湖钾盐资源[M].北京:地质出版社,15-20.
    王弭力,刘成林,焦鹏程,等.2005.罗布泊盐湖钙芒硝沉积及其成钾效应分析[A].见:中国地质学会,第六届世界华人地质科学研讨会和中国地质学会二零零五年学术年会论文摘要集[C].北京:地质出版社。
    王清明.2006.我国盐矿地质勘察研究简史[J].盐业史研究,(2)57-60.
    王士元,王玉山,钟晓玲,等.2003.氯铜矿矿物特征及在找矿中的作用[J].新疆地质,21(2):251-252.
    王素华,钱祥麟.1999.中亚与中国西北盆地构造演化及含油气性[J].石油与天然气地质,20(4):321-325.
    魏东岩.2001.美国新墨西哥州钾盐矿床及其开发[J].化工矿产地质,23(1):22-23.33.43.53.63.73.83.
    邬光辉,蔡振中,赵宽志,等.2006.塔里木盆地库车坳陷盐构造成因机制探讨[J].新疆地质,24(2):182-186.
    邬光辉,王招明,刘玉魁,等.2004.塔里木盆地库车坳陷盐构造运动学特征[J].地质论评,50(5):476-483
    吴必豪,刘群,蔡克勤.1995.中国钾盐成矿条件与国外典型矿床的对比研究.“八五”国家科技攻关计划专题成果报告.地质矿产部矿床地质研究所.
    吴国干,李华启,初宝洁.2002.塔里木盆地东部大地构造演化与油气成藏[J].大地构造与成矿学,26(3):229-234.
    肖荣阁,原振雷,刘敬党,等.2004.区域成矿流体的形成与演化[J].地学前缘(中国地质大学,北京),11(2):461-468.
    新疆维吾尔自治区地质矿产局.1993.新疆维吾尔自治区区域地质志[M].北京:地质出版社,1-816.
    新疆维吾尔自治区区域地层编写组.1981.西北地区区域地层表新疆维吾尔自治区分册[M].北京:地质出版社,297-309.
    许建新,马海州,杨来生,等.2006.库车盆地古近纪和新近纪构造环境与蒸发岩沉积[J].地质学报,80(2):227-235.
    许靖华.1980.薄壳板块构造模式与冲撞型造山运动[J].中国科学(A),(11):1081-1089.
    许伟生,姚志健,韩蔚田.1991.沉积硬石膏岩中铜、铅、锌、锶、钡的含量特征及其活化、迁移的试验研究[J].现代地质,5(1):79-90.
    宣之强.1997.中国盐矿开发的历史回顾与前瞻[J].化工矿产地质,19(3):203-206.
    宣之强.1999.中国钾盐50年[J].化工矿产地质,21(3):181-187.
    杨明慧,金之钧,吕修祥,等.2004.塔里木盆地库车褶皱冲断带的构造特征与油气聚集[J].西安石油大学学报(自然科学版),19(4):1-5.
    杨永强,翟裕生,候玉树,等.2006.沉积岩型铅锌矿床的成矿系统研究[J].地学前缘(中国地质大学,北京),13(3):200-205.
    叶霖,刘铁庚.1997.新疆氯铜矿的发现及其意义[J].矿物学报,17(1):78-81.
    袁见齐,霍承禹,蔡克勤.1982.盐类物质与一些金属、非金属矿床的关系[J].武汉地质学院学报,18(3):223-238.
    袁见齐,霍承禹,蔡克勤.1983.高山深盆的成钾环境--种新的成钾模式剖析[J].地质论评,29(2):159-165.
    袁见齐.1989.袁见齐教授盐矿地质论文集[M].北京:学苑出版社,1-227.
    张朝军,田在艺.1998.塔里木盆地库车坳陷第三系盐构造与油气[J].石油学报,19(1):6-10.
    张丽娟,李多丽,孙玉善等.2006.库车坳陷西部古近系-白垩系沉积储层特征分析[J].天然气地球科学,17(3):355-360.
    张彭熹,等.1987.柴达木盆地盐湖[M].科学出版社,92-131.
    张荣华,胡书敏.2001.地球深部流体演化与矿石成岩[J].地学前缘(中国地质大学,北京),8(4):298-310.
    郑绵平.1989a.全球盐湖地质研究与展望[A].国外矿床地质(国外盐湖地质专辑)[C].(3,4),地质矿产部矿床地质研究所:1-34.
    郑绵平,何军,魏新俊,等.1989b.青藏高原盐湖[M].北京:北京科学技术出版社,1-431.
    郑绵平,齐文.1998a.多级盐湖盆地成矿模式-地球系统科学(中国进展-世纪展望)[M].北京:中国科技出版社,466-468.
    郑喜玉等.1995.新疆盐湖[M].北京:科学出版社,1-226.
    中国地质学扩编委员会.1999.中国地质学(扩编版)[M].北京:地质出版社,278-295.
    周兴熙.2000.库车坳陷第三系盐膏质盖层特征及其对油气成藏的控制作用[J].古地理学报,2(4):51-57.
    周宗良,高树海,刘志忠.1999.西南天山造山带与前陆盆地系统[J].现代地质,13(3):275-280.
    朱上庆,黄华盛.1988.层控矿床地质学[M].北京:冶金工业出版社.
    朱毅秀,刘洛夫,林畅松.2005.中亚地区费尔干纳盆地油气地质特征[J].兰州大学学报(自然科学版),41(1):25-31.
    朱毅秀,刘洛夫.2005.中亚地区费尔干纳盆地构造及其演化特征[J].内蒙古石油化工,(3):92-94.
    朱毅秀,刘洛夫.2007.南塔吉克盆地油气地质特征[J].新疆石油地质,28(2):257-261.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700