用户名: 密码: 验证码:
南黄海盆地与周边构造关系及海相中、古生界分布特征与构造演化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
南黄海盆地位于扬子块体东段,是下扬子块体向海域的延伸部分。南黄海盆地是一个大型海相中、古生代和陆相中、新生代的叠合盆地。40多年来,南黄海的油气地质勘探主要针对陆相中、新生代盆地,但并未获得油气突破。近年来,南黄海海域海相中、古生界作为一个新的勘探领域越来越得到重视,国家加大了针对这一层系的调查工作量,青岛海洋地质研究所通过南通幅区域地质调查(2002-2006)以及南黄海前第三系油气战略选区项目(2005-2009)分别实施了1727.5 km和3200 km的多道地震测量,同时获取了3000多公里的重、磁资料。本文的研究是在前人取得的地质认识的基础上,利用这些最新地震和重、磁资料,采用综合地质、地球物理的方法探讨南黄海盆地及周边区域构造地质问题,划分了盆地海相中、古生代地层层序,分析了海相中、古生界分布和构造特征,并讨论了中、古生代盆地的构造演化。
     最新的基于位场分离和迭代法向下大深度延拓的视密度反演的技术被应用于重力数据的处理,并主要用于厘定区内深大断裂,如块体间的边界断层和其它重要地质界线的延伸。通过重力和磁力数据的转换处理分析,解释了研究区内断裂和火成岩的平面分布。利用最新的地震资料结合钻井标定和海陆对比的方法划分了海相中、古生界的地震地层层序,并采用2.5D重、磁、震联合反演拟合技术验证了剖面上地层分布。利用地震资料解释成果得到了海相中、古生界顶面(印支面)的深度信息,通过利用单一界面的3D反演法推算了中、古生界底面的深度,并编制了中生界三叠系青龙灰岩的残留厚度图以及上古生界二叠系的残留厚度图,从而了解了海相中、古生代地层的分布和构造特征。
     本文认为扬子块体与中朝块体之间的结合带为苏胶-京畿造山带,嘉山-泗洪-连云港断裂以及海域的千里岩北缘断裂是扬子与苏胶造山带的边界断层。扬子与华南的边界断裂为江山-绍兴-光州断裂,NE向和EW向为构造主控方向,扬子块体向东不仅包括南黄海,还包括朝鲜半岛中部,但范围比较局限。南黄海盆地是下扬子的主体,具有古老的稳定的陆核,因此虽然所处构造环境复杂,经历了复杂的构造运动,其构造稳定性依然好于周边地区,受火山岩浆活动影响较小,有利于海相地层的保存。
     苏北—南黄海盆地是一个整体,具有较完整的加里东期、海西期以及印支期海相层序,基底为太古界—元古界变质岩系。盆地发育分为原型沉积为主和后期改造为主两大构造阶段,震旦纪至早三叠纪为海相原型盆地沉积时期;晚三叠世至第四纪为海相中、古生界盆地的主要改造时期。盆地自北向南划分为北部坳陷、中部隆起、南部坳陷、勿南沙隆起等五个喜山期构造单元。海相中、古生界的构造格局仍为两坳一隆,与新生代构造格局相似,但具体位置和构造方向有所不同。中、古生界底面深度在4-13km之间变化,平均埋深约8km。海相中古生界厚度分布主要受基底起伏控制,但厚度曲线整体上NE的走向也体现出印支运动造成的影响,中部隆起区中、古生界沉积厚度变化比较稳定。震旦-下二叠统广泛分布,其中震旦-志留系分布厚度稳定,泥盆-下二叠统分布厚度变化较大;三叠系下统青龙组和二叠系上统的大隆组和龙潭组在南黄海盆地南部坳陷和勿南沙隆起分布广泛,北部坳陷分布局限,在中部隆起上已基本剥蚀贻尽。限于目前的资料,还难以得知下古生界具体残留的厚度。
The South Yellow Sea basin is located on the east of the Yangtze block. It is the extension of lower Yangtze block in the Yellow Sea. The South Yellow Sea basin is a huge superposed basin composed of Paleo-Mesozoic marine facies basin and Meso-Cenozoic terringenous sedimentary basin. In the past forty years, the petroleum geological exploration has aimed at Meso-Cenozoic terringenous sedimentary basin, but there was no breakthrough of industrial oil and gas discoverer yet. In recent years, the Pale-Mesozoic marine facies basin has been paid more and more attention as a new hydrocarbon exploration target. In resent years, geophysical survey aiming at these potential strata in the South Yellow Sea has been implemented by Qingdao Institute of Marine Geology. The marine regional geological survey of Nantong sheet in the South Yellow Sea (2002-2006) finished 1727.5 km seismic survey. The Pre-Tertiay hydrocarbon stratege survey in the South Yellow Sea project (2005-2009) carried out 3200 km seismic measurement, and more than 3000 km gravity and magnetic data had been acquired at the same time. Based on previous research result and the new seismic, gravity and magnetic data, this paper analyzed the tectonic framework of the South Yellow Sea basin and its adjacent area, divided the stratigraphic sequence, discussed the distribution and structure characteristic of Paleo-Mesozoic marine strata and the evolution process of marine Paleo-Mesozoic basin. The integrated geological and geophysical interpretation method was used in the research.
     A new apparent density inversion technology based on potential field separation and downward continuation in a large distance using iteration method was used in gravity data processing. The result helped to locate the position of the deep major fault, especially the extension of the block boundary fault and the other important geological boundary. The distribution of the faults and volcanic rocks were analyzed by gravity and magnetic data interpretation. New seismic data interpretation combined with the drilling data and geological correlation between land and sea were used to classify the marine Paleo-Mesozoic stratigraphic sequence. Geologic models of two profiles were rectified by 2.5D gravity, magnetic and seismic joint inversion and modeling. The depth of top surface of the marine Paleo-Mesozoic strata was got by seismic interpretation; undulation of the bottom surface was derived by 3D magnetic inversion. The residual thickness map of Triassic Qinglong limestone and Permian strata was also drawn in order to understand the distribution and structure feature of the marine Paleo-Mesozoic strata.
     In this paper, the junction zone in between the Yangtze massif and Sino-Korea massif was defined as Sujiao-Gyeonggi orogenic belt. Jiashan-Sihong-Lianyungang fault and the fault at north edge of Qianliyan in the sea was the boundary fault between Yangtze block and Sujiao orogenic belt. Jiangshan-Shaoxing-Kongju fault was delimitated as the boundary fault between Yangtze and South China massif. The dominant tectonic structures trend was in NE and EW direction. To the east, the Yangtze block not only includeed the South Yellow Sea, but also a small part in the central Korea Peninsula. The South Yellow Sea basin was the main part of the Lower Yangtze block, its stable Archean nucleus was beneficial to minimize the influence of tectonic movement. Thus the Yellow Sea basin was comparatively more stable than the adjacent area even though its tectonic environment was complicated and endured several tectonic movements. The volcanic and magma activities in the basin were general small scales, and which favored the preservation of the marine Paleo-Mesozoic strata.
     The Subei basin and the South Yellow Sea basin were an integral basin. It developed integrate Caledonian-Hercynian-Indosinian marine sequences. The basement was composed of Archean and Proterozoic metamorphic rocks. The basin developed two main tectonic stages:the prototype deposition and the late deformation. The prototype deposition stage started from Sinian and finished in the early Triassic. During the late Triassic and Quaternary, the basin had been transformed by tectonic movements. The basin could be divided into five Himalayan tectonic units, the northern depression, the central uplift, the southern depression and Wunansha uplift. The tectonic framework of marine Pale-Mesozoic strata was similar to that of the Himalayan, it also could be divided into two depressions and one uplift. But the position and trend of the units were different. The depth of the bottom surface of Paleo-Mesozoic marine strata varied from 4-13 km, the average depth was 8km. The thickness of the marine sequence was mainly controlled by the undulation of the basement, but the influence of the Indosinian movement can also be seen by the northeast-trending isopachous line. The thickness of the marine Paleo-Mesozoic strata was comparatively stable in the central uplift. The Sinian-lower Permian strata were widely spread in the basin, and the Sinian-Silurian strata had stable distribution. The distribution and thickness Devonian-lower Permian strata varied much in different area. The lower Triassic Qinglong formation and the upper Permian Dalong and Longtan formation were widely distributed in the southern depression and Wunansha Uplift of the South Yellow Sea basin, the distribution of this sequence in the northern depression was very limited, in the central uplift, few had been left due to the combined effect of uplift and denudation. At present, the residual thickness of the lower Paleozoic was still unknown due to the limited data.
引文
[1]An Yin. An indentation model for the north and sorth china collision and the development of the tanlu and honam fault systems, east Asia.Tectonics[J].1993, 12 (4):801-813.
    [2]Bear G W, Al-Shukri H J, Rudman A J. Linear inversion of gravity data for 3-D density distribution. Geophysics[J].1995,60(5):1354-1364.
    [3]Chang K H, Park S 0. Paleozoic Yellow Sea Transform Fault:Its Role in the Tectonic History of Korea and Adjacent Regions. Gondwana Research[J].2001,4 (4),588-589.
    [4]Chang Whan Oh. A new concept on tectonic correlation between Korea, China and Japan:Histories from the late Proterozoic to Cretaceous. Gondwana Research[J].2006,9:47-61.
    [5]Cooper, G. The stable downward continuation of potential field data. Exploration Geophysics[J].2004 (35):260-265.
    [6]Fedi M, Florio G. A stable downward continuation by using the ISVD method. Geophys. J. Int[J].2002(151):146-156.
    [7]Guo J H, Sun M, Chen F K, et al. Sm-Nd and SHRIMP U-Pb zircon geochronology of high-pressure granulites in the Sanggan area, North China Craton:timing of Paleproterozoic continental collision. Journal of Asian Earth Sciences[J].2005,24 (5):629-642.
    [8]Kim Sung Won, Oh Chang Whan, Williams Ian S, et al. Phanerozoic high-pressure eclogite and intermediate-pressure granlite facies metamorphism in the Gyeonggi Massif, South Korea:Implication for the eastward extension of the Dabie-Sulu continental collision zone. Lithos[J].2006,92 (3/4):357-337.
    [9]Lee D S. Geology of Korea[M]. Seoul:Geological Society of KoreaKyohak-Sa Pabulishing Corporation,1987,514.
    [10]Li Y, Oldenburg D W. 3-D inversion of gravity data[J]. Geophysics,1998,63 (1):109~119.
    [11]Magnetic Anomaly Map of East Asia 1:4,000,000 CD-ROM Version[M]. Geologica Survey of Japan,1996.
    [12]Oh Chang Whan, Kim Sung Won, G Choi S, et.al. First finding of eclogite facies metamorphic event in South Korea and its correlation with Dabie-Sulu collision belt in China[J]. The Journal of Geology,2005,113:226-232.
    [13]Oldenburg D W. The inversion and interpretation of gravity anomalies[J]. Geophysics,1974,39 (4):526-536.
    [14]Paek R J, Rim D S. On the Rimjinang Belt[C]. In:Gondwana to Asia Symposium of 2005, Abstract Volume. Institue of Geology and Geophysics, Chinese academy of Science, Beijing,2005, B-1-5.
    [15]Parker R L. The rapid calculation of potential anomalies[J]. Geophs J R Astr sco, 1973,31:447-455.
    [16]Pawlowski, R.S. Preferential continuation for potential-field anomaly enhancement [J]. Geophysics,1995(60):390-398.
    [17]Peek R J. Lower Proterozoic era stratigraphy[M]. Geological Institute, Academy of Sciences, North Korea ed. Geology of Korea. Pyongyang:Foreign Languages Books Publishing House,1993,41-52.
    [18]Sandwell, D. T., W. H. F. Smith. Marine gravity anomaly from Geosat and ERS-1 satellite altimetry[J]. J. Geophys. Res.1997,102:10039-10054.
    [19]Sandwell, D. T, W. H. F. Smith. Global marine gravity from retracked Geosat and ERS-1 altimetry:Ridge Segmentation versus spreading rate[J]. J. Geophys. Res.2009,114, B01411, doi:10.1029/2008JB006008.
    [20]Sungchan Choi, Chang-Whan Oh, Herrmann Luehr. Tectonic relation between northeastern China and the Korean peninsula revealed by interpretation of GRACE satellite gravity data[J]. Gondwana Research,2006,9:62-67.
    [21]Xu S Z, Yang J Y, Yang C F, et al. The iteration method for downward continuation of a potential field from a horizontal plane[J]. Geophysical Prospecting,2007,55:883-890.
    [22]Zhai Mingguo, Guo Jinghui, Liu Wenjun. Neoarchean to Paleoproterozoic continental evolution and tectonic history of the North China Craton:a review[J]. Journal of Asian Earth Sciences,2005,24(5):547-561.
    [23]Zhang Minghua, Xu Deshu, Chen Jianwen. Geological structure of the yellow sea area from regional gravity and magnetic interpretation[J]. Applied Geophysics, 20074, (2):75-83.
    [24]蔡乾忠.黄海含油气盆地区域地质与大地构造环境[J].海洋地质动态,2002,18(11):8-12.
    [25]蔡乾忠.横贯黄海的中朝造山带与北、南黄海成盆成烃关系[J].石油与天然气地质,2005,26(2):185-96.
    [26]陈建峰,张怡志.苏北-南黄海磁性基底[M].见刘光鼎,中国海区及邻域地质地球物理特征科.北京:科学出版社,1992,131-136.
    [27]陈建文.南黄海前第三系油气前景研究项目年度报告[R].青岛海洋地质研究所内部资料,2007,27-30.
    [28]陈沪生.下扬子地区HQ-13线的综合地球物理调查及其地质意义[J].石油与天然气地质,1988,9(3):221-222.
    [29]陈沪生等.下扬子及邻区岩石圈结构构造特征与油气资源评价[M].北京:地质出版社,1999.
    [30]程裕淇.中国区域地质概论[M].北京:地质出版社,1994,379-384.
    [31]戴春山,蔡峰等.黄海海域前第三系盆地基本石油地质条件和勘探前景研究报告[R].青岛海洋地质研究所内部资料,2002:65-81.
    [32]戴春山,李刚等.黄海前第三系及油气勘探方向[J].中国海上油气(地质),2003,17(4):225-230.
    [33]戴春山,杨艳秋,闫桂京.南黄海中-古生代海相残留盆地埋藏生烃史模拟及其意义[J].石油与天然气地质,2005,26(1),49-56.
    [34]戴勤奋.中国海区及邻域的地磁场分析[J].海洋地质与第四纪地质,1997,17(92):64-71.
    [35]戴勤奋,周良勇,魏合龙.南黄海卫星重力场及构造演化[J].海洋地质与第四纪地质,2002,22(4):67-72.
    [36]冯志强,姚永坚,曾祥辉等.对黄海中、古生界地质构造及油气远景的新认识[J].中国海上油气(地质),2002,16(9):365-373.
    [37]高德章,唐建,薄玉玲.东海地球物理综合探测剖面及其解释[J].中国海上油气(地质),2003,17(1):38-43.
    [38]高德章,赵金海,薄玉玲等.东海重磁地震综合探测剖面研究[J].地球物理学报,2004,47(5):853-861.
    [39]关小平,黄嘉正,罗孝宽.重力、地震资料联合反演实例[J].石油地球物理勘探,1995,30(3):379-385.
    [40]郭振一,孙秀珠.胶莱坳陷南缘晚侏罗世鲕状灰岩砾石中有孔虫、(竺)/(蜒)化石发现及其大地构造意义[J].地质论评,1985,31(2):79-181.
    [41]郝天珧,黄松,徐亚等.南海东北部及邻区深部结构的综合地球物理研究[J].地球物理学报,2008,51(6):1785-1796.
    [42]郝天珧,刘建华,Suh Mancheol等.黄海及其邻区深部结构特点与地质演化[J].地球物理学报,2003,46(6):803-808.
    [43]郝天珧,Suh Mancheol,王谦身等.根据重力数据研究黄海周边断裂带在海区的延伸[J].地球物理学报,2002,45(3):385-397.
    [44]郝天珧,Suh Mancheol,阎晓蔚等.黄海中央断裂带的地球物理证据及其与边缘海演化的关系[J].地球物理学报,2003,46(2):179-184.
    [45]和政军,牛宝贵,任纪舜.陕南山阳地区刘岭群砂岩岩石地球化学特征及其构造背景分析[J].地质科学,2005,40(4):594-607.
    [46]侯方辉,张志珣,张训华等.南黄海盆地地质演化及构造样式地震解释[J].海洋地质与第四纪地质,2008,28(5),61-68.
    [47]侯泉林,武昱东,吴福元等.大别-苏鲁造山带在朝鲜半岛可能的构造表现[J].地质通报,2008(10),1659-1666.
    [48]侯遵泽,杨文采.中国重力异常的小波变换与多尺度分析[J].地球物理学报,1997,40(1):85-95.
    [49]华东地区1:100万地质图.华东地质调查局南京-南通地区钻井地质报告[R].南京地质矿产研究所内部资料,1980.
    [50]南黄海北部坳陷地球物理普查报告[R].第一海洋地质调查大队.青岛海洋地质研究所内部资料,1979.
    [51]南黄海航磁报告[R].地矿部航空物探大队909队.青岛海洋地质研究所内部资料,1975,4-5.
    [52]梁瑞才,韩国忠,郑彦鹏等.南黄海重磁场与地质构造特征[J].科学通报,2001,46增刊:59-67.
    [53]李刚,陈建文,肖国林等.南黄海海域的海相中—古生界油气远景[J].海洋地质动态,2003,19(8):12-16.
    [54]李进,刘亚臣等.中国东部海域航磁综合研究报告[R].地质部航空物探地质综合室石油组.青岛海洋地质研究所内部资料,1981.
    [55]刘光鼎.中国海区及邻域地质地球物理系列图及说明书(1:500万)[M].北京:地质出版社,1992.
    [56]刘天佑,杨宇山,李媛媛等.重力、地震联合反演方法确定深层油气藏的分布-以锡林凹陷石炭系分布为例[J].天然气工业,2005(5):34-36.
    [57]欧阳凯,张训华.南黄海及其邻区岩石密度特征[M].见:金祥龙,秦蕴珊,朱日祥等主编.中国地质地球物理进展.北京:海洋出版社,2008,560-568.
    [58]钱祥麟.中朝断块[M].见:张文佑.中国及邻区海陆构造.北京:科学出版社,1986,160-162.
    [59]任纪舜主编.中国及邻区大地构造图(1:500万)及其说明书[M].北京:地质出版社,1999.
    [60]任纪舜,陈廷愚,牛宝贵等.中国东部及邻区大陆岩石圈的构造演化与成矿[M].北京:科学出版社,1992:66-71.
    [61]佘晓宇,徐宏节,何治亮.江苏下扬子区中、古生界构造特征及其演化[J].石油与天然气地质,2004,25(2),226-236.
    [62]陶宝国.南黄海周缘地区的地质构造联系[J].海洋地质译丛,1999,85(4):1-14.
    [63]万天丰.中国大地构造学纲要[M].北京:地质出版社,2003.
    [64]王家林,吴健生主编.中国典型含油气盆地综合地球物理研究[M].上海同济大学出版社,1995:112-135.
    [65]王谦身,安玉林.南黄海西部及邻域重力场与深部构造[J].科学通报,1999,44(22):2248-2453.
    [66]王万银,刘金兰,邱之云等.利用卫星重力异常研究南黄海地区中生界厚度[J].中国海上油气,2004,16(3):151-169.
    [67]王西文,孟昭泰,张工会等.重力、地震联合反演在研究含油气盆地构造中的应用[J].石油地球物理勘探,1991,26(2):201-209.
    [68]温珍河等.南黄海(35°-37°N,122°-125°E)地质地球物理综合调查研究报告 [R].青岛海洋地质研究所内部资料,2001:54-58.
    [69]熊绍柏,刘宏兵.浙皖地区地壳-上地幔结构和华南与扬子块体边界[J].地球物理学进展,2000,15(4):3-17.
    [70]邢涛,张训华,符溪.南黄海磁性基底特征研究[M].见:金祥龙,秦蕴珊,朱日祥等主编.中国地质地球物理研究进展.海洋出版社:2008,570-575.
    [71]徐世浙.位场延拓的积分-迭代法[J].地球物理学报,2006,49(4):1176-1182.
    [72]徐世浙.位场大深度向下延拓[J].物探化探计算技术,2006,28(增刊):29-31.
    [73]徐世浙.迭代法与FFT法位场向下延拓效果的比较[J].地球物理学报,2007,50(1):285-289.
    [74]徐世浙,余海龙.位场曲化平的插值-迭代法[J].球物理学报,2007,50(6):1811-1815.
    [75]徐世浙,张研,文百红,杨辉,杨长福.切割法在陆东地区磁异常解释中的应用[J].石油物探,2006,45(3):316-318.
    [76]胥颐,刘建华,郝天珧等.中国东部海域及邻区岩石层地幔的P波速度结构与构造分析[J].地球物理学报,2006,29(4):1053-1061.
    [77]许正龙,翟爱军.苏皖下扬子区震旦纪—中三叠世海相层序地层[J].沉积与特提斯地质,2002,22(2),64-69.
    [78]姚长利,郝天珧,管志宁等.重磁遗传算法三维反演中高速计算及有效存储方法技术[J].地球物理学报,2003,46(2):252-258.
    [79]姚长利等.南黄海重力、磁力、地震联合反演处理研究报告[R].青岛海洋地质研究所内部资料,2008:24-47.
    [80]姚永坚,夏斌,冯志强等.南黄海古生代以来构造演化[J].石油实验地质,2005,27(2),124-128.
    [81]杨辉.重力、地震联合反演基岩密度及综合解释[J].石油地球物理勘探,1998,33(4):496-502.
    [82]杨金玉,吴志强,姚长利.2.5D重磁震联合反演在南黄海地质研究中的应用[J].海洋地质动态,2008,24(8):33-38.
    [83]杨金玉,徐世浙,余海龙,李海侠.视密度反演在东海及邻区重力异常解释中的应用[J].地球物理学报,2008,51(6):1909-1916.
    [84]杨金玉,张训华,张志珣等.不同来源重力数据在海洋重力编图中的拼接-以 南通幅海洋重力编图为例[J].海洋地质与第四纪地质,2007,27(3):61-67.
    [85]杨琦,陈红宇.苏北-南黄海盆地构造演化[J].石油试验地质,2003,25(增刊):562-565.
    [86]杨文采,施志群,侯遵泽等.离散小波变换与重力异常多重分解[J].地球物理学报,2001,44(4):534-541.
    [87]杨志坚.胶东地块构造演化及其东延去向问题[J].海洋地质与第四纪地质,1989,9(2):1-11.
    [88]尹延鸿.中国东部海区及邻域构造图[R].青岛海洋地质研究所内部资料,2008.
    [89]于鹏,王家林,吴健生等.重力与地震资料的模拟退火约束联合反演[J].地球物理学报,2007,50(2):529-538.
    [90]翟明国,郭敬辉,李忠等.苏鲁造山带在朝鲜半岛的延伸:造山带、前寒武纪基底以及古生代沉积盆地的证据与制约[J].高校地质学报,2007,13(3)415-428.
    [91]张明华等.南黄海及邻区重力数据综合处理解释报告[R].青岛海洋地质研究所内部资料,2005:41-50.
    [92]张明华,张家强.现代卫星测高重力异常分能力分析及在海洋资源调查中应用[J].物探与化探,2005,29(4):1-5.
    [93]张家强.南黄海中、古生界油气勘探前景[J].海洋地质动态,2002,18(11):25-27.
    [94]张文佑.中国及邻区海陆大地构造图(1:5000000)[M].北京:科学出版社,1983.
    [95]张文佑.中国海区及邻域海陆大地构造[M].北京:科学出版社,1986.
    [96]张训华等.中国海域构造地质学[M].北京:海洋出版社,2008:81-87.
    [97]张永鸿.下扬子区构造演化中的黄桥转换事件与中、古生界油气勘探方向[J].石油与天然气地质,1991,12(4),439-448
    [98]张之孟.试论中国南北大陆的碰撞造山带[J].地球学报,1994,3(4):14-31.
    [99]中国东部海区航磁综合研究报告[R].地质部航空物探地质总队综合室石油组,1981,8-9.
    [100]周永青,张志珣等.1∶100万南通幅海洋区域地质调查调查研究报告[R].青岛海洋地质研究所内部资料,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700